

Werk

Titel: On the iwasawa invariants of totally real number fields.

Autor: Yamashita, Hiroshi

Jahr: 1993

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0079|log4

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ON THE IWASAWA INVARIANTS

OF TOTALLY REAL NUMBER FIELDS

Hiroshi Yamashita

We shall show two sufficient conditions under which the Iwasawa invariants λ_k and μ_k of a totally real field k vanish for an odd prime l, based on the results obtained in [1], [3] and [4]. Let K_n be the composite of k and the l^n -th cyclotomic extension of the field Q of rational numbers. Let C_n be the factor group of the l-class group of K_n by a subgroup generated by ideals whose prime factors divide the principal ideal (l). Let ε_1 be an idempotent of the group ring $Z_l[\operatorname{Gal}(K_1/k)]$ defined in the below. We shall prove $\lambda_k = \mu_k = 0$ if there is a natural number n such that $\varepsilon_1 C_n$ vanishes, under additional conditions concerning ramifications in K_n/k .

1. Introduction. Let k denote a finite algebraic number field and l be an odd prime number. Let $K_n = k(\zeta_n)$ for an l^n -th root of unity ζ_n . Omitting the suffix, we use K to denote K_1 . Set $\Delta = \operatorname{Gal}(K/k)$. Let k_n be the fixed field of K_n by Δ . Let l^{e_n} be the order of the l-Sylow subgroup of the ideal class group of k_n . It is known that the following asymptotic formula holds:

$$e_n \sim \lambda_k n + \mu_k l^n, \quad (n \to \infty),$$

where λ_k and μ_k are constants called the Iwasawa invariants of k. (See [6, Ch. 13].)

Let $Z_l[\Delta]$ denote the group ring of Δ over the ring Z_l of l-adic integers. Let ω be an l-adic character of Δ which satisfies $\zeta_l^{\sigma} = \zeta_l^{\omega(\sigma)}$ for every $\sigma \in \Delta$. Let ε_i be an idempotent in $Z_l[\Delta]$ associated with ω^i . Let A_n be the l-Sylow subgroup of the ideal class group of K_n and D_n be the subgroup generated by ideals whose prime factors divide (l). Denote by C_n the factor group A_n/D_n . $Z_l[\Delta]$ acts on A_n , C_n , D_n , canonically.

A finite algebraic number field k is called l-rational in [1] if k satisfies the following two conditions:

- (1) The Leopoldt conjecture is valid for l.
- (2) The Galois group Gal(M/k) of the maximal *l*-ramified abelian *l*-extension M of k is torsion free.

By virtue of Theorem 4 in [1] of l-rationality, we could prove the following theorem:

Theorem A. Let k be a totally real number field such that no prime $l \mid (l)$ is decomposed completely in K/k. Then, if $\varepsilon_1 C_1 = \{1\}$, we have $\lambda_k = \mu_k = 0$.

Let \bar{H}_n be compositum of cyclic l-extensions of K_n which are embedded into cyclic l-extensions of arbitrary degree. Let \bar{L}_n (resp. \bar{L}'_n) be the maximal unramified (resp. unramified l-decomposed) abelian l-extension of K_n . There are the canonical isomorphisms $\operatorname{Gal}(\bar{L}_n/K_n) \simeq A_n$ and $\operatorname{Gal}(\bar{L}'_n/K_n) \simeq C_n$. The mutual relations of the structures of their Galois groups are studied in [3] and [4]. We shall obtain the following theorem based on the results in [3] and [4]:

Theorem B. Let k be a totally real number field. If there is a finite m satisfying the conditions (i) and (ii) below, the Leopoldt conjecture is valid for l in k_n for every n, and moreover, we have $\lambda_k = \mu_k = 0$.

- (i) No prime [| (l) is decomposed in K_{m+1}/K_m .
- (ii) $\varepsilon_1 C_{m+1} = \{1\}.$
- 2. Proof of the theorems. We shall prove Theorem A first. Let k be a totally real field which satisfies the assumptions of Theorem A. By virtue of (iv) of Theorem 4.1 of [1], we see k is l-rational. Hence, by (i) of that theorem, the Galois group $\operatorname{Gal}(N/k)$ of the maximal l-ramified l-extension N is a pro-finite l-group of rank 1. Since N is also the maximal l-ramified l-extension of k_n for every n and since $\operatorname{Gal}(N/k_n) \simeq Z_l$, we have $\mu_k = \lambda_k = 0$. q.e.d.

