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How does a reflected one-dimensional diffusion
bounce back?

Jean Bertoin

(Communicated by Masatoshi Fukushima)

Abstract. For a class of reflected one-dimensional diffusions X on [0, 00), X can be written as
X = N — Bwhere N is a locally of zero-energy additive functional that decreases when X + 0,
and B a real Brownian motion. We express N as a singular integral of the local times of X
and study the excursions of the Markov pair (X, N) away from (0, 0). Some relations between
(X, N) and the Brownian law are discussed. The main result is an extension of a Theorem for
the reflected Brownian motion due to Pitman.

1991 Mathematics Subject Classification: 60J60, 60J55.

1. Introduction and preliminaries

Reflected Brownian motion is the best-known and simplest example of reflected
one-dimensional diffusion process. Perhaps, the most useful tool for its study lies in
its decomposition as the difference S — B, where B is a standard Brownian motion
and S its supremum process (see e.g. Skorohod [S]). The starting point of this paper
is the observation that a similar decomposition still holds for a wilder class of
reflected diffusions which we introduce below.

We refer to It6-McKean [I-MK], Revuz-Yor [Re-Yo] and Rogers-Williams
[Ro-W] for background in one-dimensional diffusions. Consider a convex increas-
ing function s on [0, c0), and let m be the measure on (0, 00) which is absolutely
continuous w.r.t. Lebesgue measure, with density m’(x) = 2/s'(x). We denote by
P = (P, x > 0), the family of probability measures on Q = % ([0, o0),R, ) such that
under [P, the coordinate process X is a regular honest diffusion valued in R, , with
scale function s and speed measure m, 0 being an instantaneously reflecting (entrance
and exit) boundary. Recall that the regularity of 0 forces

[ m@dx)= [ (2/s'(x))dx <co.
0+

0+
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For instance, the special case s(x) = x2~¢, de(0,1], corresponds to the d-dimen-
sional Bessel process; for d = 1, it is simply the reflected Brownian motion. Roughly
speaking, the convexity of the scale function implies that in (0, c0), the process is
attracted by 0, and the hypothesis m' = 2/s’, that the noise is given by a Brownian
motion.

As well-known, (X, [P) is a m-symmetric Hunt process, and we denote by (&, 2(&))
the associated Dirichlet form: 2 (&) is the space of functions f which are absolutely
continuous w.r.t. the scale function, and such that the corresponding density f;
belongs to L2(ds), and

E(LN) = | (f (0)*ds(x).

Recall that the diffusion possesses jointly continuous local times (47: ae R, t > 0),
that is

t

[f(Xpdu= [ f(a)iidm(a)
0 [0, )

for every Borel bounded function f and ¢ > 0, P.-a.s. for every x > 0. In this setting,

the correspondence between o-finite measures g on R, and positive continuous

additive functionals 4* (see Revuz [Re] and Fukushima [Fu, § 5.1]) is given by

A"ty = [ Atdp(a).

[0,)

The canonical decomposition mentioned above is specified by

Proposition 1. (i) The diffusion can be expressed as the difference X = N — B, where
B is a [P-Brownian motion and N is a locally zero-energy additive functional.

(i) Let v be the measure on (0,00) given by v(dx) = s" (dx)/(s' (x))*. Then, for every
t>0,
1 3 a £
Nt = W(XT) A’O = lsllrgl (E‘j;))(/{, = l,)dv(a),

the limit being in IP.-probability for every x > 0, uniform over compact intervals.

(ili) sup{N,:u <t} =sup{B,:u <t} for every t >0, Py-a.s.

Remark. Previously, Yamada [Ya] and Yor [Yo] also represented various Brownian
additive functionals locally of 0-energy in terms of singular integrals of the local
times. See also [Bi-Yo] and [Be-1].

Proposition 1 will be proved at the end of this section. The purpose of this paper is,
by analogy with the case of the reflected Brownian motion, to study not only X, but
the pair (X, N) under [P. One of the motivations for this comes from the following
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crude observation: when X > 0, N decreases so that the diffusion drifts to 0. On the
contrary, when X bounces back at 0, N has to increase instanteously in order to push
the diffusion in (0, 00). Thus, N arises from the compensation of two opposite trends
(this explains why N is expressed as a singular integral of the local times of X in
Proposition 1-ii), and it should be interesting to study this additive functional in
details.

