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1 Introduction

The purpose of this paper is to investigate, for given r, n, g, the existence of a
smooth irreducible open subset of the Hilbert scheme of IP* parametrizing
nonsingular irreducible curves of degree n and genus g having the “expected
number of moduli.” Let .#, be the moduli space of smooth curves of genus g, and,
for r23, let H, ,, be the closure in HilblP" of the open set parametrizing
nonsingular irreducible curves of degree n and genus g and let g=¢(g,n,r)=g
—(r+1)(g—n+r) be the Brill-Noether number. Following Sernesi [S], we give the
ensuing

(1.1) Definitions. An irreducible component W of H, ,, is said to have the
expected number of moduli if the image of the rational functorial map

n: W4,

has dimension min {3g— 3, 3g—3+}. W is said to be regular if H'(N)=0for C a
general curve in W.

If 020 it is a consequence of Brill-Noether theory that there is a unique
component of H, ;, , dominating .#,, i.e., having the expected number of moduli.
On the other hand, for ¢ 0, very little about existence or uniqueness of such
components is known. Sernesi in [S] proved that there exists a regular component
of H, ,, having the expected number of moduli for any r, n, g such that r2>3,

r(n—r)—

1 . .
n2r+landn—r=<g= . Recent improvements of this result have been

r—

obtained for the existence by Eisenbud and Harris (announced in [EH]),
Ballico and Ellia [BE] and, in the case r =3 for the existence (and nonuniqueness,
in some cases) by Pareschi [P].

* Research partially supported by NSF Grant DMS-8907854
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In this paper we want to generalize (for r>4) the mentioned results by
extending the range of possible r, n, g such that there exists a regular component of
H, , , with the expected number of moduli to —3(g —r?)< ¢ <0 (asymptotically in
r). More precisely, for any r > 3, define ¢ by r_—3;s_ = [%1] andf(r)=(15r>+5r?
+3er? —31r+ 11er+ 2¢? — 88+ 9)/(12r + 27— 3¢) (observe that f(r) is asymptoti-
cally like 37%). Then we will show:

(1.2) Theorem. There exists a regular component of H, ,, with the expected
number of moduli for any r,n,g satisfying:

either
1 r+1 o
r<9 or r=11 and —max S8 e —1;,Z0=0(g,nr=0
or
1 r+1 Sr+¢
> = — o SR - W (S Ry <o<
r=12 or r=10 and max{rg pan 1,4r+9~£g f(r)}=g=0.

(1.3) Remark. The problem of existence of components of H, , , with the expected
number of moduli makes sense for ¢ = —3g+3 (for g=2). Let us define g,,;,(g,r)
=inf{k> —3g+ 3: there exists a component of H, , , with the expected number of
moduli for some n such that g(g, n,r)=k}. It has been proved so far (for simplicity
we will state this only for g>r) that

[ —3g+83/9g%*—12 for r=3[P]
—;g for r=4[BE]
Qmin(g,r)g‘ )
—<1+;)g for 5<r=<17 [BE]
Sr+e
s >
| "9 g+ f(r) for r=18 (by Theorem 1.2).

It seems reasonable to expect the optimal result to be g.;.(g,7)= —3g + 0(g). For
r=3 this is true (by [P]) and is easily seen to be the best possible: In fact the
Castelnuovo bound already implies o(g,n, 3)= —3g+81/§——4. Moreover, as we
will see in Example 4.3, it is actually g,,;.(g,3)= —3g+2]/24g—15—6. For r=4
instead the inequality ¢ = —3g+3 only means that g is at most linear in n and
therefore does not seem to put strong restrictions to smooth curves of degree n and
genus g. On the other hand it is worth to observe that we do not expect (for g=2)
the equality ¢,,;.(g, 7)= —3g+ 3 to hold, because this would mean the existence of a
component of H, , , whose image in .#, is a point.

