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Reachability of Interior States
by Piecewise Constant Controls

Kevin A. Grasse

(Communicated by Hector J. Sussmann)

Abstract. In order to show the futility of attempting to derive general regularity theorems for
optimal controls in smooth — but not real-analytic — control systems, H.J. Sussmann has
demonstrated how, given a Lebesgue-integrable function #: [0, 1] — R, one can always exhibit
a smooth, single-input control system (say on [R*) with the property that there exist states p and
q for which # is the unique control that steers p to ¢q. An examination of Sussmann’s
construction reveals that the trajectory corresponding to # which joins p and g evolves on the
boundary of the attainable set from p. It is natural to ask whether a similar pathology can occur
for points in the interior of the attainable set. In this paper we modify Sussmann’s construction
and show that, given a Lebesgue-integrable function # :[0,1] — R, one can always exhibit
a smooth, two-input control system on R for which there exist states p and g such that g is
interior to the attainable set from p and if «, v are controls that steer p to g on the time interval
[0, T, then T> 1 and u must agree with & on [0, 1]. However, in this construction it is seen
that as soon as the trajectory dips into the interior of the attainable set the controls no longer
have to agree with any pre-assigned “bad” control, and in fact can be taken to be piecewise
constant. The main result of this paper shows that this phenomenon is not specific to our
example, but occurs in general. Namely, we prove that every point in the interior of the attain-
able set of a C! control system is reachable by a trajectory corresponding to controls that are
piecewise constant on the time interval for which the trajectory is interior to the attainable set.

1991 Mathematics Subject Classification: 93B03, 93B05; 93B29, 93C10.

I. Introduction

This paper deals with regularity properties of controls that transfer a specified
initial state of a nonlinear control system to the interior of its attainable set. More
specifically, let x = f(x, u(¢)) be a nonlinear control system, where the state x resides
in a finite-dimensional manifold M and the control u: R — £ takes values in a separ-
able metric space . It is assumed that f satisfies reasonable regularity condition and
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the controls are (Lebesgue) measurable and “admissible” for fin the sense of [7] and
[8] (see also Sect. III). Fix an initial state x,e M and suppose that x, e M is an
interior point of the attainable set of f from x, via measurable and admissible
controls. Our objective is to examine conditions under which x, is reachable from x,
by a control that is somewhat “nicer” than merely measurable. For our purposes
here, a “‘nicer”’ control is one that is piecewise constant on all, or at least a portion,
of its domain of definition.

This type of question has already been addressed in earlier work of the author,
E. Sontag, and H. Sussmann ([7, 8, 11, 14, 15]), and we give a brief summary of the
relevant results. In [15] H. Sussmann proves that if x; is reachable from x, by
a control/trajectory pair that is not a Pontryagin extremal, then x, is reachable from
X, by a piecewise constant control; furthermore, he shows how one can obtain
reachability by even nicer controls (e.g., continuous, polynomial) by assuming more
structure on the control space 2. In an earlier paper ([14]) Sussmann shows that if
a real-analytic system is globally controllable by measurable and admissible controls
(i.e., the attainable set from every initial state is the entire state space M), then it is
globally controllable by piecewise constant controls; this result was generalized to C*
systems by Sussmann and the author in [8]. It is known ([5, 13]) that if fis globally
controllable by piecewise constant controls, then for every pair of states x,, x, in M
it is the case that x, is normally reachable from x, (see Sect. III), and we also show in
[8] that normal reachability — which inherently involves the family of piecewise
constant controls — entails reachability by even nicer controls, provided that the
control space has the requisite additional structure. In [7] the author proves that if
[fis small-time locally controllable from x, via measurable and admissible controls,
and if ' has the non-tangency property at x,, (see [7] for the precise definitions), then
every state that is reachable from x, by a measurable control is reachable from x, by
a piecewise constant , or nicer, control. Also worthy of mention here is the paper [11]
of E. Sontag, which can be regarded as a precursor for some of the above results.
Finally, we note that Sontag’s monograph [12] contains a lucid and elementary
discussion of the problem of reachability by nice controls for nonlinear control
systems where the initial state is an equilibrium point and the linearization at this
equilibrium point is completely controllable.

These results beg the following question: is every interior point of the attainable
set by measurable and admissible controls also reachable by a nice control? For
real-analytic systems, the answer is yes (see [7, 8, 14, 15]), and in this case ‘“‘nice” can
mean, e.g., piecewise constant, continuous, or polynomial (precisely which depends
on the structure carried by the control space). For smooth — but not real-analytic —
systems, if an interior point of the attainable set is normally reachable from the intial
state, then it is by definition reachable by a piecewise constant control, but it is also
reachable by nicer controls, as discussed above. Unfortunately, for non real-analytic
systems, it is known that there can be states interior to the attainable set that are
not normally reachable from the initial state (see [6] or [7] for an example; note,
however, that in this example the interior, non-normally reachable point is still
reachable by a piecewise constant control). In Section II we will give an example of
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a smooth, non real-analytic, system with the property that one of its attainable sets
has interior points that are not reachable by any control that can be reasonably called
nice.

This is not the end of the story, however. In the example given in §1I, the
trajectories that steer to the “badly reachable” interior point all have the property
that they stay on the boundary of the attainable set for a certain period of time,
during which time the control has to be bad, and then they dip into the interior of the
attainable set, during which time the control no longer has to be bad and may be
taken to be picewise constant, or better. Thus in the example our bad control must
only be bad over a portion of its domain of definition. This begs a second question of
whether or not there is an example of an interior point of an attainable set that is only
reachable by a control that is bad throughout its domain of definition. It turns out
that this is not the case; every interior point of an attainable set of a C* control system
is reachable by a control having the property that this control is piecewise constant
during the time interval where the corresponding trajectory is in the interior of the
attainable set. This will be proved in Sect. IV and requires a few standard facts about
control systems, which we will summarize in Sect. III for the convenience of the
reader.

II. An Example

We will construct an example of a smooth (i.e., C*) control system with state space
IR3, control space R?, and having the property that one of its attainable sets has
interior points that are only reachable by trajectories corresponding to bad controls.
As was indicated in the Introduction, such a system cannot be real analytic. Our
example is a modification of an example given by H. Sussmann in [16] of a smooth
control system having a boundary point of an attainable set that is reachable by
a unique, but pre-specified, control.