The key of the proof of Theorem B is the following lemma:

Lemma 1. Suppose the conditions (i) and (ii) are valid for k. Then we have $\varepsilon_1 C_n = \{1\}$ for each $n \geq m$.

Proof. Let g_n and h_n be the orderes of $\varepsilon_1(C_n/C_n^{\gamma-1})$ for a generator γ of $\operatorname{Gal}(K_n/K_m)$ and ε_1C_n , respectively. Note $\varepsilon_1(C_n/C_n^{\gamma-1}) \simeq (\varepsilon_1C_n)/(\varepsilon_1C_n)^{\gamma-1}$, because $\operatorname{Gal}(K_n/k)$ is abelian. Hence $g_n=1$ is equivalent to $h_n=1$. Let E' be the l-unit group of K_m , and N_n be the norm map of K_n/K_m . Denote by $Z_l \otimes E'$ and $Z_l \otimes N_n K_n^{\times}$ the tensor products over the ring Z of integers, where K_n^{\times} is the multiplicative group of K_n . Set

$$F_n = Z_l \otimes E' / (Z_l \otimes E' \cap Z_l \otimes N_n K_n^{\times}), \qquad D(n) = \bigoplus_{l(l)} D_{l,l}$$

where $D_{\mathfrak{l}}$ are the decomposition groups of primes \mathfrak{l} of K_m in K_n/K_m . Combining the homomorphism $\varepsilon_1 F_n \to \varepsilon_1 D(n)$ defined in Theorem III.2.16 in [3] with the canonical map $\varepsilon_1(E'/E'^{l^{n-m}}) \to \varepsilon_1 F_n$, we have the following homomorphism:

$$\varphi_n: \varepsilon_1 E'/E'^{l^{n-m}} \longrightarrow \varepsilon_1 D(n).$$

Simultaneously, we also have the following formula from Theorem III.2.16:

$$g_n = h_m \mid Coker \quad \varphi_n \mid$$
.

We see $h_m=1$ and φ_{m+1} is surjective, because of $g_{m+1}=1$. Let $\pi_n:D(n)\to D(n)/D(n)^l\cong D(m+1)$ be the canonical map for n>m. Since $\pi_n\circ\varphi_n=\varphi_{m+1}$, we have φ_n is also surjective. Thus, $g_n=1$. $h_n=1$ follows from $g_n=1$. q.e.d.

In [4], three parameters ρ, λ, μ of a family of finite $Z_l[\Delta]$ -modules $\{X_n\}_{n\geq 1}$ are defined as follows. Let $x_{n,i}$ be the exponent of l of the order of $\varepsilon_i X_n$. When we have an asymptotic formula

$$x_{n,i} \sim \rho_i n l^n + \lambda_i n + \mu_i l^n, \quad (n \to \infty)$$

for $0 \le i \le |\Delta| - 1$, the parameters are defined to be l-adic characters

$$\rho = \sum \rho_i \omega^i, \quad \lambda = \sum \lambda_i \omega^i, \quad \mu = \sum \mu_i \omega^i.$$

Let $\langle \varphi, \psi \rangle$ denote the symmetric scalar product of l-adic characters of Δ . Let H_n, L'_n and L_n be the maximal subfields of exponent l^n over K_n of \bar{H}_n, \bar{L}'_n and \bar{L}_n , respectively. The parameters of $\{\operatorname{Gal}(L'_n/K_n)\}_{n\geq 1}$ (resp. $\{\operatorname{Gal}(L_n/K_n)\}_{n\geq 1}$) are denoted by λ_c (resp. λ_K) and μ_c (resp. μ_K). We note the ρ -parameters of these families vanish and $\lambda_k = \langle \lambda_K, 1_{\Delta} \rangle$, $\mu_k = \langle \mu_K, 1_{\Delta} \rangle$.