We will work in the category of schemes over an algebraically closed field of
characteristic 0. By divisor we will mean Cartier divisor; if D is a divisor on a
scheme X and & a sheaf on X, we will write

HY(F),h(F), # (D)
instead of HY(X, #), dimH'(X, F), # ® 4, 0x(D) respectively.
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2 A property of general nonspecial curves

In this section we will prove some vanishing of cohomology groups of the normal
and restricted tangent bundle of nonspecial curves twisted by a suitable divisor.
These vanishings will provide the key tool for the proof of Theorem 1.2.

For r=3let I'CIP" be a smooth irreducible nondegenerate (i.e., not contained
in a hyperplane) linearly normal nonspecial [i.e, H'(0{1))=0] curve. By
Proposition 3.3 of [S] and Lemma 4.1 below it is clear that any component W of
HilbIP" containing I' must dominate .#, [since Tp-),. and N are both quotients of
0 (1) *1]. But o(g(I'), deg(I'), )= 0 hence W is unique (see Sect. 1). We will use this
factin the proof of the proposition below. Let Py, ..., P, , be r +4 general points in
I' and denote by D=P, +...+ P, , their divisor. Then:

(2.1) Proposition. Let N be the normal bundle of I' inIP" and g the genusof I'. If I’

. -1
as above is general in its component of HilbIP" and g rT we have

(@) HY(N{(—D))=0;
(i) H(Tp-(—D))=0 for g<r.

Proof. To prove (ii) we degenerate I" into a union of two rational normal curves. Let
X CIP? and YCIP" be two rational normal curves meeting transversally in g+1
points. Let A4 be the divisor of Y given by these points, Dy and Dy be two divisors on
X and Y of degrees g+ 3 and r+ 1 — g respectively. Let ['=XuUY and D'=Dy+ Dy
the divisor on I'". Then we have an exact sequence

0 TP"Iy(_ 4—Dy)— Tmr,( —~D')— Trrlx( —Dy)—0
so it will be enough to show
22 H'(Tpr),(— 4= Dy)) = H(Tpr;,(— D)) =0.

From (2.2) it will follow H®(Te..(—D’))=0, hence (i) by semicontinuity
since degD'=g+3+r+1—g=r+4. But Tp| ,=Op(r+1) and Tp,
=Opi(g+ 11D 0pi(g) ~° so

Tply(—A—Dy)20P|(r+1—g—i—r—l +g)'=0P1(—1)r
and
Tor |, (—Dx) = Opi(g +1—g — 3V D Opi(g —g —3)*
=@Pl(_2)g@0pl(_3)r-9.

Therefore (2.2) is true and (ii) is proved. Now (i) follows by semicontinuity from

—1
(2.3) Lemma. Foreveryg= rT there is a linearly normal nonspecial curve I lying
on a rational normal surface scroll S,_; CIP" such that
H'(Nps(—D))=H'(Ng(-D))=0,
where D is a divisor on I' sum of r+4 general points.

Proof. Let e20 and n> e such that r—1=2n—e and let S be the embedding of the
ruled surface X,=IPp:(Op: D Op:i(—e€)) via the linear system |C,+nf| where fis a
fiber and C,, is a section of X,—P* with 0y (Co)=0(1). Let C, and I be general
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curves in the linear systems [Co+(g+1+¢€)f| and |Co+ Cy|=|2Co+(g+1+€)f|
respectively. Assume now n and e are chosen so that

esg+1
@4 g+1+nxr.

Then C, is a rational normal curve of degree n—e in a IP" "¢ and C, is a smooth
nondegenerate rational curve of degree g+ 1+ nin IP" (by (2.4)). Moreover, C, - C,
=—e+g+1+e=g+1 so p(I)=g+1—2+1=g and degl'=g+1+n+n—e
=g+r.

Finally, if A=Cy,nC, and I"=C,uUC, we have an exact sequence

0-0c,(1)(—4)= 0 (1)~ 0 (1)-0,
where
Oc()(—A)=0pi(g+1+n—g—1)=0p:i(n)
Oc1)=Opi(n—e),

hence H'(O¢,(1)(—4))=H"(0c,(1))=0 and therefore I" is linearly normal non-
special and so is I'. Note also that by (2.4), I is smooth irreducible [H, V, Corollary
2.18]. First we show that

@.5) H'(Ns(— D))=0.