Section 2 introduces the underlying Lévy process 4" obtained after time-changing
N by the inverse local time 7 at 0. Intuitively, what is important is what happens when
X bounces back at 0, that is when the compensation phenomenon occurs, and
informations on .4 provide useful insight for the behaviour of (X, N) when X visits 0.
Of course, it is much easier to study a Lévy process than (X, N), and known results on
A will serve as guideline throughout this paper. Section 3 concerns the excursions of
(X, N) away from (0, 0), i.e. we describe the evolution of (X, N) between two of its
consecutive passage times at the origin, and (eventually) after its last passage time at
(0,0). The description of the excursions with finite lifetime that we obtain here
generalizes the one given in [Be-2] in the case of Bessel processes. When the last
passage time of (X, N) at the origin is finite a.s., we introduce the law Pg of X
shifted at this time under P,, which may also be viewed as being [P, conditioned on
{N > 0}. We show that [P§ can be obtained from [P, by time-reversal as well as by
erasure of the excursion intervals of X on which N takes negative values. Section
4 deals with some relations between on the one hand the pair (X, N), and on the other
hand the Brownian excursions and the 3-dimensional Bessel process. First, we show
that the law of the excursions of X + | N| with finite lifetime is absolutely continuous
with respect to the It0 measure of the Brownian excursions, the density being the
value at lifetime of some additive functional. Our last result extends an important
Theorem of Pitman [Pi-1]: in the case of the reflected Brownian motion (X = S — B),
X + N = 28 — Bis a three-dimensional Bessel process. We obtain here the following
generalization: under P, X + N is again a 3-dimensional Bessel process. This is
perhaps the most surprising result of this paper: previously Rogers [Ro] has proved
that the class of real diffusions X with maximum process M, = max {X,: u < t}, such
that 2M — X is a Markov process is essentially restricted to the Brownian motions
with drift.

Proof of Proposition 1. (i) Since j (1/s' (x))dx is finite, the identity function belongs

locally to the Dirichlet space 2 (é” ). According to Fukushima [Fu, Theorem 5.2.2],
we can express X as the difference X = N — B, where N is a continuous additive
functional locally of 0-energy and B a [P-local martingale. Let u p, be the measure
associated with the increasing process {B) of B. By formula (5.4.1) of [Fu], one has

§ £() pens (dx) = 26 (1d. £, 1d) — £ (12, f)

_2j'f(x) —jfd
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for every function fe (&) with compact support. Thus pug, = m, i.e. (B), =1,
and B is a one-dimensional Brownian motion.

(ii) Set I,(y) = (y —¢)* for ¢ > 0. Observe that I, belongs locally to 2 (&), and that
for every fe 2 (&) with compact support,

(g,00

EUL ) = [ f)dx=F @' Ec+)— | v(@.

By [Fu, Theorem 5.3.2], the locally 0-energy additive functional which appears in the
canonical decomposition of I,(X) is

1
— A= Atdv(a).
S’(8+) t (C:L) t V(a)

On the other hand, by [Fu, Theorem 5.4.3], which can be extended in our framework
to functions which are only €' by parts, the local martingale part of ,(X) is

t
- j I(Xu >8)dBu
0

Putting the pieces together, 7,(X) is a [P.-semimartingale, and its canonical de-
composition is specified by an Ito-Tanaka like formula

t
1
L(X)=1(Xo)— [ 1x,54dB,— [ Adv(@)+——= A
0

(&,) s,(8+)
t
1
“ LX) — [ 1y sudB,+ —— 32— [ (A% —i)dv(a).
e( O) g {Xu>e) u+sr(w) t (E'_L)( t t) v(a)

Note that the increasing process of the martingale B, — {4 1ix, > dB, s [(0.o Af dm(a),
and that this last quantity converges to 0 as ¢ | 0 for every ¢ > 0, IP_-a.s. The assertion
(ii) follows now from Doob’s maximal inequality.

(iii) The local time at 0 being constant over the excursion intervals of X away from 0,
we deduce from (ii) that

1) For every x € R,, N has a nonincreasing path on every excursion interval
of X away from 0, [P,-a.s.