Proof of Theorem B. Let E be the unit group of k_m and \bar{E} be the closure in the direct product $\prod_{q_l} U_l$ of the local unit groups U_l of the completions of k_m at places ||l|. Set $F^{(n)} = E \cap \bar{E}^{l^n}$. Since the Kummer extensions of K_n by radicals $F^{(n)}K_n^{\times l^n}/K_n^{\times l^n}$ are subfields of L'_n , the dual of the radicals is isomorphic to factor groups of $\varepsilon_1 C_n$. Hence, Lemma 1 implies $F^{(n)} \subset K_n^{\times l^n}$, that is, $F^{(n)} \subset E^{l^n}$. We obtain

$$E/E^{l^n} \simeq \bar{E}/\bar{E}^{l^n}, n = 1, 2, \cdots$$

This implies the Z-rank of E equals the Z_l -rank of \bar{E} . Hence the Leopoldt conjecture is valid for every k_n for $n \leq m$. Replacing k_m with k_t in this argument, we see the Leopoldt conjecture is valid for k_t for every t > m.

Let ρ_H, λ_H, μ_H be the parameters of the family $\{\operatorname{Gal}(H_n/K_n)\}$ in the tables I, II of [4]. Let $\Delta_{\mathfrak{p}}$ be the decomposition groups in K/k of $\mathfrak{p}|_{\infty}$. Let χ_{∞} be the sum of induced characters $\operatorname{Ind}_{\Delta_{\mathfrak{p}}}^{\Delta} 1_{\Delta_{\mathfrak{p}}}$ of the unit characters $1_{\Delta_{\mathfrak{p}}}$ of $\Delta_{\mathfrak{p}}$ for every $\mathfrak{p}|_{\infty}$. From the tables, we see $\rho_H = \omega \chi_{\infty}$, $<\lambda_H, 1_{\Delta}> = <\lambda_c, \omega>$ and $<\mu_H, 1_{\Delta}> = <\mu_c, \omega>$. Since $\Delta_{\mathfrak{p}}$ contains the complex conjugation $J \in \Delta$, we have $<\omega \chi_{\infty}, 1_{\Delta}> = 0$. We

also see $\bar{H}_n \supset \bar{L}_n$ from the table in [3,Ch.I,1.3.c], and hence we have $H_n \supset L_n$. Therefore, we have the following consequence:

$$<\rho_H, 1_{\Delta}>=0,$$

$$<\lambda_c, \omega>=<\lambda_H, 1_{\Delta}>\geq<\lambda_K, 1_{\Delta}>=\lambda_k,$$

$$<\mu_c, \omega>=<\mu_H, 1_{\Delta}>\geq<\mu_K, 1_{\Delta}>=\mu_k.$$

Lemma 1 proves $0 = \langle \lambda_c, \omega \rangle = \lambda_k$ and $0 = \langle \mu_c, \omega \rangle = \mu_k$. q.e.d.

We give a sketch of an alternative proof of $\lambda_k = \mu_k = 0$, based on the Iwasawa theory. Let M be the maximal l-ramified abelian l-extension of $k_{\infty} = \bigcup_{n>1} k_n$ and set $H = \bigcup_{n>1} \bar{H}_n$. Let s_n be the number of divisors $\mathfrak{I}(l)$ of k_n decomposed completely in K_n . Set $\lambda_l = \max\{s_n; n \geq 1\}$. By the table in [3,Ch.I,1.3.c], we have $M \supset H \supset k_{\infty}$, and moreover, since the Leopoldt conjecture is valid, we have $Gal(M/H) \simeq Z_p^{\lambda_l}$. Let X be the Galois group of the maximal l-ramified abelian lextension of k_{∞} and A (resp. D) be the inductive limit of A_n (resp. D_n) with respect to the natural maps. By virtue of Lemma 1, we see $\varepsilon_1 A = \varepsilon_1 D$. Let I_n be subgroups of the ideal groups of K_n generated by $\mathbb{I}(l)$. Let Q_l be the field of quotients of Z_l . We have $\varepsilon_1 I_n / I_m \simeq \varepsilon_1 D_n / D_m$ from the isomorphism (10) of [5,p.480] when k is abelian over Q. We could show this isomorphism is valid for a totally real k with a similar argument as in the proof of (10) in [5]. The inductive limit of $\epsilon_1 I_n/I_m$ for n>mwith respect to the natural maps is isomorphic to $(Q_l/Z_l)^{\lambda_l}$. Since there is $n_1 \geq m$ such that $\varepsilon_1 D_n^{l^{n-n_1}} = \varepsilon_1 D_{n_1} \supset \varepsilon_1 D_m$ holds for $n > n_1$, we have $\varepsilon_1 D \simeq (Q_l/Z_l)^{\lambda_l}$. By the Iwasawa theory, we have a pairing on $X \times \varepsilon_1 A$ (see [2,Sect.2]). Hence, $X \simeq Z_1^{\lambda_1}$. This means $Gal(H/k_{\infty})$ is of finite order. Since $\bar{L}_n \subset \bar{H}_n$, we have $\lambda_k = \mu_k = 0$.