To this end it would be enough to find two effective divisors D, on Cy, D, on C, of
degrees 0, and J, respectively, such that

0p+0,=r+4

and

(2.6) HY(Oc(—Do)®0s(I")=H"(Oc,(— D, — )@ 0s(I")=0.

In fact, if we let D'=D,+ D, CI", we have an exact sequence

0-0c,(—=D; = AQUs(I")> N js(— D) > Oco(— D) @ O(I") >0
s0 H!(Nps(— D’))=0and therefore also H'(N s(— D)) =0 by semicontinuity. Now
Oc(—Do)®Os(I") = Opi(—p—e+g+1)
and
Oc,(—D; —N@OAI) = Ops(—0,—g—1+g+1+2g+2+e)

=0p:(2g+2+e—3y).

So we just need d, and J, such that: §,=0,,=20; o+, =r+4, —do—e+g+1
2 —1,2g+2+e—06, = —1. For example we can choose d, and J, as follows:

if eS<g—r—2 let d6,=r+4, 6,=0;
if e>g—r—2 let d,=g+2—e, d;,=r+4-4,

(note that 2g+2+e—9,= —1 since g= %—1) This proves (2.6) and hence (2.5).
We turn now to the proof of
@7 H'(Ng,,(~D)=0.
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With notation as above, (2.7) follows from
(2.8) H'(Ng). (= 4—Dy))=H"'(Ng).(—Dy))=0.
In fact, the exact sequence
0-Ny . (—=4—D)>Ng, (—D)>Ng(—Do)—0

shows that H'(Nj,,.(— D)) =0 and hence (2.7) by semicontinuity. To show (2.8), let
dp=n—e+2 and 6, =n+3. From the exact sequence

0-N¢,s(—4—Dy)>N¢,p{—4— Dl)—*Ns|c,(“ 4—-D,)-0
we see that the first vanishing in (2.8) follows from
(2.9) H'(N¢,p{—4—D,))=0.

1
Since C,~IP' we know [Sa, Proposition 1] that Ne,pr= Opi(b) with
b,>degC, + 2. Hence bt

r—1
NC]/P"(—A_Dl); =®1 @pl(bi—g—'1—(51),

$0(2.9)is true since b;—g—1—9,=degC;+2—g—1—n—-3=g+1+n+2—g—1
r—2

—n—3=—1,Vi=1,...,r—1. Let Ng. = @ Op:(a); then to finish the proof of
(2.8) we need a;—6,= —1, that is e

(2.10) a=n—e+1, Vi=1,...,r-2.
r—2

Observe that N (1), = @ Opi(—a;+n—e), hence (2.10) is equivalent to
i=1

(2.10y H°(Ng(1),,)=0.
From the exact sequence
0 N5 (1)ic,~ Néor(1) = Neys(1) -0
we get HO(Ng (1),..)=ker{p: H(N¢,p(1))—H(N¢,5(1))}, so we have to show
that ¢ is injective. Now
HO(N¢ow(1)= H(F ¢/ I2,) (1) = HASI (1)) and
HON¢ys(1) = H(Fcyis/ FEoss) (1) = HASIys(1))
=HO(nf))= H(Op:(n)
so if H is a hyperplane containing C,, then HnS=CyuC, C~nf and
@(H)=divisor on P!~ C, given by C on C,.

By the projective characterization of S, we can find [ACGH, p. 96] coordinates
on IP" so that the ideal of S is generated by the 2 x 2 minors of the matrix

(xo XgoveXp—e—1 ! Xp—e+1-+Xp—1

xl X2...x"_e . x,,_e+2...x,.