On the other hand, X = N— B > 0, so we have sup{N,:u <t} >sup{B,:u<t}.
Since N is continuous, there is 7 € [0, £] such that N, = sup {N,: « < t}. By (1), we can
choose r such that X, = 0 or r = 0. Thus, Py-a.s., N, = B,, which proves (iii). O

Nota bene. Since N is an additive functional, the law of the couple (X, N) under some
measure is characterized by the law of X alone. We will use this fact without recalling it.
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2. The underlying Lévy process

Informally, it is important to understand how does N evolve when X bounces back at
0. Considering the right-continuous inverse local time at 0, t(7) = inf {u: 1) > ¢},
provides a powerful insight. As well-known, the closed range of 1 is precisely the zero
set of X, and by the strong Markov property, the time-changed process 4" := N, has
homogeneous independent increments under P,. It is a P,-Lévy process. Henceforth,
actd o Ledlers are used as symbols related to A”. Since N has zero quadratic
variation, 4" has no Gaussian component. Moreover (1) implies that 4" has no
positive jumps, because the jumps of A" correspond to the increments of N over the
excursion intervals of X away from 0, and we know that N decreases on such
intervals. One says that 4" is a spectrally negative Lévy process (s.n.L.p.). By
Proposition 1-ii, its Lévy measure is the distribution of the value at lifetime of the
positive additive functional 4¥ under the excursion measure of the diffusion. The
Lévy measure and the characteristic exponent can be made explicit via M. G. Krein’s
spectral theory of strings (see [Be-1]). In particular, one finds

@) Eo (A7) = t/s(0),

which is quite natural viewed from Proposition 1-ii, since E, (4f,) = ¢ for every a.
Note also that, according to (1),

3) ‘/V(A?)sz(t)SMSNg(r)=-/V('1?‘)a

where d(f) = t(A?) is the first zero of X after ¢, and g(¢f) = 1(A? —) is the last zero of
X before ¢. This bound is quite useful in practice, because now N is controlled by
A" which is a much simpler process. Various results in s.n.L.p. can be gleaned from
the literature (see e.g. Bingham [Bin], Prabhu [Pr], and the references therein) and
provide useful information on the Markovian pair ((X, N), [P) via (3). In particular,
one has

Proposition 2.
(i) The point (0,0) is regular for itself w.r.t. (X, N), P) if and only if s'(0) = 0.

(ii) The point (0,0) is recurrent w.r.t. (X, N), P) iff s'(c0) = 0.

(iii) When s'(o0) < o0, lim, | , N, = + o0 [P,-a.s. for every x > 0.

Proof. The origin is regular for itself w.r.t. (X, N), P) iff 0 is regular for itself w.r.t.
A . For s.p.L.p., this holds iff .#" has unbounded variation. By (3), this is equivalent
to N having unbounded variation, and we deduce from Theorem 5.3.2 of Fukushima
[Fu], that N has unbounded variation iff s'(0) = 0.

According to (2), E(.4)) is positive iff s'(c0) <co. In this case, A" drifts to + o,
ie. lim,;,A; =400 as. When s'(o0) =c0, E(A]) =0 and A oscillates, i.e.
limsup, ; ,, .A#; = limsup, ; , — A#; = + 00 a.s. See Bingham [Bin]. In particular, (iii)
follows from (3). Moreover, (3) implies that N oscillates too when s’ (c0) = co. On the
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other hand, by (1), if N, < 0 < N, for some u < v, then X, = N, = 0, where ¢ is the first
passage time of N at 0 after the instant u. This completes the proof of the
Proposition. O

The fact that the excursions from 0 of the underlying Lévy process .#" are the images
of N on the excursion intervals of (X, N) from (0, 0) after the time substitution by the
inverse local time t, is very useful for intuition. As a matter of fact, all the results of
section 3 are closely related to results of [Be-3] on the excursions of s.n.L.p. Recall
in particular that the excursions ¢ away from 0 of a s.n.L.p. with no Gaussian
component and nonnegative expectation necessarly fit one of the two patterns below
(see [Be-3], section 1): let » be the lifetime of ¢, then

4 — if » < 00, then there is a unique € (0, ») such that e is positive on (0, )
and negative on [ 7, »),

—if » = o0, then ¢ is positive on (0, 00).

3. Excursions of (X, N) away from (0, 0)

This section is devoted to the study of the excursions of (X, N) away from (0, 0). Note
that under (P, xe R, ), (X, N) is a Markov additive process in the sense of Cinlar
[C]. Theory of the excursions of a Markov process away from a point has been
initiated by Itd [I]. We refer to Rogers-Williams [Ro-W] and Blumenthal [BI] for
background. We begin with some notation.

