

Werk

Titel: The Characteristic Subgroups of the Baer-Specker Group.

Autor: Göbel, Rüdiger

Jahr: 1974

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0140|log40

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

The Characteristic Subgroups of the Baer-Specker Group

Rüdiger Göbel

§ 1. Introduction

It is well known, that the only characteristic subgroups of a free abelian group A are the subgroups $n \cdot A$ for all integers $n \ge 0$. We will show that this is true for a larger class of groups, namely for all K-direct sums $\bigoplus_{K} \mathbb{Z}$ of infinite cyclic groups \mathbb{Z} , where K is an ideal of an arbitrary power set. In particular it is true for arbitrary cartesian powers \mathbb{Z}^1 .

§ 2. Definitions and Notations

We will follow the notations of Fuchs [I]. In the following let I be an arbitrary set and $\langle a_i \rangle \simeq \mathbb{Z}$ for each $i \in I$. Let I be well ordered beginning with the natural numbers. Then let $\mathbb{Z}^I = \prod_{i \in I} \langle a_i \rangle$ be its cartesian power (=direct product, cf. Fuchs [I; p. 39]).

If $b \in \mathbb{Z}^1$, we denote by $b_i = n_i(b) \cdot a_i = n_i \cdot a_i$ its component $i \in \mathbb{I}$; c.f. Fuchs [I; p. 39, 94].

If $b \in \mathbb{Z}^{\mathbf{I}}$, let $s(b) = \{i \in \mathbb{I}, b_i \neq 0\}$ be its support.

If **K** is an ideal of the Boolean algebra **B**(**I**) of all subsets of **I**, then the **K**-direct sum of the $\langle a_i \rangle$ is defined by

$$\bigoplus_{\mathbf{K}} \langle a_i \rangle = \bigoplus_{\mathbf{K}} \mathbb{Z} = \{ b \in \mathbb{Z}^{\mathbf{I}}, \, s(b) \in \mathbb{K} \};$$

cf. Fuchs [I; p. 42]. Then we have $\mathbb{Z}^I = \bigoplus_{\mathbf{K}} \mathbb{Z}$ if $\mathbf{K} = \mathbf{B}(\mathbf{I})$ and $\mathbb{Z}^N = Baer\text{-}Specker$ group, $\bigoplus_{\mathbf{K}} \mathbb{Z} = \mathbb{Z}^I_{\mathbb{N}} = \mathbb{N}\text{-}cartesian$ power of \mathbb{Z} if $\mathbf{K} = \{S \leq \mathbf{I}, |S| < \mathbb{N}\}$, $\mathbb{Z}^I_{\mathbb{N}_0} = \mathbb{Z}^{(I)} = \text{direct}$ power of \mathbb{Z} ; c.f. Fuchs [I; p. 37].

If $T \leq \mathbb{Z}^{\mathbf{I}}$, let $\langle T, \mathbb{I} \rangle = \{ |n_i(b)| \neq 0, b \in T, i \in \mathbb{I} \}$. Aut(A) = group of all automorphisms of the group A.

§ 3. Construction of Automorphisms

- (A) If π is a 1-1-map from \mathbf{I} into \mathbf{M} , there is a corresponding isomorphism π^* from $\mathbf{Z}_{\aleph}^{\mathbf{I}}$ into $\mathbf{Z}_{\aleph}^{\mathbf{M}}$ with the following properties:
 - (a) If $b \in \mathbb{Z}^1$, then $b^{\pi^*} \in \mathbb{Z}^M$ is defined by components:

$$(b^{\pi^*})_m = \begin{cases} 0 & \text{if } m \in \mathbf{M} \setminus \pi(\mathbf{I}) \\ n_i(b) \cdot a_{\pi(i)} & \text{if } m = \pi(i) \in \pi(\mathbf{I}) \end{cases}$$

(b) π^* is an isomorphism of \mathbb{Z}^I onto \mathbb{Z}^M if and only if π is a map from I onto M.

