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SOME DIOPHANTINE FORMS OF GODEL’S THEOREM *

Verena H. Dyson, James P. Jones, and John C. Shepherdson

1. Introduction

Godel’s famous incompleteness theorems [6] are often formulated in terms of
R.M.Robinson’s theories R and Q (see [13]), the theory PA (Peano Arithmetic) or
A.Cobham’s fragment R, (described in Vaught [14]). For these theories we have
Ry CRCQCPA. So a very general form of Godel’s first theorem is the following :

Godel’s Incompleteness Theorem. Let T be any axiomatizable w-consistent exten-
sion of R,,. Then there exists a sentence S of elementary number theory such that S is
undecidable in T.

Godel’s proof is constructive and such a sentence may in principle be written
down. But if one were to follow the procedure implicit in the proof, then the
sentence S would be extremely long. Of course by Godel’s second theorem on
consistency we can (at least if PAC T) take the statement Con,. for S. But Cony is
also arithmetically very complicated. A simpler example for the case T=PA would
be the undecidable statement of Paris and Harrington [9]. This is a combinatorial
statement, very distinguished by its clear mathematical content, although still very
complicated if written arithmetically.

In this paper we establish the undecidability, in various theories, of a certain
arithmetical statement constructed earlier by one of the authors, Jones [7].
Although the mathematical content is not so readily understood, the sentence has
a simple arithmetical form. In fact it is equivalent to a diophantine sentence.

Theorem 1. Let T be any axiomatizable w-consistent extension of R,. Then there
exists a non-negative integer n such that the following sentence, S(n), is undecidable
inT:
Jab¥i_AswpqVjvIeg {(s+w)* +3w+s=2iA ([j=wAv=q] v[j=3iArv=p+q]
vij=sAw=pv(i=nAav=q+n)]v[j=3i+1Av=pq]l—a=v+e+ejb
Av+g=jb)}.

* Eingegangen am 6.7.1979.
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The above formula, S(7) is written in prenex normal form. There are eleven
quantified variables in the prefix; a, b, i, s, w, p, q, j, v, e, g. These are understood to
range over the non-negative integers. The matrix of S(n) contains the logical
symbols “A” (and), “ v ” (or), and “—” (implication). Since the associative laws are
not provable in R,, we ought to indicate the bracketings of sums and products.
But it will be seen that it makes no difference how this is done.

The proposition S(#) also contains a numeral, 7. The value of n depends upon T.
The theorem is that for any theory T a suitable value of n may be found. For
example, for some value of n, S(71) is undecidable in Peano Arithmetic, PA. For
some other value of n, S(n) is undecidable in ZF, etc.

It would be interesting to know an actual specific value of n for which S(n) is
undecidable in PA. We have not yet been able to do this. Perhaps the least such n is
very large. But in the case of R, R or Q we can give such an n, namely n=1. [It
follows from [7] that S(1) is false in classical arithmetic. But in Section 4 we
construct a model M for Q in which S(1) is true.]

In addition to this example of an arithmetical incompleteness, this paper also
contains some more general results about diophantine forms of the Godel-Rosser
theorem. In particular we produce a number theory S, a good deal stronger than
0, in which MatijaseviC’s theorem is provably not formalizable.

2. Proof of Theorem 1

The theories R, Q, and PA are defined in [13, pp. 51-53]. The theory R, is
essentially R with the axiom schema Q. deleted (see [14]). We shall use the
notation of [13] with the exception of using 7 for the numerals 4,

The sentence S(n) was first constructed in the paper of Jones [7] where it was
proved to have the property

(2) ne W<S(n) (for all n).

Here W,, W,, ... is a list of all recursively enumerable sets of non-negative integers.
(This result, (2) was based on an idea of Julia Robinson [10] and the solution of
Hilbert’s tenth problem by Yu.V.Matijasevi¢, Julia Robinson, Martin Davis, and
Hilary Putnam [3, 8].)