3.1. Notation
We introduce
U=inf{t>0:N,=0}, V=inf{t>0:(X,N),=(0,0)}.

According to Proposition 2-i, when s’ (0) > 0, the Markov process ((X, N), [P) visits
the origin on a discrete set of times a.s. We call law of the excursions of (X, N) away
from (0, 0) under [P,, the finite measure n such that s’ (0)n is the P,-law of the process
(X, N),:0 < t< V). It would be more rigorous to indicate the dependance upon
s too, because the scale function of a diffusion is only specified up to an affine
transformation. The normalization has been made for simplicity’s sake, and no one
should worry if our results depend on the choice of s.

When s’ (0) = 0, the origin is regular for itself w.r.t. (X, N), IP), and there is a local
time I at (0,0), i.e. | is a positive continuous additive functional of (X, N) that in-
creases exactly when (X, N) = (0, 0). This local time is unique up to a constant fac-
tor. Denote by 7! the right-continuous inverse of [, and, following Itd [I], intro-
duce the excursion process

e() = (X, N)-14-ysu: 0 Su<I71() =171 (1 —)).
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Under [P, the process of the excursions with finite lifetime (e(z), # <1_) is a Poisson
point process killed at the independent exponential time [, (of course [, = co when
the origin is recurrent). It characteristic measure is denoted by 1, < ,,n. When (0, 0)
is not recurrent, the last excursion e(l,) is independent of the process of the
excursions with finite lifetime. Its law is denoted by n(.|V = o). The law of the
excursions of (X, N) away from (0, 0) under [P, is

h= l(y<m)n+n(-|V= w)/[Eo([w).

3.2. Description of the excursions with finite lifetime

First, we describe the law of the excursions of (X, N) with finite lifetime (see fig. 1). By
(3)and (4), under 1, . ,,, 1, (X, N) has necessarly the following form:the stopping time
U belongs to the open interval (0, V'), N is positive on (0, U) and negative on (U, V).
The statement below is related to Lemma 1 in [Be-3] for s.p.L.p., and extends the
description given in [Be-2] for Bessel processes.

g(u)y U d(u) \ t

Fig.1 Sample excursion of (X, N) away from (0, 0) under 1, _ 7.

Theorem 3.
(i) n(U=o)=nlV=ow)=1/s(x0).

(i) n(Xyedx, U<o)=dv(x)(x>0), n(Xy;=0, U<o0)=0.

(iii) Assume that s'(0) < s’(c0). Then under n, conditionally on U< co and X = x,
the processes

(X,N)y+:0<V=U) and ((X,=N)y-,:0<t<U)
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are independent and have both the same law as
(X,N),:0<t< V)

under P, .
Remark. It follows from (1) that U=V [P-as.

Proof. First, assume that s'(0) = 1. In particular v is a sub-probability measure.
Denote by 4 = A, the p.c.a.f. associated to v:

A= | Adv(a).

(0,)
According to Proposition 1, N, = A? — A4,, and is this setting, parts (i) and (ii) of the
statement are special cases of a Theorem of [Be-LJ].

Since N is an additive functional and Ny =0 on {V'< o}, the strong Markov
property implies that under [P,, conditionally on X = x, (X, N)y,,:0 <t <V —-"U)
is independent of ((X, N),: 0 < ¢ < U) and has the same law as (X, N),: 0 << V)
under [P,. On the other hand, we will prove that

(®) X,:0<t<V) and (X,_:0<1t<V)
have the same law under 1, _ ,, P, .
We deduce from (5) that under 1, ., P,
(X,N):0<V) and ((X,—N),_,:0<1t<V)
have the same law. Recall that U is the unique instant on (0, V') at which N = 0, thus
(X,N)y4:0<t<V—-U) and ((X,—N)y-:0<:<0)
are equally distributed under 1, . ., P,. This proves (iii) when s’(0) = 1, provided
that (5) holds.

Now we prove (5); our arguments are adapted from [Be-2, Lemma 3.1]. Since
s'(0) = 1, A has unit drift and 0 is irregular for itself w.r.t. 4". Introduce for ¢ > 0,
the number of visits of {0} accomplished by .4~ strictly before time ¢, that is
¢, = card{ue[0,1): A, = 0}, and for x > 0, the occupation times

t
LI (1) = [ Ligcu,<ndu.
0

According to the Theorem 1 of Fitzsimmons-Port [Fi-P], we have for 1> 0

lim I} (£)/x = ¢,.
xl0

So, for every nonnegative random function f which is continuous at the instants
when A~ visits {0}, and for every 7> 0, we have
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lim(1/x) [ f@dI} ()= | f@de,
xl0 0,7) (0,T)