290 R. Göbel

- **(B)** If $S \leq I$, there are automorphisms $\beta = \beta(S)$, $\gamma \in Aut(\mathbb{Z}_{\aleph}^{I})$ with the following properties:
 - (a) $a_i^{\beta} = -a_i$ for all $i \in S$, $a_i^{\beta} = a_i$ for all $i \in I \setminus S$.
 - (b) $(a_1 + a_2)^{\gamma} = a_1$ $a_1^{\gamma} = a_i$ for all $1 \neq i \in I$ (if |I| > 1).

Proof of (A) and (B). The map π^* defined by (A) (a) sends $\mathbb{Z}_{\aleph}^{\mathbf{I}}$ into $\mathbb{Z}_{\aleph}^{\mathbf{M}}$ since $|\beta(b)| = |\beta(b^{\pi^*})|$ for all $b \in \mathbb{Z}^{\mathbf{I}}$. (B) follows by application of Fuchs [I; p. 78, Lemma 15.3].

The following remark will be used several times.

(C) If **K** is an ideal of the Boolean algebra **B**(I) of all subsets of I and if $I = \bigcup K$, then $X' \in K$ if $X \in K$ and X' differs from X only by a finite number of elements.

Since $I = \bigcup K$, all finite subsets of I are in K. In particular $F = X' \setminus (X \cap X')$ is finite and therefore $F \in K$. Since $X' = F \cup (X \cap X')$ and $(X \cap X') \in K$, we have $X' \in K$.

Lemma. Let **K** be an ideal of the Boolean algebra **B(I)** such that $I = \bigcup K$. If $0 \neq b \in A = \bigoplus_{K} \mathbb{Z}$ there is an $\alpha \in Aut(A)$ and a $k \in \mathbb{N}$ with

- (a) $(b^{\alpha})_m = 0$ for all $m \in \mathbb{I}$ with m > k.
- (b) $(b^{\alpha})_1 = n \cdot a_1$ where $n = \min \langle b, \mathbf{I} \rangle$.

Proof. (I) First we prove the lemma for K = B(I) and apply an argument due to Fuchs [I; p. 94]. Since $0 + b \in A = \mathbb{Z}^I$, we have $\emptyset + \langle b, I \rangle \leq \mathbb{N}$ and $n = \min \langle b, I \rangle$ exists. There is an $j = j_1 \in I$ with $b_j = +n \cdot a_j$ or $b_j = -n \cdot a_j$. We determine the integers $n_i(b) = n \cdot n_i(c_1) + n_i(c_2)$ such that $0 \leq n_i(c_2) < n$ for all $i \in I$. Then $c_1, c_2 \in A$ can be defined by components:

$$(c_k)_i = n_i(c_k) \cdot a_i$$
 for all $i \in I$ and $k = 1, 2$.

Moreover $A = \langle c_1 \rangle \oplus A_{j_1}$ where A_{j_1} consists of all $x \in A$ with $x_{j_1} = 0$. Furthermore $c_2 \in A_{j_1}$ and $b = n \cdot c_1 + c_2$. Repeating this argument at most *n*-times, there is a subset $J = \{j_1, \ldots, j_k\}$ of $k (\leq n)$ elements of I and a set $c_1, \ldots, c_k \in A$ such that

- (i) $A = \langle c_1 \rangle \oplus \langle c_2 \rangle \oplus \cdots \oplus \langle c_k \rangle \oplus A_{J'}$ where $A_{J'}$ consists of all $x \in A$ with $x_i = 0$ for all $j \in J$.
 - (ii) $b = \sum_{i=1}^{k} n_i \cdot c_i$ with $n_1 = n = \min \langle b, \mathbf{I} \rangle$.

Let π be the map from $(I \setminus \{1, ..., k\}) \cup \{c_1, ..., c_k\}$ onto I defined by

$$\pi(x) = \begin{cases} x & \text{if } x \in \mathbb{I} \setminus \{1, \dots, k\} \\ m & \text{if } x = c_m. \end{cases}$$

By remark (A) (b) the map π induces an $\pi^* = \alpha \in Aut(A)$ which sends c_m onto a_m and therefore b onto $b^{\alpha} = (\sum_{i=1}^k n_i \cdot c_i)^{\alpha} = \sum_{i=1}^k n_i \cdot a_i$.