First choose a smooth function 4: R — R such that A > 0 and 17*(0) = [1, ).
Given an interval 7 < R (possibly unbounded) L' (I) denotes the set of all Lebesgue
measurable functions v:  — R with the property that{, |v()|dtis finite. Fix a control
ie L'([0,1]), and set

1
() = gl(t)ﬁ(t)dt

(at this point # is completely arbitrary, but this gives us the flexibility of specifying it
to be a bad control later on). We define a plane parametrized curve &: [0, o) — R? by

&) = {(t, [A(s)a(s)ds) 0<t<1;

&) t,y) 1<t.

It is clear that & is (absolutely) continuous and its image Im« is a closed subset of
[R2. Recall that every closed subset of R? is the zero set of a smooth nonnegative
real-valued function (see [3; p.17]), and choose a smooth function ¢: R? - R such
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that ¢ > 0and ¢ "' (0) = Im a. We define a smooth control system with state space R3
and two scalar controls u, v by

x=1
3 y=A@u@+i2- %)Ly -5+ 22]u()
i =0(xy)+i2-0)[(y -y’ +2210(@);

here x, y, z are the standard coordinates on R3. Let </, denote the set of all points
in R3 that are reachable from the origin (0, 0, 0) (with initial time 0) at some time ¢ > 0
by a trajectory of (3) corresponding to controls u, v: R — whose restrictions to any
compact interval [a, b] are in L' ([a, b]).

Claim 2.1. For y as defined in (1) and for every X > 1 the point (X, 3, 0) is in <.

Proof. Let ue L' ([0, x]) be such that uly ,; = i a.e. on [0,1], let ve L' ([0, X]) be
arbitrary, and consider the solution (x(2), y (¢), z(¢)) of the system (3) with zero initial
conditions. Obviously x(f) = ¢, so for 0 < ¢ < 1 the second and third equations of
(3) reduce to

y(@) =A@ u(o)
2= yQ®),

since 0<t<1 = 2—t>1 = AQ—x(®)=12—-1=0. It follows that
y(2) = o A(s)ii(s)ds for 0 < t < 1, and hence ¢ (t, y(£)) = 0, so we infer that z(¢) = 0
for 0 < ¢ < 1. In particular, (x(1), y(1), z(1)) = (1, j, 0), which finishes the proof if
X = 1. For X > 1 one can verify by direct substitution that for ¢ > 1 the curve

@) O* (@), y*(0), 2* (1) = (1, 7, 0)

is a solution of (3), irrespective of the values of u(#) and v(f) (observe that the
substitution of (4) in (3) will zero the right-hand sides of the second and third
equations when ¢ > 1, thereby forcing y(f) and z(¢) to be constant). Thus for
1 <t < x both (x(2), y (), z(?)) and (x*(2), y*(?), z* (¢)) are solutions of (3) that pass
through (1, y, 0) when ¢ = 1. Since the solutions of (3) are unique for a specified set of
initial conditions, we conclude that (x(), y(2), z(2)) = (x* (), y*(?), z*(¢)) for
1 <t < x and consequently the point (x (%), y (%), z(X)) = (X, y, 0) is reachable from
the origin at time X. O

Claim 2.2. For j as defined in (1) and for every X > 1, if a control pair u, ve L* ([0, c0))
steers the origin to the point (X, y, 0) on the interval [0, T], then T = X and u|,1; = i
a.e. on the interval [0,1].

Proof. The crux of this argument is due to Sussmann ([16]). Let u, v € L ([0, c0)) be
such that the corresponding solution (x(z), y(¢), z(¢)) of (3) with zero initial
conditions satisfies (x(T), y(T), z(T)) = (%, ,0). We clearly have T = x, since
x(f) = t, and the solution (x(?), y(?), z(?)) is defined on some interval of the form
0<t<x+e¢ For 1 <t<x+¢ the curve (4) is also a solution of (3) satisfying
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(x*(x), y* (%), z* (X)) = (%, 7,0), so by uniqueness of solutions we infer
that (x(2), y(9), z(¢)) = (x*(2), y*(®), z*(f)) for 1<t<x+e In particular
(x(1),y(),z(1)) = (1, y,0). Furthermore, on the time interval 0 < ¢ <1 the func-
tions y(?), z(r) satisfy the relations

(1) = A u()
() =9 y®),
because 1(2 — x(#)) = A(2—1t) =0 when 0 <t < 1. Thus

&)

z(f) = iw(s,y(s))ds, 0<t<it,
0

whence we have
1
0=z(1)=[ @t y(®)dr.
0

The nonnegativity of ¢ forces ¢ (¢, y(f)) = 0 forevery 0 < ¢ < 1, and the fact that the
zero set of ¢ is precisely Ima easily implies that for every 0 <¢<1 we have
(¢, y(¢)) = a(s) for some s > 0. A comparison of the first coordinates of (¢, y(¢)) and
&(s) yields ¢t = s so we infer that

t
6) y(O =[A(s)u(s)ds, 0<t<1.
0
On the other hand integration of the first equation in (5) gives
t
@) y(@) =[A)u(s)ds, 0<t<1.
0

Differentiating (6) and (7), we obtain
A(u(@) =A@ u(t), a.e.on[0,1].

This gives the desired conclusion since A(f) >0 for0 <¢t<1. O

Claim 2.3. For every ¢ > 0 there exists X in the interval (1,1 + ¢) and a control pair
u,ve L*([0,00)) that steers the origin to a point of the form (X,y,,z,;) with
(yb zl) 4: (.)—)’ 0)'

Proof. Let ve L*([0,0)) be arbitrary and let u e L' ([0, 0)) such that u +# on a
subset of [0,1] having positive measure. For this choice of u and v, the solution
(x(9), y (1), z(¢) of (3) with zero initial conditions is defined on the closed interval
[0,1], and therefore is defined on an interval of the form [0, x] for some x > 1. There
is no loss of generality in assuming that 1 < X < 1 + ¢, where ¢ > 0 is preassigned.
By Claim 2.2 the point (x(X), y (¥), (X)) = (X, y;, z,) cannot coincide with the point
(%, 7,0), so the proof is complete. O
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Claim 2.4. For every pair of real numbers x,, x, satisfying 1< x, < x, and for every
pair of points (yy, z,), (¥, z,) satisfying (y;, z;) % (7, 0) for i =1, 2, there exists a pair
of controls u,ve C*([0, ), R) that steers (x,, y;, z;) to (X5, ¥,, z,) via the system (3)
on the time interval [x,, x,].