Denote by k, the operator “killing at time #*, and by k,, the operator ““time-reversal at
time #”’. Consider a nonnegative continuous functional H on the space of continuous
paths with finite lifetime, and recall that 7 is the inverse local time at 0. Observe that
t+— Hok,, is a.s. continuous at the instants when 4" visits 0 (because the jumps of
A corresponds to the increments of N on the intervals of excursions of X away from
0, and a Lévy process has no jump which starts or ends at zero). We have from above

Eol | Heokyydt]=1lim(1/x) | Eq[H o k,yliseo,xpldt.
(0,T) xl0 (0,T)

On the other hand, the excursion measure of a diffusion is invariant under time
reversal at lifetime (because this holds for the Brownian excursion measure, and the
excursion measure of the diffusion can be obtained from the Brownian excursion law
by change of scale and time, see for instance [Pi-Yo, section (3.3)]). Thus, N being an
additive functional, we have for every 1 >0

Eo[H © ke Lipic0,01] = Eo[H © ke 1ue 0,001

We deduce from above that, if ¢, = card {u € [0, ?): (X, N), = (0,0)}, then
uEO[ I Ho krdcr] = [Eo[ j Ho kt(l)d(l]
(0,) (0;00)

= [EO[ j HDEr(r)d/r] = IEO[ j HOIE,dCt],

(0,00) (0,00)

which establishes (5).

The general case follows by approximation. Fix n > 0 such that v({}) = 0. For every
€ (0,7], denote by dv,(x) =1, ,,dv(x) and by

1
s'(c0)
Introduce the stopping times

S =inf{>0:N, =0 and X,>n},
S,=inf{t>0: N =0 and X,>n}.

N; = A= 7 = AD)dv,(a).

Applying Proposition 1, one shows that the excursion of (X, N®) straddling S,
converges [Py-a.s. in the Skorohod’s topology to the excursion of (X, N) straddling S.
By excursion theory and the first part of the proof,

Po (S, €dx, S, <00) = s'(n)dv,(x),

and conditionally on X, = x, the post-S, part of the excursion of (X, N*) straddling
S, and the reversed of the pre-S, part are independent, and have the same law as
(X, N®),: 0 < t < V) under P, (where ¥, = inf {t > 0: (X, N*), = (0,0)}). Taking the
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limite | 0 and then as# | 0, we get in particular that n (X, € dx, V' < o) = kdv(x) and
n(V =) = (k/s'(c0)) for some k > 0. We can choose the arbitrary factor in the
definition of n such that kK = 1. Parts (i) and (iii) of the Theorem are now proved.
Finally, n(Xy; =0, V<o) = n(U = V< ), and this quantity is necessarily zero
according to the observation above Theorem 3. O

3.3. The last excursion

Now, we study the last excursion of (X, N) away from (0, 0) under [P. By Proposition
2, the only relevant case is when s'(o0) < oo, which will be assumed throughout the
rest of this sub-section. Recall that according to (4), N is nonnegative on the last
excursion interval. Introduce respectively the first and the last hitting times of a € R
by N:

F(a)=inf{t>0: N,=a}, L(a)=sup{r>0:N,=a}.

By Proposition 2-iii, lim,;, N, = + 00 [P-a.s., and we deduce from (1) that for every
a>0, Xp, = Xy, = 0. In particular, L(0) is the last passage time of (X, N) at the
origin.

Denote by Py, the Py-law of (Xp)+.: ¢ = 0). That is, Py is the law of X under
n(.|V = o), or equivalently, n(.|V = o) is the law of (X, N) under Pg. Although
(X, N) is a Markov process under Py and N an additive functional, X alone is in
general not Markovian under Pg. It is a classical result in excursion theory that
IPg can be identified with the conditional law [P, (.| N, > 0 for all # > 0), in the sense
that for every stopping time 7 > 0, the law of (X, N)r,: ¢t > 0) under Pg condi-
tionally on (X, N); = (a, b) is the same as the law of (X, N + b) under P,(.|N = — b).
Note also that the identity Pg = P, (.| N > 0) has a rigorous meaning when s’ (0) > 0
since Py (N > 0) = s'(0)/s"(c0). In particular, Pg = [P, in the case of the reflected
Brownian motion.

We have the following identity via time-reversal between [P, and Pg.

Theorem 4. Assume that s'(00) <oo. For every a>0, the process (X, N)pua)-.:
0 < t < F(a)) has the same law under P, as the process (X,a — N),: 0 < t < L(a))
under P .