(II) Let $A = \bigoplus_{\mathbf{K}} \mathbf{Z}$, $0 \neq b \in A$ and B = s(b). If $x \in A$, let x_B be defined by $(x_B)_i = x_i$ for all $i \in B$ and $(x_B)_i = 0$ if $i \in I \setminus B$. Let $\mathbf{K}' = \{X \setminus B, X \in \mathbf{K}\}$ and let $x_{\mathbf{K}'}$ be defined by $(x_{\mathbf{K}'})_i = x_i$ if $i \in s(x) \setminus B$ and $(x_{\mathbf{K}'})_i = 0$ otherwise. We have $x = x_B + x_{\mathbf{K}'}$ and

therefore we obtain $A = A_B \oplus A_{K'}$ such that $A_B = \{f \in A, \sigma(f) \in B\}$ and

$$A_{\mathbf{K}'} = \{ f \in A, s(f) \in \mathbf{K}' \}.$$

Since $S \in \mathbb{K}$ for all $S \subseteq B$ and since \mathbb{K}' is an ideal of $B(\mathbb{I} \setminus B)$, we have $A_B \simeq \mathbb{Z}^B$ and $A_{\mathbb{K}'} \simeq \bigoplus_{\mathbb{K}'} \mathbb{Z}$. Now $b \in A_B$ since $\sigma(b) = B$. By case (I) there is an $\beta \in \operatorname{Aut}(A_B)$ which maps b onto

(iii) $b^{\beta} = \sum_{i=1}^{k} n_i \cdot a_{j_i}$ where j_1, \dots, j_k are the first k elements of $B \le I$.

We put $\gamma = \beta \oplus 1_{\mathbf{K}'}$, i.e. if z = x + y and $x \in A_B$, $y \in A_{\mathbf{K}'}$, then $z^{\gamma} = x^{\beta} + y$. Then γ is an isomorphism of A into \mathbf{Z}^1 . Since $x^{\gamma} \in A_B \simeq \mathbf{Z}^B$ we have $\sigma(x^{\gamma}) \subseteq B \in \mathbf{K}$ and therefore $\sigma(x^{\gamma}) \in \mathbf{K}$. In addition $\sigma(y) \subseteq \sigma(z) \in \mathbf{K}$, hence $\sigma(y) \in \mathbf{K}$ and $\sigma(y) \in \mathbf{K}$ follows. We have shown

(iv) $\gamma \in \mathbf{Aut}(A), b^{\gamma} = b^{\beta}$.

We consider now the permutation σ of I defined by $\sigma = (1, j_1) \cdot \cdots \cdot (k, j_k)$. By remark (A)(b) there is a corresponding isomorphism $\sigma^* = \delta$ from A into \mathbb{Z}^I such that

(v) δ maps a_{j_i} onto a_i for $i=1,\ldots,k$.

If $x \in A$, then $\delta(x) \in K$ and therefore $\delta(x^{\delta}) = \delta(x)^{\sigma} \in K$ by remark (C). Therefore $\delta \in Aut(A)$, and we can build the automorphism $\alpha = \gamma \cdot \delta$ of A. The lemma follows then by application of (iii), (iv) and (v).

§ 4. Proof of the Theorem

Theorem. Let **K** be an ideal of the Boolean algebra **B(I)** of all subsets of an arbitrary set **I**. The following conditions for a subgroup T of $A = \bigoplus_{\mathbf{K}} \mathbf{Z}$ are equivalent:

- (1) T is a characteristic subgroup of A.
- (2) T is fully invariant in A.
- (3) There is an integer $n = n(T) \ge 0$ such that $T = n \cdot A$. If T = 0, then n = 0; and if $T \ne 0$, $n = \min \langle T, \mathbf{I} \rangle$.

Proof. (3) \rightarrow (2) \rightarrow (1) is trivial.