)=(A,B),

where A is the matrix whose minors generate the ideal of C,CIP"~° and B is the
matrix whose minors generate the ideal of a rational normal curve Y CIP", and S is
obtained by choosing an isomorphism C,=Y=~IP* and joining with lines the
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points of C, and Y corresponding in the isomorphism. Therefore, if we parametrize
YCP with xo=...=x,_,=0, Xx,_,4,4;=5""'t, i=0,...,n, [s,t]eP' and we
observe that H%(# (1)) is generated by x,_., 1, ..., X,, then ¢ is given by

(p(xn—e+ 1 +i)=s"-l.ti

so it is injective (in fact, ¢ is an isomorphism).
This proves (2.10) and hence to conclude the proof of Lemma 2.3 we need to

-1 . . .
find for every r=3 and g= rT, integers n and e so that (2.4) is satisfied.

(2.11) Claim. To satisfy (2.4) we can choose e=2n—r+1 and
r—2 if gz2r—4

n= gT+r if g+r=0(mod2) and g<r—4
-1
g+; if g+r=1(mod2) and g<r—4.

g+r
. . r—-1 : 2’
respectively. Moreover, e=>0 gives n> 5 and n>e is n<r—2. So any n

satisfying
max {%, r—1 —g} <n<min {r—Z, gT—i-r}

Proof. The inequalities of (2.4) are equivalent to n=r—1—g and n<

will do. Since r>3 and g2 %, the choice in Claim 2.11 satisfies this. Therefore

Claim 2.11 is proved and so is Lemma 2.3.

3 A family of curves CCIP" with H'(No) =0, K*(Tp ) =(r +1)* -1

We will construct here, using Proposition 2.1 and some smoothing techniques,
families of smooth curves in IP” with the properties indicated above. Let CCIP" be a
nondegenerate curve and define the following properties:

Property (x): H'(N¢)=0.
Property (B): h%(Tp)=(r+1)*—1.
(3.1) Property (y): Vg: % < g <r, there exist r + 4 general points

P,,...,P,.,€lP" and a nonspecial linearly normal smooth
irreducible nondegenerate curve I'CIP" of genus g with

H'\N{—=Py—...— P,y )= HYTp (— Py —...— P, ,))=0

such that there is a deformation of C meeting I" quasitrans-
versally in Py, ..., P, 4.

(3.2) Remark. Curves I' CIP" as in Property (y) exist by Proposition 2.1.
The construction of curves satisfying («) and (8) will be inductive, starting with
some families of curves implicitly contained in [S].
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(3.3) Lemma. For every r=3 and n, g such that

1 +1
—max {; g— rTa g__rZ_ 1} §Q=Q(g’n’r)§0,
there exists a smooth irreducible nondegenerate curve CCIP" of degree n, genus g
satisfying properties (), (B), and (y) (the latter for r=4).

Proof. By [S, Theorem 6.1], we see that curves C as in the Lemma, satisfying («) and
(P), exist in the range
(34) —%g+5t—1§a§0, n>2r

[(B) follows from Lemma 4.1 below].
To extend this range, for n=>r?+r, we use

(3.5) Sublemma. Let CCIP" be a smooth irreducible nondegenerate curve of degree
n=r+2 (respectivelyn>r+1) and genus g satisfying («), (), and (y). Let HCIP" bea
general hyperplane and X CH a rational normal curve meeting C in r+2 points
(respectively r+1 points). Then

C'=CuX
is flatly smoothable and its general smoothings satisfy (), (), and ().

Proof. Let C”" be a general deformation of C'. The facts that C” is smooth and
satisfies («) are already in [S, Theorem 5.2]; C” also satisfies (y) because C' does
(since C does). To see (f), let A=CnX CX and consider the exact sequence

0 Tpr  (— A) = Tpr) o, = Tpr . —0.
It will suffice to show that
(3.6) H(Tpr,(— 4))=0.
In fact this implies that
h(Tpr) ) S h(Tpm ) =(r+1)*~1  (by (B) for C),

50, since h(Tpr..) < h%(Tp-.) by semicontinuity, we get () for C” by Lemma 4.1.
For (3.6) we observe that

Toriy = Tpr- 11, D Ox(1)
hence

Tori = D)2 Opi(r — 1 — 2 "1 @ Ops(r— 1 —F —2) = Ops(— 2 "' @ Ops(—3)

[respectively, Tpr,(—4)=Opi(—1) '@ Op:(—2)] has no global sections. This
proves Sublemma 3.5.