Remark. This identity is quite natural from the point of view of the underlying Lévy
process .A4". Indeed, if 2 (resp. 2%) is the law of A" under Z, (resp. #;), then
P+ =P (.| & = 0). With obvious notation, one obtains from Theorem 4 after time
changing by the inverse local time 7 that the law of (@ — A )g4-.:0 < t < F (a))
under 2 is the same as the law of (A;: 0 < t < ¥ (a)) under 2%, This result is stated in
Theorem 1 of [Be-3], and our proof of Theorem 4 merely follows analoguous
arguments. See also Tanaka [T] for a related result for one-dimensional random
walks.
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Proof. In the case of the reflected Brownian motion (i.e. s’ (0) = s’ (c0) = 1), the result
is well known. Indeed, one has N, = 12, L(0) = 0, P§ = P, and F(a) = L(a) = t(a).
The property that (X, —,: t < 7(a)) and (X,: ¢ < 7(a)) have the same law under P, is
an immediate consequence of the invariance of the Brownian excursion law under
time-reversal at lifetime.

. | /
0
G(a) F(a)
a /| \/\//
" MIJ/W l
Fla) L(a)

Fig. 2 Sample path of X(—) and N(—) under [, (top) and Pg (bottom).

We assume henceforth that s'(0) < s'(o0), and denote by G(a) = sup{t< F(a):
(X, N) = (0,0)}, the last passage time of (X, N) at the origin before F(a). We hope that
fig. 2 will help the reader in proceeding through the arguments below. First, we show
that the diffusion time-reversed at G (a), (Xg(,)-:: 0 < ¢ < G(a)), has the same law
under P, as (Xp@g+:: 0 < 1 < L(a) — F(a)) under Pg.

On the one hand, the [P,-law of the excursions of (X, N),: t < G (a)) away from (0, 0) is

(6) 1{N<a)”+n(F(a)<°0)A,

where A stands for the Dirac mass at the cemetery point. On other hand, we know
that the law of (X, N — @)pay+:: ¢ =0) under Pg is the law of (X,N) under
Po(.|N > — a). Recall that N takes negative values on every finite excursion interval
of (X, N) from (0, 0), and is positive on the last excursion interval. Thus, the law of the
excursions away from (0, 0) of (X, N — @)p+.: ¢ = 0) under Pq is

(6) Ins —av<mn+ (Y =00) + n(F(—a) <co))n(.|V = c0).
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According to Theorem 3, the image of 1y« _, y<on by the mapping (X,N)
= (X,—N)y_. is Liycav<oy = Liy<gn. Moreover, since n(F(—a)<oo)
= n(F(a)<oo, V<o), we have n(V=0ow)+ n(F(—a)<ow) = n(F(a) <x). Our
assertion follows from the comparison of (6) and (6').

Denote by Q°, the law of (Xg,)+.:0 < t < F(a) — G(a)) under P,. Since G(a) is
a splitting time for (X, [P,), that is splitting at G(a) produces two independent
processes under [Py, and F(a) a splitting time for (X, [Py ), all what we need to prove
now is that the law of X time-reversed at F(a), (Xp(,-.: 0 < t < F(a)), under Pg is
again Q°.

By excursion theory, Q° is the law of (X,: 0 < ¢ < F(a)) under n(.|F(a) < o). Recall
that X, = 0. Conditioning respectively by ¥ <oo and by V' = oo, we obtain that

(7) (1) Q°is the law of (X,: t < F(a)) under n(.|F(a) < V < 0).
(i) Q° is the law of (X,: t < F(a)) under n(.|F(a) < V=) = Pj§.

According to Theorem 3, (X, —N),_,: t< V) and ((X, N),: t < V) have the same
law under 1 < .,n. Applying the additive property of N, we get from (7-i) by time
reversal that Q° is also the law of (X, _,: t < L(—a)) under n(.|L(—a) < V' <o0).
By the additive property of N and excursion theory, this is the distribution of
(Xp@-+: t < F(a) — G(a)) under P,. Recall that, by definition, Q® is the the law of
(XG@+:: 0 < t < F(a) — G(a)) under [P,. Thus Q" is invariant under time-reversal at
lifetime. Finally, by (7-ii), the law of (Xp)-,: 0 < t < F(a)) under Pg is Q°, and
Theorem 4 is proved. O

We also deduce

Corollary 5. Assume that s'(o0)<oo. For every a=>0, the processes
(X,N),:0<t<L(a)) and (X,a — N)p@a-.: 0 < t < L(a)) have the same law under
Py- :