Since the universally quantified variables j and v of S(n), are given a finite number
of explicit values, it is clear that for each fixed n, S(n) is provably equivalent to an
existential sentence. That is, for each fixed n we have

3) [Ro S 3xX 1, X5, ooy X, L (X1, X5 -3 %),

where & and k both depend upon n. (& is a conjunction of 7n+9 polynomial
equations and k=10n+4.)

Our proof will use (2) and (3) but no other properties of S(n). Hence the result will
hold for any sentence with these two properties, in particular for the existential
sentence associated with any universal diophantine equation.
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Now by (3), for each fixed n we have
4) Sm) = g, L (g, n,,...1)  (foralln,n,, .. n).

This is because R, proves (disproves) any substitution instance of correct
(incorrect) equations. For the same reason we also have

(5) S(n) = Ig,S(m)  (for all n).

Now if T is an axiomatizable theory, then the set {n: | 11S(n)} is recursively
enumerable. Hence by (2) an index n, exists such that

(6) S(7o) <= r T18(n,) .

According to (5) and (6), S(7,) implies the inconsistency of T. Therefore —1S(7,),
and so by (6) }& 15(n,). Also by (4)

(7 b Ly, 0y, ...0) (for all ny,n,, ... n,).
It follows from (3) that 7 S(7,) would imply
8) B X, Xos oo X LAX 15 X gy o0 Xp).

Conditions (7) and (8) constitute what might be called an instance of an

“w*-inconsistency”. Hence the proof will be completed by establishing the

following lemma.
Lemma. Suppose R,C T If T is w-consistent, then T is w*-consistent, for all k.

Proof. Suppose we could find a formula &(x,, ..., x,,z) with the two properties

9) b VX, o X (P(Xy, - X)X SMA . AX,S), for all m,
and
(10) br VX, o X 32D(X 4, .oy Xy, 2).

Then given any &(x, ..., X,) satisfying (7) and (8), we could define #'(z) by
(11) FL'(2)=3xp, - X (P(X 5 -0y Xpo Z) A L(X 4, - %))

Then (7) and (9) would imply b —1%'(fn), for every m, whereas (8) and (10) would
imply that |r3z%7(z). Thus the problem is reduced to finding a formula
D(x,, ..., X, z) satisfying (9) and (10). This is not difficult if T2 PA. We may simply
take @(x,,...,X;,z) to be x; SzAx,SzA ... AX =z It is also not difficult when
T2Q. We may then take ®&(x,,...,X;,2) to be (...((x; +x,)+x3)+..)+x, =z
However, given only T2R, the problem is more difficult. In this case we find it
necessary to first define x<'y by x<yv 71y<x. We then have

Fx<'x, FxZ'yvys'x and |gxs'n—>x=n.
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For &(x,, ..., x;,z) we may then take the formula ¢(x,, x,, ..., x;, z), defined by

—_ / ’ ’ ’
P(Xq, -y Xp 2) = \{Txamé X52) A Xg(2) = Xg3) A oo AXgom 1y S Xgg A Xy =2 -
(43

Here IT denotes the set of all permutations of {1,2, ..., k}. It is a straight forward
exercise to check that the formula ¢(x,, ..., x,,2) has properties (9) and (10) for
T=R.

To construct a formula &(x, x,, ..., X,, z) such that conditions (9) and (10) hold for
T=R,, we first define an auxiliary formula N(x) by writing

N(x) = 0= x A (V) (y S x—S() S x v xS S().
Here S(y) denotes the successor of y. Now it is not difficult to see that for each n
kR,N@), IgNx)—>(x=nvn=x), and [gN(x)>(x<n—>x=n).
Hence for &(x,,x,, ..., x;,z) we may take the formula
N(@Z)->Nx)ANX)A . AN A QXX -0 Xy Z),

where ¢ is given by (12). This completes the proof of the Lemma and hence the
proof of Theorem 1. As a corollary we have

Corollary 1. Let T be any axiomatizable w-consistent extension of R,. Then some
diophantine sentence is undecidable in T.

