

Werk

Titel: On the invariance principle for non-uniformly expanding transformations of [0, 1]...

Autor: Campanino, Massimo; Isola, Stefano

Jahr: 1996

PURL: https://resolver.sub.uni-goettingen.de/purl?481110151_0008 | log25

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

On the invariance principle for non-uniformly expanding transformations of [0, 1]

Massimo Campanino and Stefano Isola

(Communicated by Giovanni Gallavotti)

Abstract. We consider a class of maps of [0, 1] with an indifferent fixed point at 0 and expanding everywhere else. Using a suitable uniformly expanding induced map we prove a functional central limit theorem (invariance principle) with anomalous scaling $n/\log n$ for the random stationary process generated by this dynamical system.

1991 Mathematics Subject Classification: 60F05; 28D05, 58F11.

We first introduce the basic setting. Let f be a map of the unit interval [0, 1] satisfying:

- (i) f(0) = 0, f(1) = 1;
- (ii) f is monotone and non decreasing on $I_0 = [0, \frac{1}{2}[$ and $I_1 =]\frac{1}{2}, 1];$
- (iii) For each $i = 0, 1, f_{|I_i}$ extends to a C^2 function f_i on its closure which is onto [0, 1].
- (iv) There are two numbers $\alpha > 1$ and L > 0 such that:

$$f'_{|I_1} \ge \alpha$$
, $f'(0) = 1$, $f'_{|I_0,1/2|} \ge 1$, $\sup_{x \in [0,1]} |f''(x)/f'(x)| \le L$.

(v) $f''(0) \neq 0$ which implies f''(0) > 0.

The first author's research was partially supported by EU contract CHRXCT93-0411 and by Italian G. N. A. F. A.

In [CI2] we proved that under the above assumption the following ergodic theorem holds: there exist an increasing sequence $c_n = \kappa n/\log n$, where κ is a positive constant depending on f, such that for any real function u compactly supported on [0, 1]

$$\frac{1}{c_n} \sum_{k=0}^{n-1} u(f^k x) \rightarrow v(u) \quad \text{in probability (in ([0,1], } dx))$$

where v is a σ -finite absolutely continuous f-invariant measure whose density e satisfies $C_1/x \le e(x) \le C_2/x$ for any $x \in [0, 1]$ and C_1 , C_2 suitable positive constants (for related results see [T1], [T2], [CF]).

In this paper we want to study the fluctuations of the finite sums $\frac{1}{c_n} \sum_{k=0}^{n-1} u(f^k x)$. In particular, we shall prove a functional central limit theorem for the random variables $\frac{1}{\sqrt{c_n}} \sum_{k=0}^{n-1} u(f^k x)$ (see below, Theorem 1). A central limit theorem for the case of a finite measure has been proved in [LSV] and, in a slightly different context, in [ADU] (see also [HK] for a more general situation).

Let us consider the sequence of points c_k , $k \ge 0$, given by

$$c_0 = 1$$
, $c_k = f_0^{-1}(c_{k-1})$, $k \ge 1$.

This sequence generates a countable partition of [0, 1] into the intervals $A_k = [c_k, c_{k-1}], k \ge 1$, which is a Markov partition. In particular, $f(A_k) = A_{k-1}, k \ge 2$.

Let Ω_{\geq} be the set of one-sided sequences $\omega = (\omega_0, \omega_1, \ldots), \omega_i \in \{1, 2, \ldots\}$ satisfying the compatibility condition: given ω_i then either $\omega_{i-1} = \omega_i + 1$ or $\omega_{i-1} = 1$. Then, the map

$$\phi: \omega \to \phi(\omega) = x$$
 according to $f^i(x) \in A_{\omega}$, $i \ge 1$

is a bijection between Ω_{\geq} and the points of [0, 1] which are not preimages of the origin. Moreover, ϕ conjugates the map f with the shift τ on Ω_{\geq} .

