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1. Introduction

We consider a compact Riemannian manifold M and a principal G-bundle P
over M, where G is a compact Lie group. On the space ¥ of connections in P
we consider the Yang-Mills functional J: ¥ —R defined by

(1.1) J)=3]121? we¥,
M

where Q is the curvature of the connection. (Let g denote the Lie algebra of G.
Then the curvature @ is considered as a 2-form on M with values in the
adjoint bundle P x ,,g, and its norm || is defined by the Riemannian metric
of M and a fixed invariant inner product in g).

A critical point of J is called a Yang-Mills connection and its curvature a
Yang-Mills field. A Yang-Mills connection  is said to be weakly stable if the
second variation of J at w is non-negative, i.e.,

d2
1.2) i J(wz)‘zon
for every smooth family of connections w,, —d <t <4, with wy=w. We say that
a compact Riemannian manifold M is Yang-Mills instable if, for every choice of
G and every principal G-bundle P over M, none of the nonflat Yang-Mills
connections in P is weakly stable.

At the Tokyo Symposium on “Minimal Submanifolds and Geodesics” in
September of 1977, J. Simons announced the following theorem in his talk
entitled “Gauge Fields”. (His lecture has never been published).

(1.3) Theorem. For n=5, the n-sphere S" with the natural metric is Yang-Mills
instable.

*  During the preparation of this paper, the first named author was partially supported by NSF
Grant DMS 85-02362 and by Max-Planck-Institut fiir Mathematik in Bonn
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A proof of (1.3) can be found in the paper of Bourguignon and Lawson [2]
who undertook a systematic study of stability and instability questions of
Yang-Mills connections on spheres.

The purpose of this paper is to extend (1.3) to a larger class of manifolds
including the compact symmetric spaces. We find that S", (n>5), P?>(Cay) and
E¢/F, are Yang-Mills instable compact irreducible symmetric spaces. On the
other hand, it follows from Laquer [8] that the canonical connection on any
compact irreducible symmetric space other than S*, (n>5), P*(Cay), E¢/F, and
compact simple Lie groups is a weakly stable Yang-Mills connection. (The
canonical connection of a compact irreducible symmetric space M is weakly
stable if the canonical connection of the universal covering space M is weakly
stable. It can be shown also that the canonical connections of P*(R) and
E¢/F, - Z, are weakly stable.)

We extend Bourguignon-Lawson’s calculation of second variations of J to
all M isometrically immersed in a Euclidean space RY. More precisely, let f:
M-RN, f=(f*,...,f"), be the immersion. Then, for a fixed harmonic 2-form
¥ on M with values in Px,,g and for each coordinate function f* we
calculate the second variation (J}),_, associated with the variation defined by

N
the (P x ,49)-valued 1-form a*=1,, ¥, where v,=grad(f*). The sum Y (J9),_,
A=1

becomes simple particularly when M is a minimal submanifold of a sphere
S¥='(r) in RN. We imbed every compact irreducible symmetric space into (the
dual space of) the space of eigenfunctions associated with the first eigenvalue
A, of the Laplacian of M. This gives a minimal immersion of M into S¥—!(r).
We prove that ) (J/}),_, <0 when M =S", (n=5), P?>(Cay) or E/F,. In order to
prove this inequality we need to know the maximum eigenvalue of the curva-
ture operator for these symmetric spaces. In Appendix we tabulate the positive
eigenvalues of the curvature operator for all irreducible compact symmetric
spaces. Such a table does not seem to be in the literature.

Our calculation applies to other minimal submanifolds of spheres. In par-
ticular, we obtain a class of Yang-Mills instable isoparametric minimal hyper-
surfaces of spheres. The same calculation yields also some results on Yang-
Mills instability of convex hypersurfaces in R"*?.

We should mention a related result of Shen [19]. He has shown that a
compact submanifold of a sphere is Yang-Mills instable if its dimension is
large compared with the size of its second fundamental form in a precise sense.

It might be of some interest to compare results on Yang-Mills instability
with instability results for other variational problems.

(14) Theorem (Simons [20]). There are no weakly stable minimal submanifolds
on §S".

This has been generalized to currents on S" by Lawson and Simons [9].

(1.5) Theorem (Xin [29]). For n=3 and for any Riemannian manifold Y, there
is no nonconstant weakly stable harmonic maps f: S"—Y.

(1.6) Theorem (Leung [10]). For n=3 and for any compact Riemannian ma-
nifold X, there is no nonconstant weakly stable harmonic maps f: X —S".
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We express the two properties proved for S", n=3, in (1.5) and (1.6) by
saying that, for n>3, S" is harmonically instable. Both (1.5) and (1.6) have been
generalized by Ohnita [15] to a class of minimal submanifolds of spheres. One
of his results needed in this paper is quoted in (6.11). His results on harmoni-
cally instable irreducible compact symmetric spaces are quoted in (7.15).

2. Variations of the Yang-Mills Functional

Let P be a principal bundle over a compact Riemannian manifold M with
structure group G, a compact Lie group. Let @ be a connection form on P. We
consider often w as a g-valued 1-form, locally defined on M (by taking a local
cross section of P). Let Q be its curvature form:

2.1) do=—oAr0+Q.

(For computational convenience, we consider g as a Lie algebra of matrices
and write o A w instead of 1 [w, ®].)
We consider a 1-parameter family of connections:

(2.2) w,=w+ta,

where a is a 1-form with values in Px ,,g (or the corresponding g-valued
1-form on P). Then the curvature @, of w, is given by

2.3) Q,=Q+tDa+t*ana,
where
2.4) Da=dat+wrat+anw

is the covariant exterior derivative of a with respect to the connection w.
We fix an invariant inner product in the Lie algebra g. We define the
Yang-Mills functional

(2.5) J(t)'_‘]i(gvgx)=%j<gn Q> dpy

where ¢, > is the local inner product defined by the Riemannian metric of M
and an invariant inner product of g, and d u,, denotes the Riemannian measure
of M. The first variation of J is given by

(2.6) J'(0)= (R, Da)=(D*R,a).
The connection ® is a critical point of J, i.e., J'(0)=0 for all a if and only if
2.7 D*Q=0.