Proof. Let o(t) = (,(9), 25 (#)) be a smooth curve defined for x, < 7 < x, such that
e(xy) = (31, 21), e(x3) = (¥2,2,) and ¢(?) # (7,0) for every te[x,, x,] (we are
simply using the fact that the plane minus a point is C® path connected). For
x, £ t < x, the expression

A2 =0l () =7 +es()*]

is positive, since 2 —t <1 and (g, (?), 03 (?)) # (7, 0). Hence it is possible to solve
the equations :

0:() = 22— N[(e2() — 7)* + 23 ()*1u(0)
03() = @(t, 02 () + A2 — N [(e2 (1) — 7)* + 23(D*1v()

explicitly for (smooth) functions () and v(z) that are defined for te[x,, x,].
We then extend u, v to smooth functions defined for 7 €[0,0) in any convenient
manner. For this choice of the controls u, v it is clear that the curve
x(@®),y(0), z(£)) = (1, 0,(2), 05 (?)) is a solution of (3) satisfying the initial condition
(x(xq), y(xy), 2(xy)) = (x4, ¥1, 2;) (observe that A(x(f)) = A(f) =0 for t > x, > 1).
Since also (x(x,), ¥(x,), z(x;)) = (x;, 5, z,) the proof is complete. o

Claim 2.5. {(x,y,2)e R}|x>1} = «,.
Proof. This follows directly from Claims 2.1, 2.3, and 24. O

We can now establish the desired properties of the example. By Claim 2.5 every point
of the form (x, y, 0) is interior to &/, for x >1. On the other hand, by Claim 2.2,
if a control pair u, v steers the origin to (x, y, 0), where x > 1, thenu = #a.e. on [0, 1],
where i € L' ([0, 1]) was our pre-specified control. Thus to infer that there are interior
points that are only reachable by bad controls it is only necessary to choose # so that
it is not a.e. equal to a picewise constant or continuous function, and there are
many ways of doing this. For example, we could let # be the characteristic function
of a closed, nowhere-dense set of positive measure. For an even “worse’ control,
one could take # = y;, where E = [0,1] is a Borel set with the property that
0<m(EnI)<m(l) (here m denotes Lebesgue measure) for every subinterval I of
[0, 1] having positive length (see [10; p. 59]).

IT1. Some Notation and Basic Facts Concerning Control Systems

For the convenience of the reader, we briefly summarize some basic facts about
control systems and controls that will be needed for the proof of the main result in the
next section. The specific definitions of control system and control used here are as
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described in [7] and [8], and we refer the reader to these references for many of the
details that are omitted in the subsequent discussion.

Let M denote a connected, finite-dimensional, second-countable, Hausdorff,
differentiable manifold of class C* with k > 2 and set n = dim M. These assumptions
imply that M is a metrizable topological space and we fix a metric d,, qn M
compatible with the manifold topology. We use TM to denote the tangent bundle
of M (TM is a differentiable manifold of class C*™) and n: TM — M to denote the
canonical projection.

Given a separable metric space 2 with metric d,, a C! time-independent, control
system on M with control space Q is a map f: M x Q —» TM such that: (a) for each
w € Q the map x — f(x, w) of M into TM is C' and satisfies (n o f)(x, w) = x for
every xe M: and (b) the partial differential d, f: TM xQ — T?M is jointly
continuous on the product space TM X Q. It follows that for each we Q the
map f“: M —» TM defined by f°(x) = f(x, w) isa C* vector field on M; the collection
{f°|w e Q} will be referred to as the system of vector fields associated to the control
system f. Every C? coordinate chart ¢: U — R", where U an open subset of M,
induces a mapping f,,: (U) X Q — R" defined by

®) foy, ) =do,_i,) [0 (), w),

which we call the local representation of fin the coordinate chart ¢.

We let %peqs stand for the family of all Lebesgue-measurable maps of R into £;
elements of %, are called controls. A useful and important subclass of %, is the
family %ep S X meas consisting of all piecewise constant maps of R into £ having
a finite number of discontinuities. We will also have occasion to deal with families of
piecewise constant controls with values in a specified subset of £, so given a subset
A < Q we let Ug,, denote the set of all maps in %,., that take values in 4.

A control u: R — Qs called admissible for a C* control system f: M x Q — TM if
the map f,: RXx M — TM defined by f,(¢, x) = f(x, u(f)) is such that its local
representation with respect to every coordinate chart of M (given by (8) with
o replaced by u(r)) satisfies C' Carathéodory conditions ([8]). We let a5 (f)
denote the subset of %,,.,, consisting of the admissible controls for f; it is clear that
Usrep S Umeas(f) for every C* control system f.

Our definitions of C! control system and admissible control entail sufficient
regularity to ensure the existence and uniqueness of trajectories of the system for
a specified choice of initial condition and control, as well as the continuous (or
differentiable) dependence of the trajectories on the initial condition and control.
The relevant facts are listed here, but as usual we refer the reader to [8] for more
details. We also highly recommend the textbook [12], which gives a nice introduction
to the mathematical treatment of these issues (see especially Chap. 2 and App. C of
[12]).

Given a C? control system f : M x Q - TM, an admissible control ¥ € % meas (),
and an initial condition (s, x) € R X M, we let

®) t— pp(t, s, x,u)
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denote the unique absolutely continuous and maximally defined solution of the
initial-value problem

¥ =f(y (), u(®),
y(s) = x;

J; (s, x, u) denotes the domain of definition of the map (9) and is always an open
(possibly proper) subinterval of R. The map y, is called the global flow of f and is
defined on the subset of the product space R X R X M X %,,...(f) given by

D) ={(t, 5, x,u) e RX RX M X Upoees ()| 1€ J; (5, X, u)} .

We will occasionally drop the subscript f from u, when there is no ambiguity about
the control system to which we are referring. Some elementary and well known
properties of the global flow are listed in the following theorem.

Theorem 3.1. The global flow u, of a C' control system f: M x Q — TM has the
following properties.
(@) For every se R, xe M, and u € U peas(f) we have p (s, s, x, u) = x.
(b) (transitivity) For every s€ R, x€ M, and u € Uweas(f), if r € J; (5, X, 1), then
J; (s, x, u) = Jp (r, uy (1, 5, X, u), u)
and for every t,re J; (s, x, u) we have
Bt 1, pyp (ry 5, %, u), u) = pe (2, 5, X, u).

(c) For every (t,s,u) € R X R X U peas (f) the mapping x v u,(t, s, x, u) is defined on
an open (possibly proper, or even empty ) subset of M ; when its domain is nonempty
the map x — p,(t, s, x, u) is a C*-diffeomorphism between open subsets of M with
inverse x — p,(s, t, x, u).