To get the range of Lemma 3.3, we apply repeatedly Sublemma 3.5 in the case
of r + 2 points to curves in range (3.4). This gives a transformation (n, g)—>(n+r—1,
g+r+1), hence it is enough to produce, for every couple of integers (n, g) such that

1 1
n2r’+r and —g+r’+150<— ;g+ %,
an integer i 20 such that

n—(r—1)i=2r
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and
1 - r+1 . .
- [g—(r+1)i]+ N <o(g—(r+1)i,n—(r—1)i,r)=<0.

rg—n(r+1)+r(r+1)
r+1

For example i= |: ] (where [ ] denotes integer part) satisfies

the above inequalities.

It remains to see that curves in range (3.4) satisfy (y). To this end we recall
Sernesi’s construction [S, Theorem 6.1]: Curves C with (n,g) in range (3.4) are
obtained by applying g—n+r times Sublemma 3.5, in the case of r+ 1 points, to
linearly normal nonspecial curves. That is, for every (n,g) in range (3.4), let
i=g—n+r, =n—(r—1)i, g¢=g—ri and let C,CIP" be a smooth irreducible
nondegenerate linearly normal nonspecial curve of degree n' and genus g’ (note
that n'=g'+r, g'21).

For every j=1let C; be a general smoothing of C;_ ; X (where X is chosen as
in Sublemma 3.5, in the case of r+1 points). Then C=C,.

Therefore it is enough to see that C, satisfies (y)

(because i=g—n+r= #(n—r)—n+r= nTr > 2rr f = 1).
(3.7) Claim. Letr=4 and P,,..., P, 5 be r+3 general points of Y CIP" a smooth
irreducible nondegenerate curve passing through them. Then there exists a smooth
irreducible nondegenerate linearly normal nonspecial curve C, CIP" of genus g, > 1
meeting Y quasi-transversally in P,,...,P,, .

Let us assume Claim 3.7 and prove that C, satisfies (y). Choose r +4 general
points P, ..., P,,,€IP"; choose any I' through them as in Property (y). Claim 3.7
(with Y=T) gives a curve C, meeting I" quasi-transversally in P,, ..., P, ;. Let H
be a general plane through P, , , and X C H a rational normal curve meeting C,, in
r+1 points and passing through P, . ,. Then C, = a general smoothing of C,uX
satisfies (y).

Finally it is clear that Claim 3.7 will follow as soon as we prove it for g, =1 (for
g0=2 one can attach g,— 1 general 2-secants to the curve of genus 1 and take a
smoothing).

To this end, let M=(P,,...,P,_>=IP""? and N=(P, P,,,>=P'. The
trisecant lemma [ACGH, p. 110] implies that MAN=0. Also dim{M, P, ,)
=dim{M, P, , ;> =r—1, hence there are two lines L, and L, through Pry2 Ppis,
respectively, meetmg M and N. Let Z be a rational normal curve in M passing
through P,,...,P,_,Q,=L;nM,Q,=L,nMandlet E=ZUL,UL,UN. Now E
is elliptic of degree r+1 and meets Y quasi-transversally in P, ..., P, ;. In fact Z
and N are quasi-transversal to Y and meet Y exactly in P,,...,P,_, and P, ,, P,,
respectively (because a consequence of the trisecant lemma is that k+1 general
points of Y span a IP* meeting Y exactly at those points, for k <r —2). Moreover, L,
(or L,) is not tangent to Y, otherwise the tangent line in the generic point of Y
would meet the generic 2-secant N (which would imply that Y is strange, and
therefore a line [H, IV, Theorem 3.9]). Also L, (or L,) does not meet Y in any other
point, otherwise the IP? spanned by P,, P, , ;,and P, , , would meet Y in some other
point. But this is not possible because P,, P, , ,, P, , , are general points of Y and
r=4. Now take C, a general smoothing of E. This shows Claim 3.7 and therefore
concludes the proof of Lemma 3.3.
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Define the following functions:

27r3 +44r? —4r + 8er + 26> — 8¢+ 9
(3.8) or)= :
3(r+1)(4r—e)
3r* —19r3 + 6er> —72r2 + 17er> + r+ 26%r — 10er —2e2 4+ 116 —9

30+ 1)(r—9+2¢)

N(r)=

Then we have

(3.9) Proposition. There exists a smooth irreducible curve C CIP" with
(@) H'(N)=0
(B) (T )=(r+1)*—1

and degree n, genus g, for every r, n, g such that r=12 or r=10 and

r+1 r(n—r)—1 r+1  2r’4r+1 4r+9—¢
310) — (n—r)<g=< —= _ ;
(3.10) ——(n r)_g_maX{ T R e LY Pt Al U1 ¢

r<9orr=11 and

r+1

(3.11)

r(n—r)—1 r+1  2rX+r+1
—N<g< —
(n r)=g=max{ 1 ’r—ln =] .

Proof. By Lemma 3.3, we need to show the existence only in the case r=12 or
r=10, n= N(r) and

r+i1 2rt+r+1 4r4+9—c¢
n— g ———
r—1 r—1 4r—

[Note that N(r) is defined so that range (3.12) is not empty.] First we prove
(3.13) Lemma. Let CCIP" be a curve satisfying (), (B), and (y) and I CIP" be a general

(3.12)

IA

—n—0(0).

r—e
nonspecial linearly normal curve of genus = meeting a general deformation C of C

quasi-transversally at r +4 general points. Then C'=CuUT is flatly smoothable and
its general smoothings satisfy (o), (B), and ().

Proof. Note first that the construction is possible since C satisfies (y). Moreover, to
show that C'=Cur is flatly smoothable, it is enough to prove that [S,
Proposition 1.6]

(3.19) H'(N;)=0 where Ng=ker(No—T2)

(T2 being the first cotangent sheaf of C'). Let {P,,...,P,,4}=CnI and D=P,
+...4+P,,4on I'. From the exact sequences [S, Lemma 5.1]

0->No®O{—D)->Ng.—»Ng—0
0—NH{—D)=Np®O{—D)—TL—0
we get (3.14) since
HY(N{—D))=0 by Proposition 2.1(i),
H'(T¢)=0 because T¢ is supported on CnI" and
H(Ng)=0 since C satisfies ().
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The definition of N and (3.14) also imply H'(N ) =0, hence («) holds for a general
smoothing of C' by semicontinuity.
To see (B), consider the exact sequence

0- Tpr) (— D)> Tpr) ., = Tpr 0.
By Proposition 2.1(ii), we get
BT o) SR (T ) =(r+1)*—1  (by () for C),

hence (B) holds for any general smoothing of C’ (again by using semicontinuity and
Lemma 4.1 below). Moreover, C' satisfies () (just take another I' through r+4
general points of C), hence so does a general smoothing. This proves Lemma 3.13.
To finish the proof of Proposition 3.9, we will see that the construction of
Lemma 3.13 gives curves with r, n, g in range (3.12).
, 4r—¢ , 4r+9—¢
From Lemma 3.13 we get degC'=degC+ 3 pC)=g(C)+ —3
hence, given (n, g) in range (3.12) a curve of degree n, genus g, satisfying («) and (f)
4r—¢
3 ’

will exist as soon as we can find an integer i > 0 such thatif weletn'=n—i

g/=g_i (ﬁ39___£>, then

(3.15) —g+r*+1=Z0(g,n,r=0.