Such a connection is called a Yang-Mills connection.
From (2.3) we obtain the second variation of J easily (without assuming
that @ is a Yang-Mills connection):

(2.8) J'(0)=Qanra,Q)+(Da,Da)=(2a A a,Q)+(D*Da,a).
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Using an orthonormal frame e, ...,e, and the dual coframe 6, ...,8" of M,
we write

2.9) a=Ya,0"
Then
(2.10) Da=3}a, ;00 A0'=Y 3(a;;—a; )0 A O,

where a comma followed by a subscript, say i, denotes the covariant differen-
tiation in the direction of e; (with respect to the connection of P and the Levi-
Civita connection of M). Similarly, we have

@.11) D*Da=3}(-a;;;+a; ;)0
We write
(2.12) Q=1) F;0'n ¢/,

where the components F; are g-valued. The components of the curvature of the
Riemannian manifold M will be denoted by

Rip =R
The components of the Ricci tensor of M are given by
R,,=Ri=Y R;,,.
Then, applying the Ricci identity to (2.11), we obtain
(2.13) D*Da=Z(—aj,i,i+a,-‘i,j+(a,.Fj,.—Fj,.a,-)+aiRij)6f.
On the other hand,
(2.19) 2ana,Q)=2(} 3(a;a;—a;a)0' A0, Y 3 F,;6' A 6)
=) (@;a;—a;a, F)
=Z(aiFﬁ—Fj,-ai,aj),

where the last equality is a consequence of the fact that we are using an
invariant inner product in the Lie algebra g.
Substituting (2.13) and (2.14) into (2.8), we obtain

(2.15) J"(0)=(S(a), a),
where
(2.16) S(@=2(—a;.i+a,;,;+2(@F;—Fua)+aR,)0.

We conclude this section by establishing a simple topological necessary
condition for Yang-Mills instability.

(2.17) Theorem. If a compact Riemannian manifold M is Yang-Mills instable,
then its second Betti number must vanish.

Proof. The set of (equivalence classes of) principal U(1)-bundles P over M is in
one-to-one correspondence with the second cohomology group H?*(M,Z), the
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correspondence being given by P—c,(P), the first Chern class of P. If Q is the
curvature form of a connection  in P, then the closed 2-form 2—17;!2 represents

¢, (P). If a is any l-form on M with values in u(l), the curvature of the
connection w+a is given by Q+da. It follows that there is a connection w
such that its curvature @ is harmonic 2-form. Such a connection minimizes the
Yang-Mills functional.

If the second Betti number of M is nonzero, choose a principal U(1)-bundle
P over M such that ¢,(P)#0 in H*(M;R). Then choose a connection w in P
whose curvature Q is harmonic. Since ¢, (P)+0, Q is nonzero. This Yang-Mills
connection is clearly weakly stable. Q.E.D.

3. Laplacians of 2-forms

Let
(3.1) 'P:%Zbijei/\ef, b.=—b

ij Ji
be a 2-form with values in the vector bundle P x,,q such as the curvature
form Q of a connection in P. Then

(3.2) DsY=-%b, &,
(3.3) DD* 'I’=%Z(b,.j'i_k—bikyi'j)6"AH",

1 S
(3.4) D‘P=§Z(bil~,k——b”‘i—b,-k_j)ﬂ‘/\9’/\0",
3.5) D*DY¥ = _%Z(bij,k,i_ biji,i— bi.j.i) 0 n 6~
If we set

A=DD*+D*D,

then
(3.6) AY=%) (- bis.iitbijik—bijwi— biijt+ bik,j‘i)ej N

Using the Ricci identity we obtain
37 4¥ =%Z(" bjk,i,i - 2Fikbij+ ZbijFik—2binik+ Zbithjik) 07 A 6"

Applying the Bianchi identity to the last term and making use of the skew-
symmetricity of (b;), we obtain

(3.8 (4Y, W)=%Z(_bjk,i,i+2(biiji_Fjibik)+2bikRij_'bihRihjk9 bjy).

4. The Case where M is a Submanifold

Let M be a compact Riemannian manifold of dimension n isometrically
immersed in Euclidean space R". Let

4.1) f: M=RY, =%
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denote the immersion, where f*,...,f" are the functions on M obtained by
restricting the coordinate functions of R¥ to M.
We use the following convention for the ranges of indices:

1=4,B,C=N; 1=ij,ksn; n+1=Auv=N.

Let e,,...,ey be an orthonormal frame (locally defined on M) such that
ey,...,e, are tangent to M and e, ,,...,ey are normal to M. Let 6',...,0" be 1-
forms forming a basis dual to e,,...,e,. Then

4.2) df=) 0'e,.

We define an o(N)-valued 1-form (65) by

(4.3) de, =) 07e;.
Exterior-differentiating (4.2) we obtain

(4.4) doi= -y 0ine’, Y 0}A6'=0.
Set

4.5) 0} =Y hj,¢’.

From the second equation of (4.4) we obtain
4.6) h},=hj,.
Exterior-differentiating (4.3) we obtain

4.7) dog=—Y 0502

In particular, we have

(4.8) db,= -y 0in 0]+ 0O;,
where
4.9) @i = % ERikjh 0/ A 9"’ Rikjh = Z(h?j htn - hg’h h:j)'

We need to calculate first and second covariant derivatives of df4, A
=1,...,N. Notationally it is simpler to consider df=}¢;6". The components
e; ; of the first covariant derivative are defined by

(4.10) de,—)e,0i=Y¢, 0"

On the other hand, from (4.3) and (4.5) we have

(4.11) de; =Y e,0i+Y e,0=Ye;0{+Y e, h0%

Comparing (4.11) with (4.10) we obtain

4.12) e, ;= e h}.