(d) For every(t,s, x, u) € 2 (f) and for everyre R we have(t —r,s —r, x, u|,) €2 (f)
and

[.lf(t, S, X, u) = ﬂf(t— r,s—r,Xx, ulr)a
where u|, is the control obtained from u by the formula u|,(t) = u(r + ?).
(e) For the “time-reserved” system —f defined by (—f)(x, w) = — f(x, w) we have
for every (1, s, x,u) € D (f) and for every re R that (r — t,r — s, x, (u),) ") e 2(f)
and
ﬂf(ta 8, X, u) = #—f(r —Lr—s,Xx, (ulr)—),
where (1))~ is the control obtained from u by the formula (u),)~(t) = u(r —t).

Remarks 3.2. (a) Thm. 3(d) depends strongly on the time-invariance of the system
and allows us to set the initial time equal to 0 without loss of generality, since

ety 8, x,u) = pp(t—5,0,x,ul,);
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of course if we are using a restricted set of controls ¥" < %,,...(f), then we must
assume that u€ 7" and se€ R imply that u|,e ¥ We call such families of controls
invariant under a time shift. Our main results will only use the control families
Unmeas (), Ugep, and UG, (for a specified subset 4 = Q), and these are all clearly
invariant under a time shift, so we will often take the initial time equal to 0 in the
sequel.

(b) When the initial time s is zero we will use the notation
(“f)'t‘(x) = ”f(ta 0, X, u) )
or, if the choice of system is clear from the context, the less unwieldy notation
i (x) = p(t, 0, x,u),
whenever (¢, 0, x, u) € 2(f).
(c) From Thm. 3.1(b) and (e) we get the equivalence
y = :uf(ta 0, X, u) <> X = lu—f(t, O,ys (ulz)_)‘
In the special case where u is the constant control with value w € Q, the previous
equivalence simplifies to
y= uf(t,O,x,w) <> X = I‘t—f(tyo,y’w)'
It is also evident that % ,c.s(—f) = Umeas (f)-

Given a C' control system f, a point x,€ M, and a subset ¥~ of % pe,s(f), the
attainable set of f from x, with controls in ¥ is defined by

(x| V) = {xe M|3ue¥ and t > 0 such that u(t, 0, xo, u)
is defined and equals x}.

The following theorem and corollary are equivalent formulations of a standard
property of the attainable set that will be crucial in the proof of our main result in the
next section. We refer the reader to [1; p. 32] for the proofs of both assertions, but we
also note that their proofs are direct consequences of the property of the flow given in
Thm. 3.1.(c). In the statement of the theorem and in subsequent text the symbol 04
will denote the topological boundary of a subset A4 of M.

Theorem 3.3. Let f: M x Q — TM be a C*-control system on M and let x, € M, T >0
and u € Unpeas (f) be such that (T, 0, xy, u) € D(f) and

u'f(Ta 0! Xos ll) € 'ng(xowlmeas (f)) N aJﬂ_{‘(xolakmeas (f)) .
Then

0 <t< T = ,uf(t’ 0’ an u) € '%(xolg”meas(f)) N a"Q{f(xol%meas(.f)) ¢

Corollary 3.4. If y € Int o (xo| U meas (/). then
.uf(ta Oa Y, u) € Int'%‘(xoia”meas(.f))
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Jor every u € Upe,s(f) and t > 0 for which the expression is defined. In particular, if
Xo € Int'sgf(xoldllmeas (f))a then "(yf(xol%mcas(f)) s open.

One sometimes says that points in .o, (X | #eas (f)) are reachable from x, via fand an
admissible control. Of particular importance are the normally reachable points as
specified in the next definition.

Definition 3.5 [13]. Let /: M x Q — TM be a C! control system on the n-dimensional
manifold M, let 4 = Q be a nonempty subset, let x, ye M, and let k€ {0, 1, ..., n}.
We say that y is normally k-reachable from x via f with controls in %, if there exist
geN, oy, ..., », € 4, and positive real numbers s, ..., s, such that the expression
ds? o oo ' (x) (notation as in Rem. 3.2(b)) is defined and equals y and the map

(5 ...,tq)H #ff,”“-ou;‘:‘(x),

which is defined and C* on an open neighborhood of (sy, ..., 5,) in R, has rank k at
(54, .-, 8,). For x € M we use NR{ (x; f) to denote the set of all y € M such that y is
normally k-reachable from x via f' with controls in %4.,. When 4 = Q we will simply

write NR, (x; f) instead of NRZ(x; f).

Remark 3.6. For n=dimM and A < Q arbitrary the set NR(x;f) is an open
(possibly empty) subset of %(xl%;}ep); this is an immediate consequence of the
surjective mapping theorem (see, €.g., [2; p. 380]) and the fact that the rank of a C*

mapping is locally nondecreasing. In particular, NR;! (x; f) < Int o (x| Usep)-

If there are no normally n-reachable points in & (x|%4.,), then o/ (x|%4.,) may
have empty interior and the situation is more delicate (see also Cor. 4.5 and the
remark that follows). The next theorem gives some partial information about the case
where there are no normally n-reachable points. To minimize confusion when we
apply this theorem in the next section, we will relabel the control system with the
letter g; we do this because this result will not be applied to the given control system £,
but rather to the restriction of —f to an open subset of M.

Theorem 3.7. Let g: M xQ — TM be a C* control system on the n-dimensional
manifold M, let A = Q be a countable dense subset, and let x, € M be such that

k* =max {le{0,1,...,n} | NR!(x,; g) + 0}
satisfies k* <n. Then:
(@) NRis(xy;8) is a first category set in M;
(b) for every x, € NRA(Xy; &), if U € Unmeas(8) and T > 0 are such that p, (T, 0, x,, u)

is defined, then p,(T,0,x,,u)e NR{(xy;8) and in particular p,(T,0, x,, u)
€ A (x| Uep);
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(c) forevery x, € NRA(x,; g) there exists a C* k*-dimensional embedded submanifold
S < NRA(xy; 8) of M with the property that if u€ U peas(g), T=0, and U is a
relatively open subset of S for which (T, 0, x, u) is defined for every x € U, then

.ug(Ta Os U, U) = {,ng(T, 05 X, u)lxe U}

is a C' k*-dimensional embedded submanifold of S and g is tangent to
ke (T, 0, U, u).