Proof. Under P,, ((X,N — a@)p@y+::0 <t<L(a)— F(a)) has the same law as
((X,N),: 0 < t < L(0)), and (by Theorem 3) as (X, — N)p0)—.: 0 < t < L(0)). Recall
that L(0) is a splitting time for ((X, N), P,) and that (Xp)+.: # > 0) has law Pg.
The Corollary follows now from Theorem 4. O

Finally, we identify P with the [P-law of the process obtained after erasing the ex-
cursion intervals of X away from 0 on which N takes negative values and then closing
up the gaps. Recall that N takes only non-negative values over the interval of excur-
sion of X away from 0 straddling u iff Ny, > 0 (Where d(u) = inf {v > u: X, = 0} is
the first zero of X after u), and introduce

T(¢) = inf{u >0: j' Ly a0y @0 > 8
0
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We state
Theorem 6. Assume that s'(00) < oo. Under Py, the process (Xr,: t > 0) has law Pg .

Proof. Let g(U) be the last zero of X before U. By the description of the excursion of
(X, N) away from (0, 0), on each excursion of (X, N), erasing the excursion intervals of
X alone away from 0 on which N takes negative values is erasing the part (g(U), V).

Recall that Xy, = 0 for every a >0, Py-a.s. According to the strong Markov
property and the additivity of N, for every ae(0,00) and a’€(0,00], under P,,
(Xp@y+:: t < F(a+ a’) — F(a)) is independent of (X,: t < F(a)) and has the same law
as (X,: t < F(a')). We deduce from Theorem 4 that, if (Y,: < {) and (¥;: ¢t < (') are
two independent processes having respectively the same law as (X,: t < L(a)) and
(X,: t < L(a")) under P§,and if Y © Y’ is the process obtained after pasting Y and Y’
together

rin ) TLE) if t<{
Yore= { Y(t—0) ift>0
then
(8) Y © Y’ has the same law as (X,: 1 < L(a + a')) under Pg.

On the other hand, by Theorems 3-iii and 4, under n, conditionally on N, = a,
we have that g(U) = L(a) holds, because N decreases after g(U). Note that N, > 0
holds for ¢ < g(U). Then (X,: t < g(U)) as the same law as (X,: ¢t < L(a)) under Py .
The Theorem follows now easily from (8) and the independence of the excurs-
ions. O

A similar construction (and cheaper if one wisher to spare the rubber) consists in
erasing only the excursion intervals of X away from 0 during which N crosses its
previous minimum: set

T,(t) = inf{u > 0: J- 1(3rsv:N,<N¢(u,)dv > l} .
0

We have
Theorem 6. Assume that s'(c0) < oo. Under Py, (X1y: t = 0) has law Pg .

This results is the analogue of Pitman’s Theorem for spectrally negative Lévy
processes with no Gaussian component [Be-3, Theorem 2]. Indeed, in terms of the
underlying Lévy process .4, erasing the excursion intervals of X on which N crosses
its previous minimum is deleting the jumps of A" across its previous minimum. The
proof of Theorem 6’ is similar to the proof of Theorem 6.
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4. Some relations with the Brownian motion

We did not make use yet of the fact that the martingale part of (X, [P) is a Brownian
motion. This property, combined with the results of the previous section and
Proposition 1-iii yields interesting links between ((X,N),P) and the Brownian
motion. The first relation relies on the description below of the 1t6 measure of the
positive Brownian excursions which extends a result of Bismut [Bis]. This de-
scription can be obtained along the same lines as in [Bis], and the proof is left to the
reader. Pitman [Pi-2] has related results.

Let P! be the law of a Brownian motion starting at x and killed at 0 and n* be
the law of the excursions of a reflected Brownian motion away from 0, i.e.
n*=lim, ,(1/x) P! (see e.g. [Pi-Yo]). The jointly continuous local times (if)
correspond to the choice s(x) = x, dm(x) = 2dx for the scale function and the
speed measure. Denote by A4°, the additive functional associated to the measure v,
ie. 4} = j(o‘m,if dv(a) for t < {, where ( the lifetime of the excursion. Note that
A, < oo n*-as. since [, s(a)dv(a) < co. Introduce the measure n**¥ on [0, 0) x Q
given by dn*V(t, w) = dA}dn"* (w), and the measure Q" on R, X Q X Q given by
dQ"(x, w, w') = dP} (w)dP} (w')dv(x). Finally, consider the path transformation

wl—0 if t<{={(w)

(w,0)— Yo O v, Vw@w’(t)={w,(t_c) if 1> ¢ ,

where { is the lifetime of w. Roughly speaking, Yo © @’ is obtained after
time-reversing o at lifetime, and then pasting w’. The extension of Bismut’s
Theorem 1.2 is

) Under QV, the law of ({,"w © @) is n*".