The components ¢; ; , of the second covariant derivative of df are given by

4.13) de,.,j—Ze,"je‘{—Zei,kO’;:Zei,J.’kO".
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Substituting (4.12) into the left hand side of (4.13), we obtain
(4.14) LHS of (4.13)=Y e, h}; 0"+ Y e, h;

=Y eh}; 08— e, Uh,’:h()"
where h}; , are given by

(4.15) dhl—Y ;08 =Y k05 + Y bt 6= ki, 6~

ijon

Comparing (4.14) with (4.13) we obtain

(4.16) ei,j,k=Zelh?j,k—Zehh;‘jhﬁh.

For fixed indices i, j, k, h we consider e, e, ;, e; ; , as vectors in RY and obtain
their dot products with e, from (4.12) and (4.16):

4.17) €;-e, =0y,

e e,=0,

€k €n=— 2} Aty

As in §2, let P be a principal G-bundle over M with a connection. As in §3,
let ¥ be a 2-form with values in the vector bundle P x,,g. Let f: M—R" be
an isometric immersion as in (4.1). For each 4=1,..., N, set

(4.18) dfi=Y fA0.

Comparing (4.18) with (4.2) we see that

(4.19) e=(f . ).

For each A, we define a 1-form a* with values in P x 449 by
(4.20) at=Y b, A0

We write

4.21) a*=Yat0 with af=-Yb;f "

For each infinitesimal variation a4 of the connection, we shall calculate the
second variation J;(0)=(S(a?),a*) using (2.16) and obtain a formula for

;J,'{ 0).

Notationally it is simpler if we set

4.22) a=(a',...,a"%, a;=(a},...,a))
so that
(4.23) a=Yb,e0/=Y a0/ with a;=—3bye.

Now, S(a)=(S(a"),...,S(a")) is given as the sum of the following terms:

(424) _Z Jolsi z(bjkllek+2b]k lekl+b1kek11)
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(4.25) Ya, = _Z(bik.i jextbi e jthy e itbye ;)
(4.26) ZZ(CIIFJl F a;)= —ZZ(blkF —F;by)e
(4.27) Zal = Zb,-kRijek.

Making use of (4.17) we see that Y (S(a*),a?) is given as the sum of the
following terms:

(428) Z(aj ii2 A)_ Z(bjk i, 1k)+Z(hl hl b]h’ bjk)

(4.29) Z( 11]’ Z(blk i,j° ]k)
(4.30) ZZ(aAF Fﬂaf,a") ZZ(b,k —F;:by,bj)
(4.31) Z(a”R”,a Z(bikR,-j,bjk).

In deriving (4.29) we used the fact that (b;,) is skew-symmetric and (h}) is
symmetric in i and k so that

Z (bix h:'k’ bjh h;h) =
Summing (4.28) through (4.31) and using (3.8) we obtain
(4.32) ZJ,’.;(O)'_z(A D, D)) (b, R;pbjk)+2(bihRihjk’bjk)

+ Y (hf h Wb )+ Y by i b
We simplify (4.32) as follows. First,

(4.33) Z(b,-,,_,-,j, b)=—Y by by )=—(D*¥P,D*P).

Second, from (4.9) we have

(4:34) Ry =Y (ks Wi i),

Using (4.33) and (4.34) we can rewrite (4.32) as follows:

(4.35) Y J{(0)=2(4%,¥)—(D*¥,D* ¥)+ Y (hf;h} wDinbji)
=2 (bicRij b )+ Y. (bin R b ).

We set

(4.36) H(Y,¥)=Y (h}h} wDins D

Ric(¥, ¥)=Y (b, R;jb),
R(¥, ¥)=Y (b, Ripji- b -
(4.37) Proposition. If ¥ is harmonic, i.e., DY =0 and D*¥ =0, then
Y J(0)=H(¥, ¥)-2Ric(¥, ¥)+R(?, ).

Making use of (4.9), we can express (4.35) in terms of the second fundamen-
tal form only. Thus,
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(4.38) Proposition. If ¥ is harmonic, then

S T0)= =Y (hj,hiby, by )+ 23 (W K5, b D) +23 (Wi kb b,

5. Yang-Mills Instability of Convex Hypersurfaces

We consider first the case where M is a unit sphere S” in R"*! so that h;=4,;.
Let ¥ be a nonzero harmonic 2-form with values in P x ,,g (e.g., the curvature

of a non-flat Yang-Mills connection). Then, from (4.38) we obtain
(5.1) YJi(0)=2(4—n)|¥]? where |[¥[*=)3(bs, b

Since ) J;(0)<0 for n=5, it follows that the sphere S™ is Yang-Mills instable
for n=5. This is the result of Simons (see Bourguignon-Lawson [2]).

Now we consider, more generally, a compact convex hypersurface M in
R"+!. At each point of M, we diagonalize the second fundamental form so
that

hij=2;0;,  4;>0.
Again, let ¥ be a nonzero harmonic 2-form with values in P x ,48. From (4.38)
we obtain

(5:2) Y Ji0)= § Y207 + 440 — 4 X2 i bis
Mik h
= 5 Z Ai{2(A+4)— Zlh} by b
Mi*k
= I Z Ad(A+ 40— Z An} <bik9b|‘k>'
MiFk ¥k
Hence,

(5.3) Theorem. If M is a compact convex hypersurface in R"*! such that its
principal curvatures A, ...,A,>0 satisfy

Ai+A< Y A, for all pairs ik

h*i,k
at every point of M, then M is Yang-Mills instable.

Example (1). If M is a compact convex hypersurface in R"*!, n=5, such that
its sectional curvatures K satisfy

2
2 <K<,
n—2 Ki=

then M is Yang-Mills instable.
Example (2). Let M be an ellipsoid

axi+xi+..+xi=1, a>0,
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in R**!. Then the principal curvatures of M at (%9, X1, -..5X,) are given by
A=(a(a—1)xz+1)=172 with multiplicity n—1,

p=al@(@—1)x3+1)=**  with multiplicity 1.
Ifn=25 and 0<a<n-—3, then M is Yang-Mills instable. This follows from (5.3)
and the inequalities:

Afugia for a=l,

AaZu=i for a<1.
(5:4) Remark. There are analogous instability theorems for harmonic maps

from a compact Riemannian manifold into a convex hypersurface of R"*?, see
Leung [10], Ohnita [15].