Proof. For the proof of (a) see [5; Prop. 3.10]; for (b) see Claim 2 in the proof of
Thm. 3.17 in [8]; for (c) see Claim 1 in the proof of Thm.3.17in [8]. O

We conclude this section by recalling the definition of a certain topology on the set
of admissible controls of a control system; this topology is useful in situations where
it is desired to approximate measurable controls by “nicer’’ controls. This topology
depends on the choice of the control system f and is defined in terms of local
representations of f with respect to coordinate charts of M (see (8)). Specifically, for
every C? coordinate chart ¢: U — R" of M, every nonempty compact subset K < U,
and every positive integer /e N we define a mapping g, ,; on pairs of admissible
ContTOIS (u’ U) e %meas(f) X %meas (f) by

1

Qp,x,1 (U, V) = _§l sup{||/,(», u(9) — £, (y, v |
+ 1Dy fo (v, u(®) = Dy f,(y, vl : y € @(K)} dt.

It is clear that g, g, is a pseudometric on %,,,s(f) and we call the topology on
U meas (f) generated by all possible such pseudometrics the f~topology. It is not hard to
see that the f~topology can be generated by a countable family of pseudometrics of the
above form ([8; Prop. 2.14]), so the f~topology is pseudometrizable. We will let 4
denote a pseudometric on %,,.,;(f) that generates the f~topology.

Remarks 3.8. (a) For every C! control system f: M x Q — TM and for every dense

subset 4 = Q the set %, is a dense subset of %,,s(f) in the f~topology (see [8;
Rem. 3.13]).

(b) For every C* control system f the map (r, u) — u,, where u,(f) = u(r + ) is as

defined in Thm. 3.1.(d), of R X % eas (f) iNtO % pneas (f) is continuous. Furthermore,

the map u— u~, where u™ (f) = u(— 1), of Upneqs (f) into itself is continuous (and thus

a homeomorphism). Both assertions are easy consequences of the definition of the

Jf~topology.

The continuity properties of the flow are stated formally in the next theorem.

Theorem 3.9. Let f: M x Q — TM be a C* control system with global flow pi. Then
D(f) = {(t, 5, X, W ER X R X M X Uppey ()| 1 € J; (s, x, 0)} .

is an open subset of R X R X M X Upeos(f) and p is continuous on D (f).
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Proof. A special case of this is proved in [7; Cor. 6.4] where it is shown that the subset
Do () ={(t0,x, ) ERXR X MX Upeos(f)|1 >0 and 1€ J;(0, x, u)}

of 2(f) is open relative to
D5 = [0,00) X {0} X M X Upneas (f)

and p is continuous on 2 (f). To get the stated result from this special case we argue
as follows. The relation

ue(t,0,x,u) = p_ (—1,0,x,u")
(obtained from Thm. 3.1.(e) with r = 0) allows us to express the map
(,0,x,u) — pup(2,0,x,u)
of the set
Do () ={(t,0,x, ) e RX R X M X Upneos(f)|t <0 and 1€ J;(0, x, u)}
into M as the composition of the maps
(10) 0, x,u) > (—1,0,x,u")
of 25 (f) into 25 (—f) and
(11) (=60, x,u”) > pu_,(—=10,x,u")

of 2§(—f) into M; the continuity of (10) follows from Rem. 3.8(b), while the
continuity of (11) follows from [7; Cor. 6.4] applied to —f. Hence y, is continuous
on 2, (f). Moreover, (10) is actually a homeomorphism of

96= (—-oo,O] X {0} X M x %meas(.f)

with the set 25 defined above (continuity follows from Rem. 3.8. (b) and this map is
clearly a bijection), so we infer that 9, (f) is open relative to 9, since its
homeomorphicimage 24 (—f) is open relative to 2§ by [7; Cor. 6.4] applied to —f.
From this it is easy to see that u, is continuous on

Do () =25 (f) v 2o (f)

and this set is open relative to R X {0} X M X %,.,(f). Finally we note that by
Rem. 3.2.(a) the map

(&8, x,u) = uc(t,s, x,u)
can be expressed as the composition of the maps
12) s, x,u)— (t—s,0,x,ul,)
and

(13) (t—5,0,x,ul)— pu(t—s,0,x,ul);
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the continuity of (12) follows from Rem. 3.8. (b), while the continuity of (13) was just
demonstrated. Since 2 (f) is the inverse image of 2, (f) under the continuous map
(12), we also get the desired openness of 2 (f)in R X R X M X % ... (f), so the proof
is complete. O

IV. The Main Theorem

We now turn our attention to the proof of the main result of this paper. It will be con-
venient to separate the proof of one elementary assertion into a preliminary lemma.

Lemma 4.1. Let f: M x Q — TM be a C* control system, let x, € M be such that
A (Xo| Umeas () has nonempty interior, and let

g: Int'jyf(xol%meas(f)) xQ - T(Int%(xol%meas(f)))

denote the restriction of the control system —f to the subset Int.of; (xo| U meas (f)) X 2
of MxQ. If xelIntod;(Xo|Uneas(f)), UE Umeas(f) = Umeas(—f) is an arbitrary
admissible control for —f, and T >0 is such that p_ (T, 0, x, u) is defined and in
Int%(xo I %meas (f))9 then

(14) B (2,0, x,0) = p_ (2,0, x,u) Vee[0,T].
Consequently, for every subset V" S WUnmeas(—f) we have
15) Ay (x|V) = A (x|V) 0 Int A (Xo| Umeas (/) -
Proof. To prove (14) it suffices to show that if for some 7> 0 and u € % eas (—f) We
have y = pu_ (T, 0, x, u) € Int o, (Xo| U meas (f)), then we must also have
(16) Bs (2,0, x, u) € Int o (Xo | Umeas (f)) Vte[0,T].
By Rem. 3.2(c)
y=p_p(T,0,x,u) = x=p(7T,0,y,(uly)"),
and this and Thm. 3.1(b) and (e) yield for t€ [0, T']
o (t,0,x,0) = u (T — 1, T, x, (ulr) )

= #f(T_ t’ T, I‘lf(T’ 0,}’, (u|T)—)’ (ulT)—)
= #j(T_ L 09 s (uIT)-)'

Thus by Cor. 3.4 we obtain
“—f(ts 0’ X, u) = “f(T— t3 0’ b ) (uIT)—) € Int"dj‘(xol%meas(f))

for t € [0, T'], which gives (16) and hence (14). For (15), observe that (14) implies the
right-hand side is contained in the left-hand side, while the reverse inclusion is
obvious from the definition of g. O
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Theorem 4.2. Let f: M x Q — TM be a C* control system, let A < Q be a countable
dense subset, let x, € M, and suppose that x, € Int.o/; (x| U meas (f)) With x; + x,. Then
there exists W € WUpmeas(f) and T > 0 such that

(T, 0, xo, w) = x,
and there exists t* € [0, T) such that:
i) 0<it<t* = u(t,0,x0,w)€ A, (Xo|Uneas (1))
(this statement is vacuous if t* =0),
(ii) *<t<T = u(t,0, xg, w) € Intod; (xo | Umeas (1)) »
and W\ 1) is a A-valued piecewise constant control.