In fact curves with degree n’, genus g’, satisfying («) and (f) (ahd (y)) exist by
Lemma 3.3, therefore also curves of degree n, genus g, satisfying () and (8) will exist
by applying Lemma 3.13 i times. Since the inequalities (3.15) are equivalent to
3(r—1)g—=3(r+1)n+6r>+3r+3 3rg—3(r+1)n+3r*+3r
r—942¢ Sr+e
3rg—3(r+1)n+3r*+3r
Sr+e

<i

IIA

b

it is clear that i= [ ] will satisfy them. [

4 Proof of Theorem 1.2

To prove the theorem, we need to recall some general facts about Brill-Noether
maps. Let CCIP" be a smooth irreducible nondegenerate curve and V< H(0(1))
be the vector space of sections of O(1) giving the embedding. Then the cup-
product map

Ho: VOH (o — 1)~ Hw)

is called the Brill-Noether map of C.
We wish to recall here the following properties of .
(4.1) Lemma. With notation as above, we have
() kerpo = H(Tpm, )*;
(i) h°(Tp)2(r+1)*—1 and equality holds if and only if C is linearly normal
and u, is surjective.
Proof. From the Euler sequence

0-0c-V*@0{1)- Tpr| . —0,
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we get the exact sequence
0->HOo) > V*@HA(O1))~>H T ) > H' ()

5 V*QH!(O1))— H' (Tp )-0.
Clearly ¢ is the dual of u,, hence (i). Moreover,
h(Tpr )= —1+(r+ 1)h%(O 1))+ dim coker o = (r+ 1) —1
and equality holds if and only if K%(O{1))=r + 1 and coker pu, = {0}, that s, (i). []

Proof of Theorem 1.2. Let C be a curve as in Proposition 3.9. From general
deformation theory we know that («) implies that C belongs to a unique
component WCH, ., and that if n: W— .4, is the rational functorial map, then

codim_, 7(W)=dim coker { HA(N)— H'(w¢ 1)},
where the map @ is the coboundary map associated to the exact sequence
0-w¢ ' - T .~ Nc—0.

By () we have coker @ = H'( T ) = (ker po)* (Lemma 4.1(i)). Hence (B) and (ii) of
Lemma 4.1 show that

codim , n(W)=dim kerpu,=(r+1)(g—n+r)—g=—o(g,n,r). O

(4.2) Remark. The inequalities obtained in Theorem 1.2 depend on the method of
proof and do not appear to have any special geometric meaning. One possible
interpretation though, as can be easily seen from the proofs, is as follows. The

. . 1 1 . ’
inequality o= — -8 + % (respectively ¢ = —g+r?+ 1) expresses the numerical

condition that H, ,, has to satisfy in order to contain a reducible curve of type
X =X,u...uX; (respectively Y=Y,u...uY), where X, is a linearly normal
nonspecial curve and X ,, ..., X; are disjoint rational normal curves of degree r—1,
each meeting X, in r+1 points (respectively Y, is a general smoothing of X and
Y,, ..., Y;are disjoint rational normal curves of degree r — 1, each meeting Y, inr +2
Sr+e
4r+9—¢
condition that H, , , has to satisfy in order to contain a reducible curve Z=Z,u...
vZ,, where Z, is a general smoothing of Y and Z,, ..., Z, are disjoint linearly
r—e
3
referee pointed out, the first inequality can also be written as o(g,n,r—1)=r+1.

points). Similarly the inequality ¢ = — g+ f(r) expresses the numerical

normal nonspecial curves of genus , each meeting Z, in r+4 points. As the

(4.3) Example. Forb=a=4let W, , be the component of H, 1 4), (s 1) - 1),3 Whose
general point represents a curve C of type (a, b) on a smooth quadric surface in IP3,
Since Cis linearly normal, it follows [by S, Proposition 2.7] that y, is surjective, so,
from the proof of Theorem 1.2, using the fact that W, , is smooth at C, we have

codim , (W, ,) = dim coker & =h'(Tps ) —h'(N¢)=dim ker uy —h*(N)
=—p—(a-3)(b-3)<—p.

Hence W, , does not have the expected number of moduli. For every n, g such that
g>4n(n—3)+1 every component of H, , ; must be a W, , for some a and b, hence
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there is no component of H, , ; with the expected number of moduli for ¢ < —3g
+2]/24g—15—6 (and g=43).
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