For every integer $i \ge 1$ we denote by x_i the projection on the i^{th} symbol, i.e. $x_i(\omega) = \omega_i$, and define the "free" probability measure μ by

(1)
$$\mu(\omega_i) = |A_{\omega_i}|, \quad i \ge 1$$

With slight abuse of language we shall again denote by μ the measure $\mu \circ \phi^{-1}$, i. e. the Lebesgue measure on [0, 1].

We now introduce the infinite sequence $\tau_j, j \ge 1$, of successive entrance times in the state 1: $\tau_1(\omega) = \inf\{i \ge 0 : x_i(\omega) = 1\}$ and, for $j \ge 2$, $\tau_j(\omega) = \inf\{i > \tau_{i-1} : x_i(\omega) = 1\}$. Furthermore, we define a sequence of integer valued random variables by

(2)
$$\sigma_j(\omega) = \tau_{j+1} - \tau_j, \quad j \ge 0$$

with the convention that $\tau_0 = -1$.

Definition 1. The 'first passage' map (on the interval A_1), is the map $g:[0,1] \to [0,1]$ induced by f in the following way:

(3)
$$x \to g(x) = f^{n(x)}(x)$$
 where $n(x) = 1 + \min\{n \ge 0 : f^n(x) \in A_1\}$

Definition 2. Let $u: [0, 1] \to \mathbb{R}$ be any real function. Its *induced* version \tilde{u} is defined by

(4)
$$\tilde{u}(x) = \sum_{s=0}^{n(x)-1} u(f^s x)$$

Remark 1. The map g is uniformly expanding and surjective on each A_k , and enjoys the following property: let $x = \phi(\omega)$, where $\omega \in \Omega_{\geq}$, then $g^j(x) \in A_{\sigma_j}, j \geq 1$, where the integers $\sigma_j = \sigma_j(\omega)$ are defined in (2). It has been proved in [CI1] that the dynamical system ([0, 1], g) leaves invariant an ergodic absolutely continuous probability measure $d\varrho = h d\mu$, such that h is Hölder continuous and satisfies $d^{-1} \leq h \leq d$ for some d > 0. Furthermore, ϱ satisfies the exponential uniform mixing property [R]. The g-invariant probability measure ϱ is related to the f-invariant infinite measure ν by the identity

(5)
$$v(u) = \varrho(\tilde{u}),$$

valid for any u of compact support in]0,1] (see [CI2]).

We now introduce a space of locally Hölder continuous functions. Let $x, x' \in I \subseteq A_k$, for some $k \ge 1$, and write

$$\operatorname{var}_{I} u = \sup \{ |u(x) - u(x')| : x, x' \in I \}$$

Let \mathscr{F}_{γ} be the space of bounded continuous functions $u:[0,1] \to \mathbb{R}$ with compact support in [0,1] such that

$$\sup_{k} \sup_{I \subseteq A_{k}} \left(\frac{\operatorname{var}_{I} u}{|I|^{\gamma}} \right) \leq M < \infty$$

for some $0 < \gamma \le 1$ and M > 0. Notice that, since u is of compact support over]0, 1] the first sup above is actually taken over a finite set of k's.

Lemma 0.

1) If $u \in \mathcal{F}_{v}$ then $\tilde{u} \in \mathcal{F}_{v}$.

2) $u:[0,1] \to \mathbb{R}$ is a cocycle with respect to the map f, i.e. u(x) = v(f(x)) - v(x) for some v, if and only if \tilde{u} is a cocycle with respect to the map g.