Proof. For ease of notation in the proof we will simply write Int.</ (x,) instead of the
more cumbersome Int .o/ (x| % meas (/). Following the notation of Lemma 4.1 we let

g: Int.o, (x) X @ —» T(Int;(x,))

denote the restriction of —f to Int.e/(x,) x Q. By assumption x, € Int.s/ (x,) and
we let

*=max{/e{0,1,...,n}|NR{'(x; g) + 0},
or, equivalently,

k* = max {/€{0,1, ..., n}|3x € Int(x,) such that x is normally
l-reachable from x, within the set Int.2/; (x,) via —f with controls in Ufep} -

Note that it must be the case that k*>1. For k*=0 would imply that
g(x;, ) = —f(x,, w) =0 for all w € 4, and hence for all w € Q by the density of A
in ©Q and the continuity of /. But this would force x, = x,, since otherwise we could
not reach x, from x, via f, and thereby contradict the assumption that x; & x,.
Hence k* > 1.

First we consider the case where k* = n. Choose a point x, € NRZ(x,; g); then x,
is normally n-reachable from x, via g and controls in %.,, so by Rem. 3.6 (applied
to the control system g) there exists an open subset W, of Int./ (x,) such that
x, € Wy € o, (x| Usep) S Intt)(x,). Let u, € Upeas(f) be any control such that for
some t; > 0 we have

Xy = (21,0, xp, ;).

Because %, is a dense subset of %, (f) in the f-topology and the flow y, is a
continuous function of the control in the f~topology, there exists i, € %4.,, such that

By(t1, 0, xo, 8,) € Wy < dg(xll%s/:ep)'
Let i, € U4, be such that for some 7, > 0 we have

(17) “y(tZ’Os xls aS) = uf(tl,oa X0> 122)'
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Since g is a restriction of —f to an open subset of M X Q, we have
(18) ”g(tZ’O’ xl’ﬁ3)=/"—f(t2’0’ xl’ﬁ3)’
and (17) and (18) yield

Bop(13,0, x4, 83) = pp(ty, 0, xo, i) .

From Rem. 3.2(c) we infer that

Xy = ps(ty, 0, up(2y, 0, xq, @), (H3l,,)7);

since ii,, iy € U4, We infer that x, € o, (xo|%4e,)- This establishes the conclusion
of the theorem in the special case where k* =n, since if uey,, satisfies
us(T, 0, xo, u) = x,, then we can take

t* =inf{te [0, T]|u, (¢, 0, xo, u) € Int,(x,)} .

Next assume that 1 < k* < nand fix x, € NR{A(x,; ). By Thm. 3.7.(b) (applied to
the control system g) for every u € U peas(—f) S Umeas(g) and T > 0 for which
Uy (T, 0, x5, u) is defined the point u (T, 0, x,, u) is normally k*-reachable from x,
via g with controls in #g,,, and in particular 1y (T, 03, x5, u) € g () | Udsep)-

By Thm. 3.7.(c) (also applied to g) there exists a C! embedded k*-dimensional
submanifold S = NRA(x,; g) of Int.o/,(x,), the state space of g, containing x, with
the property that if u € ¥ eas(—f) S Umeas(g), T= 0, and U is a relatively open
subset of S for which p, (T, 0, x, u) is defined for every x € U, then u, (7,0, U, u) is a
C' embedded k*-dimensional submanifold of Int.«Z,(x,) and g (and hence —fand f)
is tangent to p, (7,0, U, u).

Since by definition we have 7, (x, |U%ep) < Into;(x,), there exists u, € Upeqs (f)
and ¢, > 0 such that u,(¢,, 0, xo, u,) = x,. Observe that we may as well assume
X, * x,, since x, = x, implies x, is reachable from x, via g (and hence —f) and
a control in %4, ,, which in turn implies x, is reachable from x, via fand a control in
U, and this yields the conclusion of the theorem as in the previous case where
k* = n. Thus we assume x, + x,, which entails z;, > 0.

Define a subset  of the interval [0, ¢,] by

T ={te[0,1,]|us (1,0, xo, uy) € 0y (xo)} -

It is clear that 7 is a closed subset of [0, ,], since 0.9 (x,) is closed and p, is
continuousin 7. If 7 = @, then set 7 = 0; otherwise, set r = sup.Z. Note that we must
have 1 < t, because u,(t,, 0, x,, 4,) = X, is interior to </ (x,) and hence is not on the
boundary. By Cor.3.4, if s> 0 is such that u (s, 0, xo, 4,) € Int.oZ;(x,), then
K (2,0, xo, uy) € Intof; (x,) for every ¢ > s for which the flow is defined. Consequent-
ly, 7 is either empty or is the closed subinterval [0, 7] of [0, 7,]. In either case we have

0<1<t = pt,0,xq,u,)€dd(x),
(which we interpret as vacuous if 7 = 0) and

(19)  T<t< 1y, = p,(t,0, xq, uy) € Int, (xp) .
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Since x, = u,(,, 0, xo, u,), the transitivity property of the flow (Thm. 3.1.(b))
implies that for every ¢ € [0, ¢,] the expression
Hr(t, 1y, Xp, ) = pp(t, by, pug(2y, 0, X0, u4y), 4y)
is defined and equals u,(z, 0, x,, u,). Thus (19) yields
(20) 1<t<ty = py(t,ty,x,, u;) € Int(x,).

Since the domain of the flow 2 (/) is open (Thm. 3.9), there exists a relatively open
neighborhood V of x, in submanifold S of Int </, (x,) selected above such that Clg Vis
compact and contained in S (Clg means ‘“closure relative to S” in its subspace
topology inherited from M) and the expression

mr(t, by, X, uy)

is defined for every xe V and te[t,¢,]. In particular, another application of
transitivity implies that u (¢, 1, u;(2, t;, X5, u,), u,) is defined for ¢€[0, #,] and
equals x,, so for ¢ = dist[x,, d57'] (the distance is computed with respect to the
prespecified metric d,, on M) the continuity of the flow yields a é > 0 such that
teft, ;] and dy(x, Bye(t, 1y, Xp5u5)) <6
= dy (g (2, 1, X, u5), pp (84, 8 (2, 8, Xg, U3), Uy))
=dy(us(ty, 1, x,uy), x;) < €.

