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ON MULTI-VALUED FUNCTIONS
Rade Dacié

(Communicated June 23, 1967)

The aim of this paper is to show that all multi-valued linear functions
on vector space to vector space can be reduced to single-valued linear functions.

A multi-valued function is a correspondence which assigns to each point
of a set X a subset of a set Y.

We denote multi-valued functions by capital letters I', F, etc., and sin-
gle-valued functions by small letters v, f, etc.

In [1] is assumed that for some x< X it can be I' (x)= 3.

A function T on a space X to a space Y is called continuous at x' if
and only if for all open set W containing I'(x’) there exists an open set V
containing x’ such that ['(x) CW for all xc V. I' is continuous on X if it is
continuous for all xc X.

First of all, we shall examine the structure of multi-valued linear func-
tions defined in [1].

Let X and Y be two vector spaces. A multi-valued function I': X—Y is
said to be linear provided that:

1° for yeT (x)

y el (x)
2° if yeI'(x) and « scalar > a y &I (a X).
For linear functions is also acceptable I' (xX)= @ for some xc& X.

A multi-valued linear function I' we call trivial if ' (x)= @ for all xe X,
I" is constant function if T (x)=T (0) for all x&X.

}:>y+y'EF(x+x');

Theorem 1. If multi-valued linear function U is not trivial, then T (0)+# & .

Proof. For some xc X, it is, then, valid I (x) @ . But then, for ycI' (x)
we obtain 0=0.ycI'(0-y)=I"(0), and I' (0) is non-void.
This justifies the above definition of constant function.

Theorem 2. If T is linear and T (x)# @, then I' (—x)# & .

Proof. Since I' (x)#~ @ there exists at least one element y in I' (x).

But then, because of linearity —y=(—1)yeIl ((—1)x)=I(—x), and
I' (—x) is non-void.

Theorem 3. Let T:X—Y be linear multi-valued function on a vector
space X to a vector space Y, then I (0) is a vector subspace of Y.
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Proof. For y,y' T (0) we have, according to the definition of linearity,
y+y' €l (0+0)=I(0), and the set I'(0) is closed with respect to the opera-
tion + . Associativity is included since I'(0) is a part of the Abelian group Y.
For AER (=set of scalars, real line for example) and y=T(0) we have
AyET (A0)=T(0). So A=0 and y&TI' (0) implies 0=0-y<I' (0). In the same
way: A=—1 and y€TI' (0) implies (—1-y=—ycIl ((—1)0)=I(0), i.e. T'(0)
contains —y with y.

The following theorem gives the structure of multi-valued linear functions.

Theorem 4. If I is multi-valued linear function on a vector space X
to a vector space Y, then for all x< X (for which T (x)= @) the set T (x) is an
equivalence class with respect to the equivalence relation o defined in the follo-
wing way: apb if and only if a—b<T (0).

Proof. Suppose I' (x)# @. Take y,y &I (x). Since I' is linear and taking
into account the theorem 2. we have —y &I'(—x). But then y—y &I'(x+
+(—x))=TI"(0) what was to be proved.

According to the last theorem, there is no difference, in the algebraic
meaning of the word, between multi-valued linear functions on X to Y and
single-valued functions on X to Y/p, where p is the equivalence relation defined
in theorem 4. But if one takes into account topologies of X and Y, and con-
siders continuous linear multi-valued functions these two functions are different.
In other words; if I': X—Y is linear multi-valued function and if the single-
-valued function y:X—Y/I'(0) is defined so that y(x)=I(x)& Y/I"(0), theny
can be continuous (supposing that the topology of Y/I'(0) is quotient topo-
logy) while T" is discontinuous. We shall show it by the following

Example. Take X=Y=R (=real numbers with usual topology). Con-
sider multi-valued function I':R—>R defined in the following way: I (x)=
=([x], [¥]+1) for x#[x] and I' (x)={x} for x=[x], ([x] is the greatest integer
contained in x). This function makes a partition of R the elements of which
are: open intervals (k—1, k), (denote them by D), and {k}, where k is an
integer. We shall show that I’ is not continuous. Let x=k and 0<ez<I.
Take the open set G=k—e, k+¢). G contains ' (k)={k}. But no one of the
neighbourhoods of k can be transferred into G, since I' (G (k))=(k—1, k+ 1) for
all G(k) contained in (k—1, k+ 1).

The quotient topology of the space H={D;, {k}} has Dy as isolated
points and the basic neighbourhood of {k} is {Dy, {k}, Dy.}. The induced
function y:R—>9), defined so that y(x)=I(x), is evidently continuous. So,
the continuity of vy in the quotient topology does not imply the continuity
of I' as multi-valued function.

To remove this discrepancy we shall equip Y/I" (0) with another topology.
That is choice topology introduced in [2] in the following way. Let X be to-
pological space and 9 a partition of X, i.e. a family of disjoint subsets of X
which covers X (every element of X belongs to one and only one element of
the partition). Let ¢: ) —X be function on 9 to X defined so that ¢(D)SD
for all DE<). Such a function is known by the name choice function. Let Z
be the family of all choice functions ¢. By the choice topology we mean the
coarsest topology on ) for which all the choice functions ¢ are continuous.

A multi-valued function I': X—Y is called semi-single-valued if and only
if T'(x)UT (x,)# @ implies I' (x,)=T (x,).
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Theorem 6. Let X and Y be topological spaces, o equivalence relation
on Y and let D=7Y]p be equipped with choice topology. Let I' be semi-single-
-valued function on X to Y and v single-valued function on X to 9, defined in
such way that y (x)=T (x). Then the continuity of I implies the continuity of y
and conversely.

Proof. Consider y(x) as an element of < which is equipped with choice
topology, and let O% be an open set containing y(x). The interior of the sub-
set of Y whose elements belong to D (denote it by 0), for D& 0g contains
I'(x), or, otherwise O% would not contain y(x) and be open. But since I'
is continuous, for O containing the set I'(x), there exists an open neighbour-
hood ¥V of x such that for all x’€V the set I'(x’)C 0. Consider now that
subset of ), the elements of which are those equivalence classes D which satis-

fy condition D|JO+# @. Denote that subset of % by Oc], According to the

definition of choice topology, 0;% is open in 9. We have O;?) CO09. But
then, x' €V implies y(x)E0’, that is y(x)<0 and y is continuous function
on X to 9 equipped with choice topology.

Conversely, let y:X—< be continuous. Let U be an open set in Y con-
taining ['(x), x€ X Consider the subset Uy of ) which elements D satisfy
condition DC U. Using choice function ¢ such that for those D which satisfy
condition 0N D# @ and COND+# @ it is valid ¢(D)©€CON D, we have that
9~1(0) is open in . Put ¢71(0)=0%. Evidently ¢(x)©0%. Since vy is con-
tinuous there exists an open set ¥ in X containing x such that y(x)E09
for all x’€V. But then I' (x")CO0 for all x'€V, so that I' is also continuous.

Using previous facts concerning linear multi-valued functions and theo-
rem 6., we can express the following main result of the paper.

Theorem 7. Let I':X—Y be linear multi-valued function on a topolo-
gical vector space X to a topological vector space Y and let 2= Y|I' (0) be
equipped with choice topology and let y:X—< be defined so that y(x)=T (x).
Then: the continuity of T implies continuity of v and conversely.
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