Proof. Let $u \in \mathcal{F}_{v}$. If $x, x' \in I \subseteq A_{k}$ we have n(x) = n(x') = k and

$$|\tilde{u}(x) - \tilde{u}(x')| \le \sum_{0 \le j < k} |u(f^j(x)) - u(f^j(x'))| \le \sum_{0 \le j < k} \operatorname{var}_{f^j(I)} u$$

On the other hand, for the class of transformations considered here one has the following property of uniform distorsion (see [CI1], Lemma 2.1):

$$\frac{|f^{j}(I)|}{|f^{j}(A_{k})|} \le R \frac{|I|}{|A_{k}|}, \quad \text{for any} \quad 1 \le j \le k$$

where R > 0 is a constant independent of j and k. Hence

$$\frac{\operatorname{var}_{I} \tilde{u}}{|I|^{\gamma}} \leq M \sum_{0 \leq j < k} \left(\frac{|f^{j}(I)|}{|I|} \right)^{\gamma} \leq MR \sum_{0 \leq j < k} \left(\frac{|f^{j}(A_{k})|}{|A_{k}|} \right)^{\gamma}$$

so that, taking the sup over k and recalling that u is of compact support over]0, 1], it follows that $\tilde{u} \in \mathcal{F}_{v}$.

To show the last assertion notice first that Definition 2 implies at once that if u = v(f(x)) - v(x) then $\tilde{u} = v(g(x)) - v(x)$.

To see the converse, observe that, again from Definition 2, one has

$$u(x) = \begin{cases} \tilde{u}(x), & \text{if } x \in A_1 \\ \tilde{u}(x) - \tilde{u}(f(x)), & \text{if } x \notin A_1. \end{cases}$$

Suppose now that $u(x) \equiv 0$ only for $x \notin A_1$ and assume that $\tilde{u}(x) = V(g(x)) - V(x)$. Then, since f(x) = g(x) for $x \in A_1$, one also has u(x) = V(f(x)) - V(x). On the other hand, if $x \notin A_1$ then $\tilde{u}(x) = \tilde{u}(f(x))$ and g(f(x)) = g(x). Hence

$$\tilde{u}(x) = \tilde{u}(f(x)) = V(g(x)) - V(x) = V(g(f(x))) - V(x) = V(g(f(x))) - V(f(x))$$

so that

$$V(f(x)) = V(x)$$

and this implies that u(x) = V(f(x)) - V(x) for any $x \in [0, 1]$.

Now, for any u compactly supported in]0, 1], one can reduce to the previous case by observing that using an induction procedure u can be always decomposed as $u' + \phi$ where $u'(x) \equiv 0$ for $x \notin A_1$ and ϕ is a cocycle with respect to the map f. Moreover, if \tilde{u} is a cocycle then \tilde{u}' is a cocycle as well and the argument above can be applied. Q.E.D.

Let Σ_{\geq} be the set of *all* one-sided sequences σ of the form $\sigma = (\sigma_0, \sigma_1, ...)$, $\sigma_j \in \{1, 2, ...\}$. Then, the map

(6)
$$\pi: \sigma \to \pi(\sigma) = x$$
 according to $g^{j}(x) \in A_{\sigma_{j}}, j \ge 1$

is a bijection between Σ_{\geq} and the points of [0, 1] which are not preimages of zero. Moreover, π conjugates the map g with the shift τ on Σ_{\geq} . Notice also (cf. (4)) that $n(g^k(x)) = \sigma_k$ where $\sigma = (\sigma_0, \sigma_1, \ldots) = \pi^{-1}(x)$.

Let us now consider an orbit $\{f^k x\}_{k=0}^{n-1}$, for some $x \in]0, 1]$ and denote by N(n, x) the number of its passages in A_1 , or, in other terms, the number of symbols in its (truncated) σ -coding $(\sigma_0, \sigma_1, \dots, \sigma_{N(n,x)-1})$.

We have

(7)
$$\sum_{k=0}^{n-1} u(f^k x) = \sum_{s=0}^{N(n,x)-1} \tilde{u}(g^s x) + R_n(x,u)$$

where the remainder is given by

(8)
$$R_n(x, u) = \sum_{s=m(n,x)}^{n-1} u(f^s x)$$
 with $m(n, x) = \sum_{k=0}^{N(n,x)-1} n(g^k x)$

Consider now a continuous function u compactly supported on]0, 1]. The remainder $R_n(x, u)$ is then uniformly bounded in n and x.

