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On the invariance principle for non-uniformly expanding
transformations of [0, 1]
Massimo Campanino and Stefano Isola

(Communicated by Giovanni Gallavotti)

Abstract. We consider a class of maps of [0, 1] with an indifferent fixed point at 0 and expanding
everywhere else. Using a suitable uniformly expanding induced map we prove a functional
central limit theorem (invariance principle) with anomalous scaling n/log » for the random
stationary process generated by this dynamical system.
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We first introduce the basic setting. Let f be a map of the unit interval [0, 1]
satisfying:

®» fO)=0, fO)=1;
(i) f is monotone and non decreasing on I, = [0,3[ and I, = 1}, 1];

(iii) For eachi=0,1, f,, extends to a C? function f; on its closure which is onto

[0, 1].

(iv) There are two numbers o > 1 and L > 0 such that:

finzo fO =1 fioyaz1 sup LG ()] < L.

(v) f”(0) # 0 which implies £ (0) > 0.

The first author’s research was partially supported by EU contract CHRXCT93-0411 and by
Italian G.N.A.F.A.
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In [CI2] we proved that under the above assumption the following ergodic theorem
holds: there exist an increasing sequence ¢, = kn/log n, where k is a positive constant
depending on f, such that for any real function u compactly supported on ]0, 1]

1 ! .

- u(f*x) - v(u) in probability (in ([0,1], dx))

n k=0

where v is a o-finite absolutely continuous f-invariant measure whose density

e satisfies C,/x <e(x) < C,/x for any xe[0,1] and C,, C, suitable positive
constants (for related results see [T1], [T2], [CF]).

. . : 1
In this paper we want to study the fluctuations of the finite sums = Z oo u(f*x). In
n

particular, we shall prove a functional central limit theorem for the random variables

1
r Y %28 u(f*x) (see below, Theorem 1). A central limit theorem for the case of
C’I

a finite measure has been proved in [LSV] and, in a slightly different context, in
[ADU] (see also [HK] for a more general situation).
Let us consider the sequence of points ¢,, k > 0, given by

co=1, a=fo'la-1), k21

This sequence generates a countable partition of [0,1] into the intervals
A, = [cy, ¢ 1], k = 1, which is a Markov partition. In particular, f(4,) = 4,_;,
k>2.

Let Q. be the set of one-sided sequences w = (wg, y,...), w; € {1,2, ...} satisfying
the compatibility condition: given w; then either w;_; = w;+ 1 or w;_; = 1. Then,
the map
¢:0 - ¢(w)=x accordingto f'(x)eAd,, i>1

is a bijection between Q. and the points of [0, 1] which are not preimages of the
origin. Moreover, ¢ conjugates the map f with the shift 7 on Q..

For every integer i > 1 we denote by x; the projection on the i'® symbol, i.e.
x;(w) = w;, and define the “free” probability measure u by

M (@) =14, i=1

With slight abuse of language we shall again denote by u the measure u- ¢ =1, i.e. the
Lebesgue measure on [0, 1].

We now introduce the infinite sequence t;, j > 1, of successive entrance times in the
state 1: 7, (w) = inf {i > 0: x;(w) = 1} and, for j > 2, 7;(w) =inf {i > 7,_, : x; ()
= 1}. Furthermore, we define a sequence of integer valued random variables by
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2 o;(@)=1;4,—715 j=0
with the convention that 7y = — 1.

Definition 1. The ‘first passage’ map (on the interval 4,), is the map g : [0, 1] — [0, 1]
induced by f in the following way:

?3) x = g(x)=f"(x) where n(x)=1+min{n>0:"(x)eAd,}

Definition 2. Let u : ]J0, 1] — R be any real function. Its induced version @ is defined by

n(x)—1

(4) a(x)= Y u(f*x)

s=0

Remark 1. The map g is uniformly expanding and surjective on each 4,, and enjoys
the following property: let x = ¢ (w), wherew € 2, theng/(x) € 4, »J = 1, where the
integers o; = 0; (w) are defined in (2). It has been proved in [CI 1] that the dynamical
system ([0, 1], g) leaves invariant an ergodic absolutely continuous probability
measure dp = h du, such that 4 is Holder continuous and satisfies d~! < h < d for
some d > 0. Furthermore, g satisfies the exponential uniform mixing property [R].
The g-invariant probability measure g is related to the f-invariant infinite measure
v by the identity

(% v(u) = ¢ (@),
valid for any u of compact support in ]0, 1] (see [CI2]).

We now introduce a space of locally Holder continuous functions. Let x, x' € I C 4,
for some k > 1, and write

var;u = sup {|u(x) —u(x')|: x,x' eI}

Let &, be the space of bounded continuous functions «: [0, 1] = R with compact
support in ]0, 1] such that

sup sup <var, u) <M<

K 1c4 \ I

forsome 0 <y < 1and M > 0. Notice that, since u is of compact support over ]0, 1]
the first sup above is actually taken over a finite set of k’s.