By a diophantine sentence we have in mind a statement of the form dx,,
Xgy ooy Xp(P(X 1, X5, ..y %) =0(xy, X5, ..., X,)) where P and Q are polynomials with
non-negative integer coefficients. The theory R, is not strong enough to prove the
usual equivalence of single equations with conjunctions and disjunctions of
equations. Thus an existential sentence, such as that in (3), is not necessarily
equivalent in R, to a diophantine sentence. Nevertheless, there is no reason why
we cannot begin with such a sentence initially. Properties (2) and (3) were all that
we required in the proof of Theorem 1.

3. Decision Problem for S(n)

It follows from (2) that S(n) is also undecidable as a predicate, in the recursive sense
that there exists no algorithm to determine the truth or falsity of S(n) for general n.
The same is true as regards the decision problem for provability of S(n). It follows
from (3), (4), (5) and w-consistency that

(13) S(n)y<>tr S@)  (for all n).

Hence the provability of S(77) in each w-consistent extension of R, is undecidable.
We shall see in the next section that the w-consistency hypothesis is very
important here. It cannot be replaced by simple consistency.
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Remark. If we take T=Q in (13) and let 2 denote the logical conjunction of the
seven axioms of Q, then we obtain

(14) S(n)y<=2-S(n).

Thus we obtain a visualizable form of Church’s theorem. There is no decision
method to decide the logical validity of 2— S(#), for general n.

4. Rosser Form of Theorem 1

In 1936 J.Barkley Rosser [11] obtained a famous strengthened form of Godel’s
Incompleteness Theorem in which Gddel’s w-consistency hypothesis was replaced
by the weaker hypothesis of (simple) consistency. One might suppose that this
would be possible in our Theorem 1. However it is not. Theorem 1 is false with this
change, even if we replace R, by R or Q. For we can prove.

Theorem 2. There is a finitely axiomatizable consistent extension D of Q in which all
diophantine sentences are decidable.

Proof. Consider a slight variation on the nonstandard model for Q given on p. 55
of [13], viz the cardinal numbers O,1,2,...,00, with + and - interpreted as
cardinal addition and multiplication and S(o0)=oo. Call this model M. Every
diophantine equation P(x, ...,x,)=Q(x, ..., Xx,) has a trivial solution in M unless
P or Q are polynomials of degree zero. To obtain D it is enough to add three
axioms to Q.

DIVx, x+y=y+x), (D)Vx,y(xy=yx), (D;)IzVx(x+z=2).

Call this theory D. (It is w-inconsistent.) From axioms D, D, and the axioms
of Q, one can prove x<x+y and y<x+y. Furthermore one can prove that
y+0—->x=<xy. Here we are using the definition of < given in [13]. Therefore
sentences of the form 3x, ..., x,(P(x,, ..., x,) =) are always decided correctly by
D. Sentences of the form 3x,, ..., x,(P(x,, ..., X,) =0(x, --.., X,)), where both P and
Q are polynomials of positive degree, are always provable in D. This follows from
the fact that an infinite element, oo [forced to exist by (D,)], has the properties
X+0=0+x=00, S(0)=00, and (for x+0) xoco=o00x=00. Theorem2 is
proved.

Although the usual equivalence of conjunctions and disjunctions of equations to
single equations is not provable in D it is not difficult to see that existential
quantifications of such formulae are also decidable in D, i.e. Theorem 2 holds with
this more general notion of diophantine sentence. On the other hand, sentences of
the form

3%,y ey X [P(X s s X)) = O(X 15 s X)) A R(X, oo X)) £ 8(X4, -, X,)]
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are not in general decidable in D. However if we drop the condition of finite
axiomatizability then we can obtain an extension of Q in which all existential
sentences are decidable, including now as existential sentences, those with 1, A,
v, —,and < in the matrix, as well as =, +, -, 0, and 1. In fact we can obtain such
an extension of a theory far stronger than Q. We call this theory S.

The theory S is an elementary number theory essentially intermediate in strength
between Q and PA. The theory S could be formulated in such a way that
Q CSCPA although we prefer to use here as nonlogical symbols 0, 1, +, -, =, <
instead of 0, +, -, §, =, traditionally associated with Q. The axiom system of S
consists of the usual axioms of equality together with the following 21 sentences
(not independent).