Claim 4.3. For u,,t,,1, S, V, and  as above, if t <t < t,, U € Upmeas(f), and 0 > 0 is
such that for every t € [0, @] the expression pu (t + T, t, hy(t, t,, X,, u,), u) is defined and
t€[0,0] = dy(up(t+71, 1, pp (8, 1y, X5, ), U), up(t, 1y, X5, 45)) <96,
then
B+t pnp (8, 1y, x5, u5), u) € up(t, 1y, V,uy) Vrel0,0].

Consequently, we have

P'f(tla t, ﬂf(t + T, .uf(t’ tls X2s uz), u)a u2) eV Vie [O’ Q] s

Proof of Claim. Fix te (1,t,], letx, = p,(t, t;, X, u,), and choose u € Upmeas(f)
and ¢>0 such that p (t+71,2,x,u) is defined for 0<t<¢ and
dy (up(t + 7, 8, x,, u), x,) < 8. Let N, be the C' embedded submanifold of Int .o/ (x,)
given by

N, = ps(t, t,, V, up) 0 Intof; (xo)
and let

¢ =sup{se[0,]lu (t+1,tx,u)eNV1e[0,s]}.

Observe that the set over which the supremum is taken is nonempty because it
contains 0 (since x, € V' = x, € u (1, ¢, V, u,) and as noted in (20) x, € Int.o/;(x,)).
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Moreover, ¢ > 0 because the C*! embedded submanifold S of Int <, (x,) was chosen
to have the property that f is tangent to the C' embedded submanifold

gty — 1,0,V (up],)7) -
However, by Thm. 3.1.(e) we have
pe(ts by, Viug) = p_p(t; — 1,0,V (up,)7)
so by Lemma 4.1
Be(ty — 6,0, V, (uy,)7) = p_s(t; — 1,0, ¥, (uy],,) ) N Intely ()

= ps (1, 11, V, up) 0 Intofp(x)
=N,.

It follows that fis tangent to N, and so every trajectory of f that originates at the
point x, € N, at time ¢ must remain in N, for time values sufficiently close to ¢ (for
more details on this point see [4; Prop. 3.6]). Thus if we define

B(t) =pu;(t+r,t,x,u) for 0<t<p,
then
1€[0,¢] = B(v) € Int;(x),

since any trajectory of fthat is in Int.o/, (x,) at time ¢ must remain in Int.e/;(x,) at all
subsequent times for which it is defined. Furthermore, by assumption

1€[0,e] = dy(B(1),x) <9,
so the choice of § yields
t€[0,0] = dy(u,(ty, 1, B(2), uy), X;) <.
In particular, dy (u, (1, (21, t, B(@), 4,), X,) < e and we have by the definition of ¢ that
0<t<g = B()eN, < u;(t,t;,V,u,)
= pp(ty, 1, (), u)) € V.

Since ClgVis compact in S, it is also compact (and hence closed) in M, so we infer that
s (ty, t, B(0), u,) € ClgV. However, we cannot have p,(t,, t, B (0), u,) € 05V since

dist[x,,0sV] =¢> dM(ﬂj(tn t, B(@); uz), x,) -

Thus we obtain u(¢y, ¢, B(@), u,) € V, which in turn implies that f(0) € u, (¢, t,, V, u,).
Because we also have (@) € Int.«/,(x,), we infer that f(¢) € N,. If ¢ = ¢, then we are
done. But if g < g, then

B@ = us(t+a,t,x,u)eN,
and fis tangent to the embedded submanifold N,, so there exists { > 0 such that

0<o<{= p(t+o+o,t+0,p@,weN,.
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Using the transitivity of the flow and the definition of B, for 0 < ¢ < { we obtain

“f(t+é+oﬂt+é9ﬂ(é)’u)=.uf(t+Q-+GaI+Q_»“f(t+é,tsxnu),u)
=ﬂf(t+é+0, 1, X, U),
and consequently

0<t<¢+{ = p(t+1,t,x,u)eN,,
which clearly contradicts the definition of ¢. Hence we must have ¢ = g and the proof

of the claim is complete.

We now return to the proof of the theorem. It was observed earlier (just prior to
relation (20)) that the expression u (1, t,, x,, 4,) is defined for 0 <7 < ¢, and in
particular for 7 <t <t,. The continuity of the flow u, on its open domain of
definition &2 (f) yields a ¢ > 0 and an open neighborhood 4] of u, in the f~topology
such that

(21) t<t<t,ueN;, and 0<t<p
= p(t+1,1, pu(t, 1y, x5, u,), u) is defined and
Ay (et + 1, 8, 1 (8 1y, Xg, Up), ), g (2, 1y, X5, 1)) < 6.
By the definition of # we have
tr(t+ 0,0, X0, u,) € Int.Z(x,),
so this and the transitivity of the flow yield

.uf(t_+Q’ i’ uf(t_, t1’x2,u2)’ u2) = #f(t_+ Qazuf(t—a tl, .uf(tlao, xo,uz), uz), uz)
=pp(t+0,0, xo, uy) € IntZp(x,) .

Thus the continuity of the flow yields an open neighborhood .4, of u, in the
Jf-topology such that

(22) ueN; = #f(?+ o1 uf(t—, 1y, Xz, Uy), u) € Into/,(x,) .

Choose a control ue N} NN, N UG, (recall the intersection is nonempty by the
density of %4, in Xpmeas (f) in the f~topology). Then u is piecewise constant and by
(21) ue #] implies that for each t€ [z, ¢,] and t € [0, ¢] the expression

et + T, 8, pup (2, by, Xy, Uy), 4)
is defined and

Ap (g (4, 0, et 1y, X5, up), ), pp(t, £y, Xo, 1)) < 9.
It follows from Claim 4.3 that for 7 < ¢ < ¢, we have

Up(ty, t, pp(t+ 0t pup (2, X5, uy), u), uy) € V.

Since ClgV is compact and contained in S, if we let ¢ | 7, then the continuity of the
flow yields
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Byt & pup(t+ 0, 1, up (2, 1y, Xo, uy), u),u) €ClgV S 8.