6. Minimal Submanifolds of Spheres

We consider the case where f: M—IR" immerses M into the sphere SV~ !(r) of
radius r about the origin. Without loss of generality, we may then choose in §4
(€y5.--5€, €,,1>-..,ex_1,€y) in such a way that e, is a normal to the sphere
SN=1(r) (pointed toward the center). Then

(6.1) f=—rey.

From (4.2) and (4.3) we obtain

6.2) Ye0=df=—r(Ye0i+Y e,07).
Hence,

(6.3) ()ﬁv:%()‘, hﬁ‘;:%é”.

If we assume that M is a minimal submanifold of S¥~!(r), i.e.,
(6.4) Yhi=0 for a=n+1,...,.N—1,
then H(¥, ¥) in (4.36) reduces to

©9) HE, D=7 1¥1,

Hence, from (4.37) we obtain

(6.6) Proposition. If M is a compact, immersed minimal submanifold of the
sphere S¥=1(r), then

ZJ;’(O)=%—2’Z | P> —2Ric(¥, ¥)+R(¥, ¥)

for any harmonic 2-form ¥ with values in P x 54 g.
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Let ¢, be the minimum eigenvalue of the Ricci tensor (R;;) at xe M, and set

c=minc,
xeM
so that
6.7) Ric(Y, 'I’)ch(b,.k,bl.,‘)=2cl|‘Pl|2.

Let u, be the maximum eigenvalue of the curvature operator p:
A*TM—-A*TM at x and set

p=maxpu,
xeM
so that!
(6.8) R(P,¥)S2uY (b by )=4u¥|>
Hence,

(6.9) Theorem. Let M be an n-dimensional compact, immersed minimal sub-
manifold of a sphere S¥~'(r) of radius r. Let ¢ be the minimum eigenvalue of the
Ricci tensor and u the maximum eigenvalue of the curvature operator p of M.
Then

YL0)52 (F-2c+22) 1912

for any harmonic 2-form ¥ with values in P X 548.
In particular, if M satisfies the inequality

(*) %—2c+2u<0,

then M is Yang-Mills instable.

(6.10) Remark. In (2.17) we proved that if M is Yang-Mills instable, then its
second Betti number vanishes. If the inequality (x) of (6.9) is satisfied, then the
second homotopy group of M vanishes. In fact, the following theorem of
Ohnita [15] implies more.

(6.11) Theorem. Let M be an n-dimensional compact immersed minimal sub-
manifold of S¥~'(r) such that the minimum eigenvalue c of the Ricci tensor
satisfies the inequality

n<2cr?

Then M is harmonically instable in the sense that there is no nonconstant weakly
stable harmonic map from any compact Riemannian manifold into M or from M
into any Riemannian manifold.

Using this theorem we can strengthen the result in (6.10).

1 For a Riemannian manifold M with metric g and the curvature temsor R, the curvature
operator p is defined by

gp(X AY),ZAW)=g(R(X,Y)W,Z) for X, Y,Z, WeT M.
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(6.12) Corollary. Let M be as in (6.11). Then
n,(M)=0 and =,(M)=0.

Proof. If =, (M)=*0, it is a classical result on closed geodesics that there is a
nonconstant weakly stable harmonic maps S'— M.

If n,(M)=0, it is a result of Sacks-Uhlenbeck [18] that there is a noncon-
stant weakly stable harmonic map S2-»>M. Q.E.D.

The inequality in (6.11) appears also in the following context. Let b,
= A*T*M be the holonomy Lie algebra of M at x. Let g, denote the fibre of P
X aa8 at x. The natural inner product in A*>T* M defines a bilinear mapping

< > >: Asz*Mx(Az’I;*M()Dgx)*’gx'

We say that a 2-form ¥ on M with values in P X,,q is perpendicular to the
holonomy Lie algebra of M if

b, ¥>=0 at every xeM.
(6.13) Theorem. Let M and c be as in (6.9). Then

Y, 0)<2 (r%—zc) 12

for any (P x ,40)-valued harmonic 2-form ¥ perpendicular to the holonomy Lie
algebra of M.

In particular, if n<2cr?, then for any principal G-bundle P over M there is
no nonflat weakly stable Yang-Mills connection whose curvature is perpendicular
to the holonomy Lie algebra of M.

Proof. Since the curvature form of M takes values in the holonomy Lie
algebra, R(¥, ¥)=0 by (4.36). Hence, our assertion follows from (6.6). Q.E.D.

The inequality n<2cr? will appear again in (7.13) in the form A<l

7. Yang-Mills Instability of Compact Symmetric Spaces
We recall first results of Takahashi [23] and Wallach [27]. Let f: M—>SY-1(r)
=R" be an immersion as in §6. From (4.2), (4.12), (6.3) and (6.1) we obtain

n N-1

(7.1) Af=_zei,i=_;ezv— 2 leaZh?i
a=n+
7 N—1
=_2f_ Z eazh?i'
r a=n+1
Hence,
(7.2) Af=Af with }t=n/r2

if and only if f is a minimal immersion of M into SV~ (r).
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Conversely, let f: M—R" be an immersion such that 4f=Af with some
constant A. Then by (4.12) we have

(7.3) Af=Af=-=Ye; ;== e,
Differentiating (7.3) and using (4.3) we obtain

(7.4) Adf=—Ye,0. bt =Y e, 04hy— e, dh);
Comparing this with (4.2) we obtain

(7.5) AGi=—% 0L bt = ki b 0%,
Hence,

(7.6) ni=Y hihi=|1f)%

This shows that 2>0 and that f gives a minimal immersion of M into S¥~'(r)
with r=1/n/A.