1) x+y)+z=x+(+2) (11) xz=yz—=>(x=yvz=0)
(2) (x-y)-z=x-(y-2) (12) 1 (x<x)

3) x+y=y+x (13) x<yAy<z—-ox<z
4) x-y=y-x (14) x<yvx=yvy<x
(5) x(y+2z)=xy+xz (15) x=0vO0<x

(6) x+0=x (16) x<yex+z<y+z
(7) x-0=0Ax-1=x (17) OFzAx<y—xz<yz
8) x+y=0-x=0Ay=0 (18) OFz—-3Ix(z=x+1)
9) xy=0-x=0vy=0 (19) 3z(z*£x<(z+1)?)

(10) x+z=y+z-x=y
(20) X, =X, Ay, =y, OXI+x3+yi+yi=2x,x,+2y,y,

(21) x;=x, VY, =y, X1y +X,), =1 X, +X,¥,.

The theory § is considerably stronger than Q. For example the axioms imply
embeddability into an integral domain. Also axioms (20) and (21) imply that
conjunctions and disjunctions of equations are equivalent to single equations.
However the theory S is still not strong enough for the existential Godel-Rosser
theorem (and not strong enough to formalize the bounded quantifier theorem
through to the Pell or Fibonacci development). For we can prove

Theorem 3. There is a consistent axiomatizable extension of the theory S in which all
existential sentences are decidable.

Proof. As we are giving up the property of finite axiomatizability (possessed by the
Theory D), it is clearly enough to produce a model M, for S such that the set of
existential sentences true in M, is recursive. The model M, will be a certain subset
of the positive elements of a real closed field. It is closely related to the model M,
of Shepherdson [12]. It was noted there, in [12], that the field R, of formal
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fractional power series in ¢!, i.e. expressions of the form
atPita, PV ta ta_tTVata_ T4

with real coefficients (p,q being natural numbers with g>0) is real closed. The
ordering of R, is the non-archimedean one determined by saying that ¢ is infinitely
large. We take the set of elements of M, to be the subset of R, consisting of all
elements with p>0 and a,>0, together with all natural numbers g, (i.¢. all natural
numbers and all elements greater than all natural numbers). Addition and
multiplication are defined in M, as in R,. Clearly this gives a model for S. We now
complete the proof by giving an effective method for deciding which existential
sentences are true in M.

Note that the ordering of M, is not the usual one defined in Q by

xSye@w)(w+x=y);

for example t<t+13, but since } is not in M, we do not have 3w)(w+t=t+1).
However we shall allow < as well as +, x to occur in what we call existential
sentences, i.e. these are of the form

X, o0 X, DX 45 -0 X)),

where ¢ contains no quantifiers but may contain < as well as +, x,0,1, =, A,
v, 71, =, and ©.

Now let ¢(x) be a formula (not necessarily quantifier free) containing only x free.
The Tarski decision method allows us to replace ¢(x) by a quantifier free formula
x(x) which is equivalent to it in all real closed fields. The formula y(x) may be taken
to be a Boolean combination of atomic formulae of the forms

a(x)=0, a(x) >0, where o is a polynomial with integer coefficients.
Now if ay, ..., a, are integers and a,+0 and we put
N,=laol+ ... +la,]
then, for x=N,,
wx)=a,+ax+...+a,x"

is of the same sign as a,, i.e. a(x)=0, a(x) >0 are of constant truth value for x= N,
So if we define N, to be the maximum N, for all a occurring in x, and finally put
N,=N, we have

(3x) p(x)=(3x) 5, ()

is true in all real closed fields, the bound N, being computable from ¢.
The decision method for truth of existential sentences 3x;, ..., x,@(x,, ..., x,) is now
defined by induction on n.

n=0. In this case ¢ has no variables and is a Boolean combination of numerical
formulae whose truth value can be computed (it is the same in M, as in N).
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Inductive Step

Let @3x,, ..., x,d(x;, ..., X,).
Use the Tarski decision method to see whether

(17) (Vz)(3@xy...x,) (P(Xy, - s X)AX, >ZA L AX,>2)

is true in all real closed fields. If so then it is true in R, so taking z=t we see that @
is true in M, (since all elements of R, which are =t are in M ;). Now ¢ is quantifier
free, so if it holds in R, for elements x,, ...,x, of M, it also holds in M, for these
elements. Now if (17) is not true in all real closed fields then