For such an u, we define

(9)
$$S_n(x) = \sum_{k=0}^{n-1} u(f^k x), \quad \tilde{S}_n(x) = \sum_{s=0}^{n-1} \tilde{u}(g^s x)$$

In order to deal with a continuous process we define for $t \ge 0$

(10)
$$S(x,t) = \begin{cases} S_{n-1}(x) + (t-n+1)(S_n(x) - S_{n-1}(x)), & \text{if } n-1 \le t < n. \\ S_n(x), & \text{if } t = n \end{cases}$$

with the convention $S_0(x) = 0$. An identical definition with \tilde{S}_n in place of S_n yields $\tilde{S}(x, t)$.

We are now in the position to state the main result.

Theorem 1. Let $u \in \mathcal{F}_{\gamma}$ be such that v(u) = 0 and not a cocycle. Let moreover $a_n = n/\log n$.

Then, there exists a positive constant D such that the random element X_n of C([0, 1]) defined on the probability space $([0, 1], d\varrho)$ by

(11)
$$X_n(x, t) = \frac{1}{\sqrt{D a_n}} S(x, nt), \quad 0 \le t \le 1$$

converges in law to the Brownian motion B(t).

We shall prove Theorem 1 through a sequence of intermediate results.

Theorem 1'. Let $\tilde{u} \in \mathscr{F}_{v}$ be such that $\varrho(\tilde{u}) = 0$ and not a cocycle.

Then, there is a positive constant \tilde{D} such that the random element \tilde{X}_n of C([0, 1]) defined on the probability space $([0, 1], d\varrho)$ by

$$\widetilde{X}_n(x,t) = \frac{1}{\sqrt{\widetilde{D}n}}\widetilde{S}(x,nt), \quad 0 \le t \le 1$$

converges in law to the Brownian motion B(t).

Proof. Let $\{\xi_i\}$ be the sequence of random variables defined by $\xi_i = \tilde{u}(\pi(\tau^i \sigma))$ where $\pi(\sigma) = x$ and τ is the shift on Σ_{\geq} (see (6)). Set

$$\tilde{X}_n(\sigma, t) = \frac{1}{\sqrt{\tilde{D}n}} \tilde{S}(\sigma, nt), \quad 0 \le t \le 1$$

with the identification $\tilde{S}(\sigma, nt) = \tilde{S}(\pi(\sigma), nt)$ and

$$\tilde{D} = \varrho \left\{ \xi_0^2 \right\} + 2 \sum_{j=0}^{\infty} \varrho \left\{ \xi_0 \xi_j \right\}$$

where $\varrho(\xi_i)=0$ by assumption. The exponential uniform mixing property for the random variables $\{\sigma_i\}$, proved in [CI1], and the smoothness hypothesis on \tilde{u} entail that the above series converges absolutely. Moreover the assumption that \tilde{u} is not a cocycle implies that $\tilde{D}>0$ (see, e.g., [Bo]). Now the result follows from the functional central limit theorem (Donsker's theorem) for dependent variables proved, e.g., in [Bi] page 174. Q. E. D.

This result enables us to prove limit results for various functions of the partial sums \tilde{S}_n . In particular, we have the following result:

Lemma 1. Set $b_n = [\kappa a_n]$ where again $a_n = n/\log n$. Then, there are two positive constants C, c such that for any $\varepsilon > 0$ and n large enough

$$\varrho \left\{ x \in [0, 1] : \max_{|m - b_n| \le \varepsilon a_n} \left| \widetilde{S}_m(x) - \widetilde{S}_{b_n}(x) \right| < \varepsilon^{1/4} \sqrt{a_n} \right\}$$

$$\ge 1 - C \exp\left(-c\varepsilon^{-1/2}\right)$$

Proof. The proof is a trivial adaptation to the present situation of the argument given in [Bi], Section 10. Q.E.D.