Let M=U/K be a compact homogeneous Riemannian manifold such that
the linear isotropy group is irreducible on the tangent space. Let A>0 be an
eigenvalue of the Laplacian and V, the space of eigenfunctions with eigenvalue
A. The group U acts on V,. We obtain a U-invariant inner product in ¥ from
the I?-norm in V,. Let f*,....fY be an orthonormal basis for V,. Then f
=(f",....fV) defines a U-equivariant mapping f: M—V,=R". The quadratic
differential } df*df* is U-invariant and hence homothetic to the given U-
invariant metric on M since the linear isotropy group is irreducible. Multiply-
ing f=(f",....f") by a suitable constant, we may assume that f: M—>V,=R"
is an isometric immersion. Since 4 f=Af, f is a minimal immersion of M into
SY=1(r), r=v/n/A.

We shall apply these results of Takahashi to an irreducible compact sym-
metric space M=U/K. Let B be the Killing-Cartan form of the Lie algebra u
of U; it is negative definite. Let

(7.7) u=f+m

be the orthogonal decomposition of u with respect to —B. We identify m with
the tangent space of M= U/K at the origin in a natural manner. Let g, denote
the invariant Riemannian metric on M defined by — B|,,. The curvature R of
U/K is given by (see, for example, Kobayashi-Nomizu [7], vol. 2, p. 231):

(7.8) RX,Y)Z=—-[[X,Y],Z] for X,Y,Zem.
The Ricci tensor of (U/K, g,) is given by (Takeuchi-Kobayashi [26]; Prop. 5.3)
(7.9) Ric(X,Y)= —1B(X,Y)=38,(X,Y) for X,Yem.

Hence its scalar curvature is given by n/2.

Let A be an eigenvalue of the Laplacian 4 on M. (We shall soon assume
that A is the first eigenvalue A,.) Applying the construction above to the
present situation, we obtain a minimal isometric immersion f: M—SV=1(r)
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with r=7/n/A. By (7.9), the minimum eigenvalue ¢ of the Ricci tensor in (6.9) is
3- Let u be the maximum eigenvalue of the curvature operator of M. From
(6.9) and (6.12) we obtain

(7.10) Theorem. Let M=U/K be a compact irreducible symmetric space with
the canonical metric g, (induced by the Killing-Cartan form of u). Let 1, be the
first eigenvalue of the Laplacian of M. Let u be the maximum eigenvalue of the
curvature operator of M. If

A—142u<0,
then M is simply connected and is Yang-Mills instable.

Using the classification of symmetric spaces, we can determine all compact
irreducible symmetric spaces satisfying the inequality above.

(7.11) Theorem. S" with n>5, IP*(Cay) and E¢/F, satisfy the inequality
A —142u<0,

and they are the only compact irreducible symmetric spaces satisfying this in-
equality.

In particular, they are Yang-Mills instable.
(7.12) Remark. When U is considered as a principal K-bundle over M= U/K,
the canonical connection in U—M is a Yang-Mills connection. It follows from
Laquer [8] that the canonical connection is weakly stable for all compact
irreducible symmetric space U/K except S" with n>5, P?(Cay), E./F, and the
compact simple Lie groups. His result together with (7.11) shows that S" with
n>5, P?(Cay) and E/F, are the only Yang-Mills instable, compact irreducible
symmetric spaces of type I.

The proof of (7.11) requires calculation of 4, and p. The table of A, and u is
attached at the end of the paper, and (7.11) can be read off from this table.
However it is possible to save some labor by establishing first the following:

(7.13) Lemma. The list of compact irreducible symmetric spaces satisfying the
inequality

A<1

consists of

(i) simply connected compact simple Lie groups of type A,, (n=2), B, and
Cp (n23);

(i) SU(2n)/Sp(n), (n23);

(i) 8", (n23);

(iv) Sp(p+q)/Sp(p) xSp(q), (1=p=gq, p+q=3);

(V) Eg/Fy;

(vi) P*(Cay)=F,/Spin(9).

By (6.12), if M is a compact irreducible symmetric space with A, <1, then
7, (M)=0 and n,(M)=0. Hence (7.13) can be read off from the table of 1, in
Appendix. According to Takeuchi [25], the list (ii)~(vi) above is exactly the
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list of simply connected compact irreducible symmetric spaces M of type I
with 7, (M)=0.

We may derive (7.13) also from (6.11) and results of Smith [21] and
Nagano [13]. If 2, <1, the identity transformation id, of M is an instable
harmonic map by (6.11). According to Smith and Nagano, the list above is
exactly the list of simply connected compact irreducible symmetric spaces M
such that id,,; are instable harmonic maps.

Once we establish (7.13), it suffices to calculate u for the spaces in the list.
In calculating u we can use the following

(7.14) Lemma. For a compact irreducible symmetric space M=U/K with the
canonical metric g, and with simple K, the maximum eigenvalue u of the
curvature operator is given by

dimM

H=4dmK"

Proof. Let u=f+m be the canonical decomposition of the Lie algebra u.
Under the identification 42m=o(m), we regard f as a subspace of A?*m and
consider the orthogonal decomposition

APm=t+V

Let p: A>m—A%?m denote the curvature operator. Since M is irreducible and
symmetric, we have f=p(4?m). Hence, V=Ker p. Being a simple Lie algebra, T
is an irreducible K-module and, hence, the operator p is a scalar on I. Hence,

tracep=pu-dimf.

On the other hand,

1 1 n n

tracep_,-;«R””_Z%R""""_Z = Q.E.D.

This lemma applies to all spaces in (7.13) except the quaternionic Grass-
mannians (iv).

In Appendix we shall explain how to calculate p in the general case.

Another way to minimize the work is to rely on the result of Laquer
quoted in (7.12). By (7.10) we need not consider a space U/K if its canonical
Yang-Mills connection is weakly stable. By the result of Laquer, this leaves us
with only §" with n>5, IP>(Cay), E,/F, and the compact simply connected
simple Lie groups, to which (7.14) can be applied.