(18) (3Az) (Vx;..x,) (D(xy, .. X,) 2 X, SzV ... VX, S2)
is true in all real closed fields, in particular in R,. Use the remark above to compute
N so that
(Fz) (Vx4 .. x) (D(xy, - X)X S2ZV ...V X, S2)
1.e.
(V... x,) (P(xg, X)X, SNV ...vX,SN)

is true in all real closed fields, in particular R,. Since it is a universal statement it

will also be true in M.
So,in M,

Pe3dx, ... x,P(xq, ..., X,)

«>

(@xy, o X )G, X505 -0 X))V oo VEX L, o X )P(X s o Xy 15]) -

L
g<z

But, by the induetion hypothesis we can decide the truth in M, of this last
sentence, hence that of @. Theorem 3 is proved.

We have just seen that the Rosser form of Theorem 1 (and its Corollary) is false
even if R, is replaced by a theory S, a good deal stronger than Q. But relying on
unpublished work of Pridor and Julia Robinson we can show that the Rosser form
of Theorem 1 is true if R, is replaced by PA.

Theorem 4. Let T be any consistent axiomatizable extension of PA. Then some
diophantine sentence is undecidable in T.

Theorem 4 follows immediately from the next two lemmas.

Lemma 1. Let T be any axiomatizable consistent theory in which each recursive set is
numeralwise definable by one of the formulas ®,(x) (where the Gddel number of
& (x) is a recursive function of n). Then for some n, ®,(n) is formally undecidable in
T.

Proof. Suppose not. Suppose that for each n, @,(n) is decidable, i.e. provable or
refutable in T.Put V={n: |y 71®,(n)}. Then V is an r.e. set. But the complement of
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V is also r.e. So V is a recursive set. Hence there exists n, such that @, (x) defines
Vin T If nye ¥ then | @, (n,), so not |z 19, (n,) and hence ny¢V. If ny¢V, then
lr 1@, (ny), so nye V. Hence a contradiction is obtained.

Lemma 1 is proved.

Lemma 2. Every recursive set is numeralwise definable in PA by a diophantine
formula.

Proof. If A is a recursive set, then 4 and A are r.e. sets so by Davis et al. [3] and
MatijaseviC [8] there exist polynomials P, Q, P’, and Q' (with positive integer
coefficients) such that for all natural numbers a, both

(19) ae A<>3x,, ..., x,(P=0Q),
and
(20) ae /-1©Ely1, s V(P =Q).

(Using a universal diophantine equation P, Q, P’, and Q' can be found uniformly
for A.)

Now it is not difficult to understand (see e.g. [1, p. 340, Theorem 7.10]) that A is
then numeralwise defined (in fact in R) by the formula

(21) 3z[(@xy, - X) < (P=Q) A (YY1, -, V) <P+ Q]

Formula (21) is a diophantine analogue of the Rosser trick [11]. Now using
pairing functions and replacing the predicate P'+ Q' by Ay[(P'—Q’)*=y+ 1], one
finds that (21) is provably equivalent in PA to a formula of the form

(22) 3z[(@xy, - X,) < AP=Q) A (YY) < pi) (Y15 -+ ¥a) AV (P'=Q)],

where there is only one bounded universal quantifier and P, Q, P, Q', and F are
polynomials with positive integer coefficients.

Now Julia Robinson has given a proof of (a modern version of, cf. [4]) the
Bounded Quantifier Theorem of [3], by induction (unpublished). Also Pridor (see
[5]) has shown that the Bounded Quantifier Theorem (and concomitant factorial
to binomial coefficient to Pell or Fibonacci number development) is provable in
PA. This result is also claimed in Carstens [2]. Relying on these results, it follows
that the right conjunct of (22) is provably diophantine and hence that it may be
replaced by an existential formula. (Theorem 3 shows that no such formalization
can be carried out in the theory S.)
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