- (1) \rightarrow (3): W.l.g. let $I = \bigcup K$. If T = 0, we put n = 0 and if $T \neq 0$ then $\emptyset \neq \langle T, I \rangle \leq \mathbb{N}$ and therefore $n = \min \langle T, I \rangle$ exists. Furthermore there exist $b \in T$ and $j \in I$ such that $b_j = n \cdot a_j$ or $b_j = -n \cdot a_j$. By the lemma there is an
 - (i) $\alpha \in \mathbf{Aut}(A)$ such that $c = b^{\alpha} = \sum_{i=1}^{k} n_i \cdot a_i$ and $n = n_1$.

The theorem is true for free abelian groups (of finite rank). Therefore we assume $|I| = \infty$ and $k+1 \in I$ exists. We choose the permutation $\sigma = (1, k+1)$ of I. By (A) there is an isomorphism $\delta = \sigma^*$ from A into \mathbb{Z}^1 such that

(ii)
$$c^{\delta} = \sum_{i=2}^{k} n_i \cdot a_i + n \cdot a_{k+1},$$
$$a_1^{\delta} = a_{k+1}, \quad a_{k+1}^{\delta} = a_1$$
$$a_i^{\delta} = a_i \quad \text{elsewhere.}$$

20 Math. Z., Bd. 140

292 R. Göbel

By (C) it is $\delta \in Aut(A)$ and by (B)(a) there is an automorphism $\gamma \in Aut(A)$ such that

$$c^{\gamma} = n \cdot a_1 - \sum_{i=2}^{k} n_i \cdot a$$

(iii) $a_1^y = a_1$

$$a_i^{\gamma} = -a_i$$
 if $1 \neq i \leq k$ and $a_i^{\gamma} = a_i$ if $i > k$

By (B)(b) there is an $\beta \in Aut(A)$ such that

Since T is a characteristic subgroup and $b \in T$, it is $d = (b^{\alpha \cdot \delta} + b^{\alpha \cdot \gamma})^{\beta} \in T$. Using (i), ..., (iv) it follows that

$$d = (b^{\alpha \cdot \delta} + b^{\alpha \cdot \gamma})^{\beta} = \left(\sum_{i=2}^{k} n_i \cdot a_i + n \cdot a_{k+1} + n \cdot a_1 - \sum_{i=2}^{k} n_i \cdot a_i\right)^{\beta} = n \cdot (a_1 + a_{k+1})^{\beta} = n \cdot a_1 \in T.$$

Therefore

$$\bigoplus_{i \in I} \langle n \cdot a_i \rangle \subseteq T.$$

Let be $0 + g \in n \cdot A$. Then we have $g = n \cdot f$ for some $0 + f \in A$. By the lemma there is an automorphism $\psi \in \mathbf{Aut}(A)$ such that $f^{\psi} = \sum_{i=1}^{r} n_i(f) \cdot a_i$ for a finite r. Thus $n \cdot f^{\psi} \in T$ by (v). Since $\psi^{-1} \in \mathbf{Aut}(A)$, we have $g = n \cdot f = (n \cdot f^{\psi})^{\psi^{-1}} \in T$. Therefore

(vi)
$$n \cdot A \subseteq T$$

We consider $t \in T$ such that $t \notin n \cdot A$. There is an $i \in I$ such that $n_i(t) \not\equiv 0 \mod n$. Then $n_i(t) = n \cdot s + r$ such that $s, r \in \mathbb{Z}$ and 0 < r < n. We build $w = t - s \cdot n \cdot a_i$. We have $w \in T$ by (v), and we obtain the contradiction $n > r = \min \langle w, I \rangle \geq \min \langle T, I \rangle = n$. Therefore $T \subseteq n \cdot A$, and from (vi) we obtain $T = n \cdot A$.

This note was written during my visit to Queen Mary College, University of London. I would like to thank in particular Prof. Dr. Karl W.Gruenberg and Prof. Dr. Otto H.Kegel for their hospitality and stimulating discussions on this paper.

References

Fuchs, L.: Infinite Abelian Groups. New York: Academic Press, vol. I (1970), vol. II (1973)

Prof. Dr. Rüdiger Göbel Fachbereich 6 · Mathematik der Universität Essen Gesamthochschule D-4300 Essen Unionstr. 2 Federal Republic of Germany

(Received August 1, 1974)