The following theorem of Ohnita [15] should be compared with (7.10).

(7.15) Theorem. An irreducible compact symmetric space (M, g,) is harmonically
instable if 2, <l.

This follows from (6.11), (7.2) and (7.9).
Using (7.13) he obtains the list of harmonically instable irreducible com-
pact symmetric spaces. On the other hand, Smith [21] has shown that, for an
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irreducible compact symmetric space (M, g,), the identity map id,;: M—M is
an instable harmonic map if and only if 1, <1. Hence, the following three
conditions on (M, g,) are equivalent, (Ohnita [15]).

(@ 4,<1,
(b) M is harmonically instable,
(¢) idy, is an instable harmonic map.

We shall now consider instability of product manifolds. Let M, and M , be
compact Riemannian manifolds. If their Riemannian product M =M, x M, is
Yang-Mills instable, then both M, and M, are also Yang-Mills instable. (To
see that M, is Yang-Mills instable, it suffices to pull back a principal G-bundle
F over M, with a Yang-Mills connection to the bundle P=n*P, over M using
the projection n,: M, x M,—M.) Although we do not know if the converse is
in general true, we prove at least the following.

(7.16) Theorem. If M is a direct product of any number of copies of S* with
k=5, P*(Cay) and Eg/F,, then M with any invariant metric is Yang-Mills
instable.

Proof. For notational simplicity, we consider the case where M =M'x M",
where M'=U'/K’" and M"=U"/K" are S*, (k=5), P*(Cay) or E¢/F,. Let g
denote the canonical invariant metric of M’ defined by the Killing-Cartan form
of the Lie algebra of U’. Let

Ay =the first eigenvalue of the Laplacian of (M, g;),
p'=the curvature operator of (M’, g,),
W =the maximum eigenvalue of p’.

We define gg, 47, p” and y” for M” in the same way.
Let g be an arbitrary invariant metric on M. Then

i

g=d'go+a"go
where a’ and a” are positive constants. Then

Ay/a’ =the first eigenvalue of the Laplacian of (M’,a’gj),

p'/a’ =the curvature operator of (M’,a’g,),
W' /a’ =the maximum eigenvalue of p’/a’.
Since the eigenvalue of the Ricci tensor of (M’, gp) is 4, we have

1/2a’ =the eigenvalue of the Ricci tensor of (M',a’ g}).
Let

[ (MLag)~>ST T ()=RY,  r=y/aniy

be the minimal isometric immersion corresponding to the eigenvalue 1, /a’, (see
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the beginning of §7). We obtain similarly
[ (M gg)-SY )= RY, anIR
f=(esf™), =N,
f=f"=0"....fY), where N=N+N".

We note that the product immersion

Write

f: M'xM'-SV-1(@r), rP=r?+r’?

is not minimal unless A)/a’=21"/a", (see (7.2)).

We fix a connection in a principal G-bundle P over M. Let ¥ be a
harmonic 2-form on M with values in P x,,g. With respect to orthonormal
coframes 0%, ...,6" of M' and 0"+, ...,0" """ of M", we write

w=1) b0 Al, by=—b; @=n+n").

Set

wn”
Pr=3 Y b0 A0
rs=n"+1

By (6.3) and (6.4),

Y W,=0 for n'+1<i<N'—1,
=1

a=

.1
hgp==0

r ab>

Y hh=0 for N+n'+1ZASN-1

r=n"+1

hY = 1(5

11 0rst
r

From (4.36) we obtain

2n n n
HO 0 =2 1914 2 191+ (5 27) bun b

2/1' 2/1” AL A
e L T +( :+~1)z<b.,,, o)

where the last sum runs over a=1,...,n" and r=n'+1,...,n. On the other hand,
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from (4.36) and (6.7) we obtain

1 1 L/ 1
Ric(¥, ¥)== | ¥'|>+ | ¥ —(— —) :
ic(¥, ¥) = 112+ 11245 (S + 57 ) Ebansbs)

Similarly, from (4.36) and (6.8) we obtain

4u
a’

4 n
12 +22 )2,
aII

R(?,P)<

Hence, from (4.37) and (7.11) we conclude
" 2 ’ 1 "2 2 " ’ "y 2
SIOS TR~ 14200 |¥12 + 56— 1420 12

’

A=1 -1
+ (‘—+‘—) Y (b,,.b,,)<0
a a

unless ¥=0. Q.E.D.
(7.17) Theorem. Let

M=Sl(r)><(M1,a1g0)x X(Mluakgo)’

where (M, g,) is S", (n25), P*(Cay) or E./F, with its canonical metric. If
r’>Max{a,/(1—A{); i=1,...,k}, then M is Yang-Mills instable. (Here, 1% is J,
for M,.)
Proof. The proof is essentially the same as above. For simplicity, consider the
case where k=1. Let M'=S"(r) and M"=M,. Then the same calculation as
above yields

1 i]-1

" 2 " 2 o
TS5 ~1424)]¥ ”2+(72+ -

) Y (barsb,). QED.

The special case of ™ x S" with m, n=5 or m=1, n=5 has been proved by
Wei [28].

8. Minimal Isoparametric Hypersurfaces of Spheres

In §5 we considered hypersurfaces of R"*!. In this section we consider a
compact immersed hypersurface M of the unit sphere $"*'. Let 4,,...,4, be its
principal curvature. With respect to a frame in which the second fundamental
form is diagonal, the components of the curvature tensor are given by

(8.1) Rijpn=(1+4;4)(0; 6j,,—5,.,, 1)
Hence, if i<j and k<h, then

1+ 4,4, if (G,j)=(k,h
8.2) Rijkh={ ! { ]) . 8l
0 otherwise.
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For the éurvature operator p, we have

(8.3) the eigenvalues of p={1+4,4;;i</}.
The components of the Ricci tensor are given by

(84) Ry=(n—1-22+4 )0,

If M is a minmimal submanifold of S"*! so that ) 1,=0, then

(8.5) the eigenvalues of the Ricci tensor={n—1—47;1<i<n}.
Set
(8.6) A=Maxii;, B=Max /2.

i<j i

Then the maximum eigenvalue u of p and the minimum eigenvalue ¢ of the
Ricci tensor are given by

(8.7) u=1+A4, c=n—1-B

if M is minimal in $"**. From (6.9) we obtain

(8.8) Proposition. If M is a compact immersed minimal hypersurface of S
satisfying the inequality

n—4

A+B ;
+<2

then M is Yang-Mills instable.