Lemma 0.
1) Ifue &, then iic #,.
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2) u:[0,1] — R is a cocycle with respect to the map f, i.e. u(x) = v(f(x)) — v(x) for
some v, if and only if i is a cocycle with respect to the map g.

Proof. Let ue #,. If x, x' e I C A, we have n(x) = n(x’) = k and

la) —a()l < Y [u(e)—u(fA NI < Y varggu

0<j<k 0<j<k

On the other hand, for the class of transformations considered here one has the
following property of uniform distorsion (see [CI1], Lemma 2.1):

i
LD <Rﬂ forany 1<j<k

LA ™ 1AL
where R > 0 is a constant independent of j and k. Hence

var, i DI 1 (4Rl
Vi SMo§<k( 7] )SMR ) ( 4,1 )

0<j<k

so that, taking the sup over k and recalling that « is of compact support over ]0, 1], it
follows that i e #,.

To show the last assertion notice first that Definition 2 implies at once that if

u=v(f(x)) —v(x) then 7 = v(g(x)) — v(x).

To see the converse, observe that, again from Definition 2, one has

_Ja), if xed,
WO =V a0 — a(f (), if x¢é A,

Suppose now that #(x) = 0 only for x ¢ 4, and assume that #(x) = V(g(x)) — V(x).

Then, since f(x) = g(x) for xe A, one also has u(x) = V(f(x)) — V(x). On the
other hand, if x ¢ 4, then @ (x) = #(f(x)) and g(f(x)) = g(x). Hence

d(x) =a(f(x)) = V(gx)—V(x)
=V@eU)—-Vx)=VE((x)—- V()

so that
V(f(x)=V(x)

and this implies that u(x) = V(f(x)) — V(x) for any x € [0, 1].
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Now, for any u compactly supported in ]0, 1], one can reduce to the previous case by
observing that using an induction procedure u can be always decomposed as v’ + ¢
where u'(x) = 0 for x ¢ 4, and ¢ is a cocycle with respect to the map f. Moreover, if
i is a cocycle then @' is a cocycle as well and the argument above can be applied.
Q.E.D.

Let X, be the set of all one-sided sequences ¢ of the form o = (gy,0,...),
o;€{1,2,...}. Then, the map

6) n:6 — n(6)=x accordingto g/(x)ed,,, j=1

is a bijection between X, and the points of [0, 1] which are not preimages of zero.
Moreover, n conjugates the map g with the shift 7 on 2, . Notice also (cf. (4)) that
n(g*(x)) = o, where ¢ = (69, 0,,...) = "' (x).

Let us now consider an orbit { /*x} 2§, for some x € ]0, 1] and denote by N(n, x) the
number of its passages in A4,, or, in other terms, the number of symbols in its
(truncated) g-coding (0¢, 0y, ... On( 0 -1)-

We have
n—1 N(n,x)—1
(7) k;) u(f*x) = ;0 4(g°x) + R,(x, u)

where the remainder is given by
n—1 N(n,x)—1
8) R,(x,u)= Y u(fx) with m(n,x)= Y n(gx)

s=m(n,x) k=0

Consider now a continuous function # compactly supported on ]0, 1]. The remainder
R, (x, u) is then uniformly bounded in » and x.

For such an u, we define

n—1 n—1
® S,(x)= Y u(f*x), 8§,(x= Zoﬁ(g‘X)
k=0 s=

In order to deal with a continuous process we define for ¢ > 0

Sp-1 D)+ —n+1)(85*x) —S,-1(x), f n—1<r<n

(19 SEy= {S"(x), T

with the convention S, (x) = 0. An identical definition with S, in place of S, yields
S(x, o).
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We are now in the position to state the main result.

Theorem 1. Let ue %, be such that v(u) =0 and not a cocycle. Let moreover
a, = nflog n.

Then, there exists a positive constant D such that the random element X, of C([0, 1])
defined on the probability space ([0, 1], dg) by

1 Xxn=

1
S(x,nt), 0<t<1
I/ Da,
converges in law to the Brownian motion B(t).

We shall prove Theorem 1 through a sequence of intermediate results.

Theorem 1'. Let i€ &, be such that ¢ (i) = 0 and not a cocycle.

Then, there is a positive constant D such that the random element X . 0f C([0, 1]) defined
on the probability space ([0, 1], dgo) by

o 1

X (0= Six,nt), 0<t<1

5

converges in law to the Brownian motion B(t).