We claim

Theorem 7. Under 1,y < .\, the law of (U, X+ |N|) isn*".

Proof. Let d = inf {t > 0: X, = 0} be the first hitting time of 0 by X, and Supp(v)
be the topological support of v in (0,00). Take x € Supp(v). We deduce from
Proposition 1 that N takes negative values immediatly after the origine of times,
and from (1) that N, <0 for all e (0,d] P,-a.s. Hence B, = N, — X, is negative on
[0,d] IP.-a.s. Moreover, B; = N,, and it follows from Proposition 1.iii and the
additivity of N that U, the first hitting time of 0 by N, coincides with the first hitting
time of 0 by B, P-a.s. Thus, under P, (X — N),: ¢t < U) is a Brownian motion
starting at x and killed at 0.

Applying Theorem 3, we get that under n(.|X, = x, U<o0), the processes
(X—=N)yy:t<V—-U) and (X + N)y_,: t<U) are two independent Brownian
motions starting at x and killed at 0. Since n(Xyedx, V<o) =dv(x), this
establishes the Theorem by comparison with (9). O
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This Theorem can be used for instance to compute the law of L(0), the last passage
time at 0 for N, under P,: when s'(00) < 00, one finds
2 ©
n <1 —exp {— 9(2— V}) = (1/5'(00)) + 2a | e'Z“"—di
0

s'(x)’

and from the formula for Laplace transforms of additive functionals in excursion
theory, one gets

az , ] ax dx -1
[E0<exp{—7L(O)}>=<1+2(xs(oo)j(;e 2 m) ;

The most interesting relation between ((X, N), IP) and BM is the following extension
of Pitman’s Theorem [Pi-1] (which was recalled in the Introduction). Our approach
follows the exercise 4.15 in chapter VII of Revuz-Yor [Re-Yo].

Theorem 8. Assume that s'(o0) <oo. Under Py, X + N is a 3-dimensional Bessel
process.

Proof. Fix a> 0. According to Theorem 4, the law of ((X + N),: t < L(a)) under
Po is the same as the law of (X — N+ a@)pg)-: 1 < F(a)) under P,. But by
Proposition 1.iii, under Py, (X — N + a@)p@)-. = @ — Bg(,-. is the time-reversed at
the first hitting time of 0 of a Brownian motion starting at a. According to Williams
[W, Theorem 3.4] this last process is a three-dimensional Bessel process killed at its
last passage time at a. We simply need take the limit as aToo. O

Remark. It is not known whether X can be reconstructed from X + N (in the case of
the reflected Brownian motion, the answer is positive).

5. Extensions

Let us briefly recall the key tools in this study, and examine how our results can be
generalized. Concerning the excursions of (X, N), the speed measure plays no role at
all, and by change of time, section 3 can be extended to arbitrary speed measures
(provided that 0 remains a regular entrance and exit boundary). More generally,
the description of the excursions of (X, N) essentially relies on properties of the
underlying spectrally negative Lévy process .4". The same argument yields analogous
results when X is just a Hunt process starting from a regular recurrent point 0 and
N an additive functional of X which can be expressed as the difference between the
local time at 0 and a p.c.a.f. associated to some sub-probability measure on the state
space. In this setting, the dual process X (obtained by time-reversing each excursion
of X away from 0) appears in the description of the excursion law of (X, N). See
[Be-LI].
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In the definition of the law Pg, it has been more convenient to assume that
lim,;,, N, = + o0 Py-a.s. (in order to apply the last exit decomposition). However, by
the very same arguments as in [Be-3], the formal definition Pg = P, (.| N > 0) can be
made rigorous even when N does not tend to + co. The corresponding statements
in sections 3 and 4 are unchanged.

Concerning the relations of (X, N) with the Brownian excursions and the 3-dimen-
sional Bessel process, the key observation is that sup {N,: u <t} =sup{B,:u <t}
for every ¢, Py-a.s. We applied identities of Bismut and Williams related to the law
of a Brownian motion killed at some first hitting time. The fact that B is a Brownian
motion is crucial, and results of section 4 cannot be generalized to arbitrary speed
measures.
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