We shall now see which isoparametric minimal hypersurfaces of $"*!
satisfy the inequality of (8.8). We need the following result of E. Cartan [3, 4]
and Miinzner [11].

(8.9) Theorem. Let M be a compact isoparametric hypersurface (i.e., hyper-
surface with constant principal curvatures) of S"*'. Let ko>k,>...>K, , be
the distinct principal curvatures with multiplicities mg, my, ..., my_, (so that n
=my+m,+...+m,_,). Then

(a) g is either 1,2, 3, 4 or 6;

(b) If g=3, then my=m,=m,=2* (k=0,1,2,3);

(c) If g=4, then my=m, and m,=m,. Moreover, m, and m; cannot be both
odd numbers >1;

(d) If g=6, then my=m,;=...=ms=1 or 2;

(€) There exists an angle 0, 0<0<§, such that
K,=cot (0+ﬂ) for «=0,1,...,g—1.
g

Remark. The sharp result that the multiplicities are 1 or 2 in case (d) is due to
Abresch [1].
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If M is moreover minimal in S"*!, i.e., Zmaxa=0, then we can determine
the principal curvatures by simple calculation:

(8.10) Corollary. In (8.9), assume that M is moreover a minimal submanifold.
Then
(i) If g=1, then k,=0;

(i) If g=2, then ky=) m,/my, kK, = =) my/m,;
(i) If g=3, then ko=1/3, k, =0, Kk, = —/3;

(iv) If g=4, then ko= my+m, +1/;1—,)/‘|/—m_0, K =/mo+m, — mo)m,
K=/ my =Y mg+my)f)/ m,
Ky=— ]/m0+m1+]/’m_0)/‘|/m1;

(v) If g=6, then ko=2+V/3, k, =1, k,=2-V/3, -
Ky=—Q2—=V3), ky=—1, k= —2+1/3).

In deriving (iii) and (v), it suffices to know that my=m,=...=m,_,, (but
not their values).

We shall now consider each of the five cases in (8.10).

(i) g=1.

This case is of little interest since M is a (great) hypersphere in §"*1. By the
theorem of Simons, M is Yang-Mills instable if n>5. This is consistent with
the inequality of (8.8).

(i) g=2.

In this case, the inequality of (8.8) implies m,y, m; =5. On the other hand,
Cartan [3] has shown that if g=2, then M is a product of spheres $™ and S™.
So the result is consistent with (7.16).

(iii) g=3.

In this case, the inequality of (8.8) is equivalent to

mo=m;=m,=26.

Then n=3m,=18. By (8.9), m,=8 so that n=24. According to Cartan [4], M
=F,/Spin(8)=$?5. This homogeneous manifold appears as a principal orbit of
the linear isotropy representation of the symmetric space E./F,, (Hsiang-
Lawson [6], Takagi-Takahashi [22]).

(iv) g=4.

In this case, the inequality of (8.8) is satisfied if

me=7, m =8 or m;=2m,=8.

In any of these cases, M cannot be homogeneous according to the classifi-
cation of homogeneous isoparametric hypersurfaces of spheres with g=4 by
Takagi-Takahashi [22]. One of the two series of examples of inhomogeneous
isoparametric hypersurfaces with g=4 by Ozeki-Takeuchi [17] has multiplici-
ties (mg,m,)=(7,8k). Hence, there is actually an example with my,=7, m,=8.



On Instability of Yang-Mills Connections 185

The paper by Ferus-Karcher-Miinzner [5] contains many examples with large
my and m;.

(v) g=6.

Using only the fact that my=m,=...=ms and (8.10) we see that the
inequality of (8.8) is satisfied only when my>7. But this is impossible since
my,=<2 by Abresch [1].

In summary there is one Yang-Mills instable isoparametric minimal hyper-
surface of S"*! with g=3, namely F,/Spin(8)=S?°, and there are many such
hypersurfaces with g=4, (all of them inhomogeneous).

(8.11) Remark. From (6.12) it follows that the following compact isoparametric
hypersurfaces of $"*' have vanishing first and second homotopy groups: (i) g
=1 and n>3; (ii) g=2 and mgy, m,; =3; (ii)) g=3 and n=9; (iv) g=4 and m,,
m, =4. (Of course, (i) and (ii) are trivial since M =S" and M =5 x S§™ in these
cases).

9. Open Problems

The following questions are still unanswered.

(9.1) Is every simply connected compact simple Lie group Yang-Mills inst-
able? According to Laquer [8], the canonical connection on such a group
manifold is not stable.

(9.2) If a simply connected compact Riemannian manifold is Yang-Mills
instable, is it harmonically instable? Since S"x S!, (n=5), is Yang-Mills inst-
able but not harmonically instable, the simple connectedness assumption can-
not be dropped.

Appendix
Tabulation of ., and u for Compact Symmetric Spaces

Let M=U/K be a symmetric space of compact type (with an almost effective
compact symmetric pair (U, K)). Let u and f be the Lie algebras of U and K,
respectively. Using the Killing-Cartan form B, of u, we define an invariant
inner product in u:

(A1) (X,Y>=-B,(X,Y), X,Yeu
and the canonical decomposition
(A2) u=f+m.

Identifying m with tangent space of M at the origin, we induce the canonical
invariant Riemannian metric g, on M from this inner product ¢, ». Then the
curvature of M at the origin is given by
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(A3) R(X,Y)Z=—-[[X,Y],Z] X.Y,Zem.