Lemma 2. There is a constant $\kappa > 0$ such that for any $\varepsilon > 0$,

$$\lim_{n \to \infty} \varrho \left(\left\{ x : 1 - \varepsilon < \frac{N(n, x)}{\kappa \ a_n} < 1 + \varepsilon \right\} \right) = 1$$

where $a_n = n/\log n$.

Proof. See [CI2], Lemma 3.3. Q.E.D.

Lemma 3.

$$\frac{1}{\sqrt{a_n}} \left(S_n(x) - \tilde{S}_{b_n}(x) \right) \to 0$$
 in ϱ -probability

and therefore, for any $0 \le t \le 1$,

$$\frac{1}{\sqrt{a_n}} \left(S(x, nt) - \tilde{S}(x, b_n t) \right) \to 0$$
 in ϱ -probability

Proof. Let us write (7) in the form

(12)
$$S_n(x) = \tilde{S}_{N(n,x)}(x) + R_n(x)$$

with the obvious identifications. Recall that under our assumptions the remainder $R_n(x)$ is uniformly bounded in n and x. Now, from Lemma 2 we have that for any $\varepsilon > 0$ and for n sufficently large

(13)
$$\varrho\left\{x\in[0,1]:|N(n,x)-b_n|<\varepsilon\ a_n\right\}\geq 1-\varepsilon$$

and the statement follows by putting together (12), (13) and Lemma 1. Q.E.D.

An easy consequence of Theorem 1' and Lemma 3 is the following

Lemma 4. Let $D = \kappa \tilde{D}$ and

$$X_n(x,t) = \frac{1}{\sqrt{Da_n}} S(x,nt), \quad 0 \le t \le 1$$

Then, for any finite sequence $0 \le t_1 \le ... \le t_l \le 1$ the random vector

$$(X_n(x,t_1),\ldots,X_n(x,t_l))$$

converge in law to $(B(t_1), \ldots, B(t_l))$ as $n \to \infty$.

Remark 3. We have proved so far that the finite dimensional distributions of the random element $X_n(x, t)$ converge to those of the Brownian motion B(t). In particular, this implies the validity of the central limit theorem for the random variables $\frac{1}{\sqrt{Da_n}}S_n$, that is

$$\lim_{n \to \infty} \varrho \left\{ \frac{1}{\sqrt{D a_n}} S_n \le \alpha \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha} e^{-y^2/2} dy$$

To complete the proof of Theorem 1 it remains to show that the sequence $\{X_n\}$ satisfies a tightness condition [Bi].

Lemma 5. The sequence of random functions $\{X_n\}$ is tight.

Proof. We shall exploit the tightness of the sequence $\{\tilde{X}_n\}$. Let $\varepsilon > 0$ and $\eta > 0$ be fixed. Then, there exist a $\delta > 0$ and an integer n_0 such that

(14)
$$\varrho\left\{x: \sup_{0 \le t \le 1} \sup_{t \le s \le t+\delta} |\tilde{X}_n(x,t) - \tilde{X}_n(x,s)| \ge \varepsilon\right\} \le \eta$$

for all $n > n_0$.

Let M be a fixed positive integer such that $1/M < \delta$ and let $t_1, t_2 \in [0, 1]$ be such that $t_1 < t_2$ and $|t_1 - t_2| < 1/M$. Define N(t, x) for non integer t as N(t, x) = N([t], x). Using (12) and the boundedness of the remainders we then find

(15)
$$|X_{n}(x, t_{1}) - X_{n}(x, t_{2})| = \frac{1}{\sqrt{D a_{n}}} |S(x, nt_{1}) - S(x, nt_{2})|$$

$$\leq \frac{1}{\sqrt{D a_{n}}} \left(2C + |\tilde{S}(x, N(nt_{1}, x)) - S(x, N(nt_{2}, x))| \right)$$

for some constant C > 0. Let now $1 \le k_1, k_2 \in \mathbb{Z}_+$ be such that

$$0 < \frac{k_1}{M} - t_1 \le \frac{1}{M}, \quad 0 < \frac{k_2}{M} - t_2 \le \frac{1}{M}.$$