Applying the flow map u, (z, t,,", u,) to both sides of this inclusion, and using the
relation

Hy (s 1y, X5, 13) = pp(2, 0, X, 4y)
we obtain
.”f(t_+ 0,1, ﬂf(t_’ 0, xo, uy), u) € ﬂf(t_a t, Ssup) = p_p(t; — 10,8, (uze)7)-
But by (22) u € 4 implies that
I»‘f(t—"‘ g.1, ﬂf(t—, 0, xo, u,), u) € IntoZ;(x,),
so from Lemma 4.1 we conclude that
et +0,1, pup (1,0, X9, uy), u) € (1, — 1,0, S, (u],,) 7).
Choose a point x5 € S such that
(23) llf(t—+ e d, Hf(t_, 0, xq, Up), u) = p,(t; — 1,0, x;, (uzle)7)-

Because S = NR(x,; g), x5 € Sis normally k*-reachable from x, via g with controls
in %4.,, so the maximality of k* and Thm. 3.7.(b) imply that there exists v € %,
and r > 0 such that

(24) lug(tl_t_ao, X3, (uzlt,)_)=#g (", 0,x1, U)'
From (23) and (24) we infer that
l‘lf(t_+ Q’t_’,uf(t_’ 0’ x07u2)’ u) = #g(r’ O’ xls U)
=p_s(r,0,x,,0v) = pus(0,r, x4, (v],)7)
= xl = “f(r, Oa I‘lf(t + Q, t, Mf(ta 0, xo, u2)7 u)a (U',)_)
= xl = .u’f(r+ t + Q’ t + Q9 I‘lf(t + Qs ts uf(ta Oa xo; u2)’ u)’ (((Ulr)_)|—(t'+g)))‘

Consequently, we have
xl = ,u_f(r + t_+ Q, O’ xO! W),
where w e %, (f) is the control defined by

uZ(t) 1<t,
w(t) = { u(t) t<t<t+og,
(@) ) - =vr+T+o—1) t+eo<t.

Since
Hs (2,0, X0, Xo, W) = p (2,0, Xo, uy) €0, (xo) for0<r<t

and u, v € Ugp, if we set T=r+1+ ¢ and

r* =sup{te[0, T]|u (¢, 0,x0, W)€ 0.5, (xo)}
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(unless 0.9, (x,) = @, in which case we set * = 7 = 0), then r* > 7. Thus we see that
wis a control that steers x,, to x, on the interval [0, 7] with the additional properties
that u,(2, 0, x4, w) is interior to </, (x,) for t e (¢* T], on the boundary of .2/, (x,)
for t € [0, #*), and the restriction of w to the interval [¢* T] is a A-valued, piecewise
constant control. This completes the proof. 0O

Corollary 4.4. If x, € M is such that

Xo € Int ‘Mf (xo I %meas (f)) )
then

‘df(xol%meas(f)) = Intdf(xol%meas(f)) = 'df(xowksl:ep L

Proof. The first equality holds because the assumption that x,, is in the interior of the
attainable set implies that the attainable set is open by Cor. 3.4. Let

Xy € ‘df (%0 | Umeas () = Intdf (%0 | W meas ()

with x; # x,and let w € %,,...(f), T > 0, and t* € [0, T') be as given by the Theorem.
Since ) (xo|%meas(f)) is open, no point on the boundary of .o, (xo|%meas () is
reachable, so statement (i) of the Theorem must be vacuous and we infer that * = 0,
whence w|o 1y is piecewise constant. This yields x; € o/, (x,|%4.,) and consequently

df(xol%meas(f)) L= df(xol%s/:ep) *

The reverse inclusion is obvious, so the proof is complete. O

Corollary 4.5. Let f: M X Q — TM be a C® control system on the n-dimensional
manifold M and letx, € M be such that

Xo € Intdﬂf(xol%meas(f» .
Then NR;!(xo;f) is an open dense subset of o;(Xo|Umeas(f))-

Proof. The proof is very similar to that given in [13; Thm. 4.2]. The openness of
NRZ#(x,;f) was already noted in Rem. 3.6, so we only prove the density here. For
p € N let A” denote the p-fold cartesian product of the countable dense set 4 = Q with
itself and let.¥ = U;"=1 AP; observe that & is countable. For I' = (@, ..., w,) € &
o R ty) = Ere o 2 (xo),

let 2(I') = R? denote the set of elements in R? on which A, is defined, and let 2 (I")
denote the subset of 2 (I') consisting of those p-tuples whose entries are all positive.
Since the positive integer p depends on I', for I' € ¥ we will use |I'| to denote the
unique p € N such that I" € A?. Both of the sets 2 (I") and 2 * (I') are open in R!T! as
a consequence of the fact that the domain of definition of the flow of a differentiable
vector field is open in R x M. With this notation it follows that

A (xo| Ugep) \{Xo} S I‘U.f! he (27 (I)).
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Let ¥ be a nonempty open subset of .o, (xo|%4.p) \{Xo}. Then we have
(25) V=U h(@ )k (V).

e
If for every I'e ¥ the C® map h, has rank <n at every point of the open subset
DT (') Nk (V) of RITI, then the C® version of Sard’s theorem (see, e.g., [9; p. 69])
implies that

he(2* () 0 He (V)

has measure zero in M. From (25) we infer that the nonempty open set V is a
countable union of measure-zero sets, and thus has measure zero. This contradicts
the well known fact that a nonempty open subset of M cannot have measure zero.
Thus for some I' € & and for some 1 € 27 (I') n k! (V') we deduce that 4, must have
rank n at t, so hy(t)€V is normally n-reachable from x, via f with controls
in %4.,. This proves the density of NR; (xo; f) in o, (xo|%4.,) and the proof is
complete. O

We conclude by pointing out that it is still unknown whether the implication
(26) Int 'df (xol%meas (f)) 4: ¢ = NRnA (xO; f) iS dense in Intdf(xoia”mcas (f))

holds for arbitrary C* control systems as defined here (in fact, it is not even known if
Int.of; (Xo | Umeas (f)) *+ O implies NR,! (x,; f) is nonempty). However, variants of the
implication (26) are known to hold certain special cases. For example, if f is real
analytic, then it is known that

NR; (x5 f) = Int.oly (xo| Unmeas (/)

and, moreover, Int o/, (X | % meas (f)) is dense in o7, (X | #meas (f)), Which is a stronger
result than the conclusion of (26) (see, e.g., [7; Rem. 4.12] for the crux of the
argument). It is also known (see [13]) that if fis C* and the control space € has
a countable number of points, then Int .o, (xo|%y.,) + @ implies that NR,(x,; f) is
openand dense in Int.o/; (x| %.,)- Corollary 4.5 provides a modest addition to what
is known about this problem by extending the truth of the implication (26) to the case
where fis C*®, Q is arbitrary, and the initial point x, is interior to the attainable set.
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