The corresponding curvature operator p: A2m—A%m is given by

(A4) PXAY)LZAW)=(R(X,Y)W,Z)=—{[[X,Y], W], Z).

For the left hand side of (A.4) we used the inner product in A%m defined by
(A5) CUAVZAW)Y=U,ZYV, W5 —<U, WOV, Z).

We shall determine the positive eigenvalues of p. When T is simple, this was
done in (7.14). We consider the general case. Let

(A.6) t=to+f +...+1,

where f, is the center of T and f,,...,T, are simple ideals of . Then there are
real numbers b, by, ..., b, such that

(A7) B,=b;B,l, (by=0, b;>0 for 1<i<p).

(A.8) Theorem. The positive eigenvalues of the curvature operator p are 3(1
—b)), (0=i=<p), with multiplicity dim¥;, (0<i=<p), respectively.

Proof. We identify A?m with o(m), the Lie algebra of skew-symmetric en-
domorphisms of m by

(A9) (X AY)Z=(X,Z)Y—(Y,Z>X, X,Y,Zem.
We define linear maps ¢: A2 m—T (surjective) and y: f—A%m (injective) by
(A.10) e(XAY)=[X,Y] X,Yem,

Y(A)=ad_ A Aet.

With respect to the inner product ¢, >|; of f and the inner product of A*m
defined by (A.5), the adjoint ¢*: k—A*m of ¢ coincides with ¥':

(A.11) e*=1.
To verify (A.11), let Aef and X, Yem. Then

(P¥(A),XAY)={A,0(X AY))={A[X,Y])={[4,X]Y)
={(ad,,A)X,Y>=<ad A, X AY>=CY(A), X A Y).

We claim also
(A.12) p=0*@.

To verify this, let X, Y, Z, Wem. Then

PEAYLZAW)=(RX, Y)W, Z)=—<[[X,Y] W], Z>=<[X,Y],[Z, W]}
=(@XAY)QZAW))=L@* @)X AY),ZAW).
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Table of the first eigenvalues 4, of the Laplacian and the positive eigenvalues y; of the curvature
operator p for simply connected irreducible compact symmetric spaces M with Killing-Cartan

metric g,

Symmetric space M

First eigenvalue 4,

Positive eigenvalues
pof p

AI=SU(n)/SO(n), (n=2)
All=SU2n)/Sp(n), (n=2)

AllI=SU(p+q)/S(U(p)x U(q)
(1sp=q,p+q23)

BDI=S0(p+4)/SO(p) x SO(q)
(1=sp<gq, p+q=5
orp+q27)

CI=Sp@m)/U(n), (n23)

(n=1)(n+2)/m*
(n—1)2n+1)2n?
1

p+4=>5,7: pg)2(p+q-2)
p+q=3

Pa<2(p+9): pq/2(p+q-2)
2(p+qg)=pq: (p+q)/(P+q—2)

1

(n+2)/4n
(n—1)/4n

1<p<gq: 1/2, 9/2(p+q),
p/2(p+9q)
p=q=2:1/2,1/4

p=1:1/2(qg—1)
p=2:1/2, 1/q
3I=p<q: q)2(p+tq-2),
p/2(p+q—2)

p=q24: p/A(p—1)

1/2, (n+2)/4(n+1)

CII=Sp(p+q)/Sp(p) x Sp(q) (p+a)/p+q+1) 1=<p<gq: q/2(p+q+1),
(1=sp=q,p+q23) p2(p+q+1)
p=4q22: p/2(2p+1)

DIII=S0(2n)/U(n), (n=5) 1 172, (n—2)/4(n—1)
EI=E,/C, 14/9 724
EII=E /A, x Dy 3/2 5/12, 1/4
EIII=E /Tx D 1 1/2,1/6
EIV=E/F, 13/18 1/8
EV=E./A, 5/3 5/18
EVI=E./A, xD, 14/9 4/9,2/9
EVII=E,/TxE,4 1 1/2,1/6
EVIII=E,/Dg 31/15 4/15
EIX=E4/A, xE, 8/5 115, 1/5
FI=F,JA, x C, 13/9 7/18, 5/18
FII=F,/B, 2/3 1/9
GI=G,/A,x 4, 7/6 5/12, 1/4

Group manifold M Ay M

A, (I21) I1+2)/1+1)?

B, (1=2) =2, 3: 1214 1)/4Q21-1)

124: 21/21-1)

C, (123) QI+1)2(0+1)

D, (1z4) @1-1)2(-1) 1/4

E, 13/9

E, 19/12

E, 2

F, 4/3

1
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We define a linear map P: f—f by

(A.13) P=g@op*.

Then
14 14

(A.14) P (2A1)= Z%(l—-bi)Ai for A;ef;.
=10 i=0

In order to prove (A.14), let A=Y A, and B=) B, with A4, B;el,. Then

(P(A),By={(@° @*)(A4), B) ={0*(A), p*(B)) = ¥(4),¥(B))
=<(ad, 4,ad, BY= —1Tr((ad,, 4)(ad,, B)).

On the other hand, we have

(A, B>= —B,(A, B)= —Tr((ad,, 4)(ad,, B)) — Tr((ad, 4)(ad, B))
= —Tr((ad,, 4)(ad,, B))— B,(4, B).

Hence,

2(P(A),BY=(A,B)+By(4,B)=Y <A, By~ Y.b,(A, B
=(T(1-b) A, Y By =CY(1-b) 4, B).

Since Kerp=Kerp, ¢* is an isomorphism from f onto (Ker)*. Hence, P is

positive definite. From (A.12) we have

{positive eigenvalues of p} = {eigenvalues of P}

including multiplicities. Now, the theorem follows from (A.14). Q.E.D.

For calculation of the first eigenvalue 4, of the Laplacian of an irreducible

compact Riemannian symmetric space, see Nagano [12], Takeuchi [24], Oh-
nita [14].
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