Clearly $|k_1 - k_2| \le 1$ and

$$N(nt_1, x) \ge N\left(\frac{n(k_1 - 1)}{M}, x\right)$$
 and $N(nt_2, x) \le N\left(\frac{nk_2}{M}, x\right)$

so that

$$N(nt_2, x) - N(nt_1, x) \le N\left(\frac{nk_2}{M}, x\right) - N\left(\frac{n(k_1 - 1)}{M}, x\right)$$

On the other hand, if n is large enough, using Lemma 2 we can estimate the r. h. s. as

$$\begin{split} N\left(\frac{nk_2}{M},x\right) - N\left(\frac{n(k_1-1)}{M},x\right) \\ &\leq \left(1 + \frac{\delta}{4}\right) \left(\frac{\kappa \frac{nk_2}{M}}{\log \frac{nk_2}{M}}\right) - \left(1 - \frac{\delta}{4}\right) \left(\frac{\kappa \frac{n(k_1-1)}{M}}{\log \frac{n(k_1-1)}{M}}\right) \leq \delta \, \kappa \, n/\log \, n \end{split}$$

Finally, using the above inequality and the tightness of \tilde{X}_{b_n} we get

$$|X_n(x,t_1) - X_n(x,t_2)| \le \frac{2C}{\sqrt{Da_n}} + C \sup_{0 \le t \le 1} \sup_{t \le s \le t+\delta} |\tilde{X}_{b_n}(x,t) - \tilde{X}_{b_n}(x,s)|$$

which ends the proof. Q.E.D.

Proof of Theorem 1. The proof now follows by putting together Lemma 0, Lemma 4 and Lemma 5. Q.E.D.

References

- [ADU] Aaronson J., Denker, M., Urbanski, M.: Ergodic Theory for Markov fibred systems and parabolic rational maps. Tans. Amer. Math. Soc. 337, 495-548 (1993)
- [Bi] Billingsley, P.: Convergence of Probability Measures. Wiley, New York 1968
- [Bo] Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lect. Notes in Math. 470, Springer-Verlag, 1975
- [CI1] Campanino, M., Isola, S.: Statistical properties of long return times in type I intermittency. Forum Math. 7, 331-348 (1995)

- [CI2] Campanino, M., Isola, S.: Infinite invariant measures for non-uniformly expanding transformations of [0, 1]: weak law of large numbers with anomalous scaling. Forum Math. 8, 71-92 (1996)
- [C.F] Collet, P., Ferrero, P.: Some limit ratio theorem related to a real endomorphism with a neutral fixed point. Ann. Inst. H. Poincaré 52, 283 (1990)
- [HK] Hofbauer, F., Keller, G.: Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180, 119-140 (1982)
- [LSV] Lambert, A., Siboni, S., Vaienti, S.: Statistical properties of a non-uniformly hyperbolic map of the interval. Preprint CPT-92/P.2804
- [T1] Thaler, M.: Estimates of the invariant densities of endomorphisms with indifferent fixed points. Israel J. Math. 37, 303-313 (1980)
- [T2] Thaler, M.: Transformations in [0, 1] with infinite invariant measures. Israel J. Math. 46, 67-96 (1983)
- [R] Ruelle, D.: Thermodynamic Formalism. Addison-Wesley Publ. Co., 1978

Received September 16, 1994

Massimo Campanino and Stefano Isola, Universitá di Bologna, Dipartimento di Matematica, piazza di Porta S. Donato 5, I-40127 Bologna, Italy e-mail address: campanin@dm.unibo.it and isola@dm.unibo.it