Proof. Let {¢;} be the sequence of random variables defined by &; = @(n (1 o)) where
n(0) = x and t is the shift on X, (see (6)). Set

- 1

X,@,0= S(o,nt), 0<t<1

n

S

with the identification S (o, nt) = S(n (o), nt) and
D=o{ed}+2 2. oot}
=

where ¢(&;) = 0 by assumption. The exponential uniform mixing property for the
random variables {g;}, proved in [CI1], and the smoothness hypothesis on i entail
that the above series converges absolutely. Moreover the assumption that i is not
a cocycle implies that D > 0 (see, e.g., [Bo]). Now the result follows from the
functional central limit theorem (Donsker’s theorem) for dependent variables
proved, e.g., in [Bi] page 174. Q.E.D.

This result enables us to prove limit results for various functions of the partial sums
S,. In particular, we have the following result:
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Lemma 1. Set b, = [k a,] where again a, = n/log n. Then, there are two positive
constants C, ¢ such that for any ¢ > 0 and n large enough

< gll4 l/‘-z:}

0 {xe[O,l]:I max

m—by,|<ean

gm(x) - gb"(X)

>1—Cexp(—ce 1?2

Proof. The proofis a trivial adaptation to the present situation of the argument given
in [Bi], Section 10. Q.E.D.

Lemma 2. There is a constant k > 0 such that for any ¢ > 0,

lim g({x:1—8<N(n’x)<1+e}>=1
n— o K a,

where a, = n/log n.

Proof. See [C12], Lemma 3.3. Q.E.D.

Lemma 3.

L (S,,(x) — S",,"(x)) — 0 in g-probability

Ve

and therefore, for any 0 <t < 1,

1 (S(x, nt) — S(x, b,,t)) — 0 in g-probability

Va,
Proof. Let us write (7) in the form
(12) Sn(x) = gN(n,x)(x) + Rn(x)
with the obvious identifications. Recall that under our assumptions the remainder
R, (x) is uniformly bounded in n and x. Now, from Lemma 2 we have that for any
€ > 0 and for n sufficently large
(13) 0{xe€[0,1]:|N(n,x)—b,| <ea,} >1—c¢
and the statement follows by putting together (12), (13) and Lemma 1. Q.E.D.

An easy consequence of Theorem 1’ and Lemma 3 is the following
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Lemma 4. Let D = k D and

X, (x, 1) =

1
S(x,nt), 0<t<1
l/Da,
Then, for any finite sequence 0 < t, < ... < t, < 1 the random vector
(X (x, 1), ..., X (x, 1))

converge in law to (B(t,), ..., B(t))) as n - .

Remark 3. We have proved so far that the finite dimensional distributions of the
random element X,(x, f) converge to those of the Brownian motion B(¢). In
particular, this implies the validity of the central limit theorem for the random

. 1 .
variables —— S, that is

/Da,

lim o {—1—— S, < a} e [ e dy

B=00 ]/Da,, I/ZTZ -

To complete the proof of Theorem 1 it remains to show that the sequence {X,}
satisfies a tightness condition [Bi].

Lemma 5. The sequence of random functions {X,} is tight.

Proof. We shall exploit the tightness of the sequence {X,}. Let ¢ > 0 and 5 > 0 be
fixed. Then, there exist a 6 > 0 and an integer n, such that

(14) 4 {x: sup sup |X;n(x’ t)_fn(xa S)I 28} Sr’

0<t<lt<s<t+d
for all n > n,,.

Let M be a fixed positive integer such that 1/M < ¢ and let ¢,, ¢, € [0, 1] be such that
t, <t,and|t, —t,| < 1/M. Define N(¢, x) for non integer ¢ as N(¢, x) = N([], x).
Using (12) and the boundedness of the remainders we then find

1
Da

1

/Da

15 X 1) = X, (x, 1) = |S(x, nty) — S(x, nt,)|

IA

<2c +|8(x, N(nty, x)) — S(x, N(nt,, x)l)
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for some constant C > 0. Let now 1 < k,, k, € Z, be such that

k 1 k 1
0<M1—IIS—M, 0<—A§—-IZSH.
Clearly |k, —k,| <1 and

N(ntl,x)2N<_(jw_),x> and N(ntz,x)sN<72,x>

so that

N(nty, x) — Nty x) < N (%x) _N <—"(";w‘ ”,x)

On the other hand, if n is large enough, using Lemma 2 we can estimate the r.h.s. as

nk, ntk, —1)
V() - ()

O\ [ x%¢ 8\ [ rilyb)
< (1 +4—l><log %,#) — (1 - Z) (@—— (k-ll> < dknf/logn

Finally, using the above inequality and the tightness of X », WE get

2C o 5
+C sup sup |X, (x,1)— X, (x,9)|

]/Dan O<t<1 t<s<t+d

an(x’ tl) - Xn(x’ tz)| <

which ends the proof. Q.E.D.

Proof of Theorem 1. The proof now follows by putting together Lemma 0, Lemma
4 and Lemma 5. Q.E.D.
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