3. Examples. Let k be the maximal real subfield of an f-th cyclotomic field K such that $l \mid f, l^2 \not \mid f$. Denote by λ_l the number of divisors defined in the above remark, and by I_n the subgroup of the ideal group of K_n which is also defined in the above. $\varepsilon_1 C_n$ is the minus part C_n^- . Set $l^{e_n} = |A_n^-|$. We have $l^{\lambda_l(n-1)} \mid |D_n^-|$, because $I_n^-/I_1^- \simeq D_n^-/D_1^-$. Hence $|C_n^-| \leq l^{\lambda_l(e_n-n+1)}$.

Therefore, by virtue of Theorem A and B, we have $\lambda_k = 0$ if $\lambda_l = e_1 = 0$ or if $\lambda_l = e_2$. We examine the table in [6] of relative class numbers of f-th cyclotomic fields and obtain the following examples:

(1)
$$\lambda_l = e_1 = 0$$

 $l = 3$ $f = 12, 15, 21, 84, 51, 75, 123, 129, 147$
 $l = 5$ $f = 15, 35, 45, 65, 105, 135, 115$
 $l = 7$ $f = 28, 35, 56, 77, 119$

$$l = 13 \quad f = 65$$

$$l = 17 \quad f = 51, 119, 153$$

$$l = 23 \quad f = 92, 115$$

$$l = 29 \quad f = 87$$

$$l = 41 \quad f = 123$$

$$(2) \quad \lambda_l = e_2 \ge 1$$

$$l = 3 \quad \lambda_l = 1 \quad f = 24, 48, 60, 33, 132, 204, 165, 300$$

$$l = 3 \quad \lambda_l = 2 \quad f = 120, 264$$

$$l = 3 \quad \lambda_l = 4 \quad f = 240$$

$$l = 5 \quad \lambda_l = 1 \quad f = 20, 40, 60$$

$$l = 5 \quad \lambda_l = 2 \quad f = 120$$

l = 11 f = 33, 44, 99

l = 7 $\lambda_l = 1$ f = 21,84

References

- 1. Gras, G. and Jaulent, J.-F.: Sur le corps de nombres réguliers. Math. Z. 202,
- Gras, G. and Jament, J.-T. But to corp. 343-365(1989)
 Greenberg, R.: On p-adic L-functions and cyclotomic fields II. Nagoya. Math. J. 67,139-158(1977)
 Jaulent, J.-F.: L'arithmétique des l-extensions. (thése) Pub. Math. Fac. Sci. Page (1985/1986)

- Besançon (1985/1986)

 4. ______: Représentations l-adiques associées aux invariants cyclotomiques.

 Proc. Japan Acad. Ser. A 61,149-152 (1985)

 5. Solomon, D.: On the class groups of imaginary abelian fields. Ann. Inst. Fourier,

 Grenoble 40,467-492(1990)
- 6. Washington, L.C.: Introduction to cyclotomic fields. (G.T.M., Vol 83, 1st ed.) New York: Heidelberg: Berlin Springer 1982

Hiroshi Yamashita Kanazawa Women's College 10, Sue-machi Kanazawa 920-13 Japan

> (Received June 20, 1991; in revised form December 10, 1992)

