

Werk

Titel: On some inequalities connected with Fermat's equation.

Autor: Bialek, Krystyna

Jahr: 1988

PURL: https://resolver.sub.uni-goettingen.de/purl?378850199_0043 | log20

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Now, from ((10); (iii)) we have

$$\{\csc^2 \omega\}^2 = \left\{ \sum_{i=1}^3 \csc^2 \alpha_i \right\}^2 \le 3 \sum_{i=1}^3 \csc^4 \alpha_i.$$
 (15)

Thus the right-hand side of (14) is positive; it is zero if and only if $\alpha_1 = \alpha_2 = \alpha_3$. It follows that the right-hand in (9) is greater than or equal to $3/\omega$ with equality if and only if $\alpha_1 = \alpha_2 = \alpha_3$. This finishes the proof of Theorem 1.

We end this note by remarking that a straightforward application of Holder's inequality on (7) gives

$$\frac{3}{\omega^{\lambda}} \le \sum_{i=1}^{3} \frac{1}{(\alpha_i - \omega)^{\lambda}} \tag{16}$$

for every $\lambda \ge 1$.

Faruk Abi-Khuzam American University of Beirut, Lebanon

REFERENCES

- 1 Abi-Khuzam F.: Proof of Yff's Conjecture on the Brocard Angle of a Triangle. El. Math. 29, 141-142 (1974).
- 2 Abi-Khuzam F.: Inequalities of Yff-type in the Triangle. El. Math. 35, 80-81 (1980).
- 3 Abi-Khuzam F. and Boghossian A.: On Some Geometric Inequalities, to appear.
- 4 Johnson R: Advanced Euclidean Geometry. Dover Pbl., N.Y. (1960).
- 5 Mascioni V.: Zur Abschätzung des Brocardschen Winkels. El. Math. 41, 98-101 (1986).
- © 1988 Birkhäuser Verlag, Basel

0013-6018/88/030078-04\$1.50+0.20/0

On some inequalities connected with Fermat's equation

1. Introduction

In 1856 I. A. Grünert ([3], see also [6] p. 226) proved that if n is an integer, $n \ge 2$ and 0 < x < y < z are real numbers satisfying the equation

$$x^n + y^n = z^n \tag{1}$$

then

$$z - y < \frac{x}{n}. (2)$$

This result was rediscovered by G. Towes [7], and then by D. Zeitlin [8].

In 1979 L. Meres [4] improved the result of Grünert, replacing (2) by

$$z - y < \frac{x}{a}$$
, for $a = n + 1 - n^{2-n}$, $n \ge 2$. (3)

In [1] we improved the result of Meres, replacing (3) by

$$z - y < \frac{x}{n+1}, \quad \text{for } n \ge 4. \tag{4}$$

Fell, Graz and Paasche [2] have proved that, if equation (1) has a solution in positive integers x < y < z, where $n \ge 2$, then

$$x^2 > 2y + 1. (5)$$

We mention also the result of Perisastri (1969): $z < x^2$ ([5]; [6] p. 226). In this paper we establish the following theorems, which improve (4) and (5).

Theorem 1. Let k be a positive integer. If

$$n > [(2k+1)C_1], \quad C_1 = \frac{\log 2}{2(1-\log 2)}$$

and if equation (1) has a solution in real numbers 0 < x < y < z, then

$$z - y < \frac{x}{n+k}. (6)$$

Theorem 2. If n is an integer, $n \ge 2$ and if equation (1) has a solution in real numbers 0 < x < y < z, then

$$z - y < \frac{x}{n}C(n)$$
, where $C(n) = \log 2\left(1 + \frac{C_2}{n}\right)$, $\frac{\log 2}{2} < C_2 < \frac{\log 2}{\sqrt{2}}$. (7)

Theorem 3. If equation (1) has a solution in positive integers x < y < z for some n > 2, then

$$x^2 > 2z + 1. (8)$$

2. Proof of the Theorems

Proof of Theorem 1. If x, y, z are real numbers satisfying (1) for some positive integer n, and such that 0 < x < y < z, write

$$x = \delta y$$
 with $0 < \delta < 1$.

Hence by (1) we obtain

$$z=\left(\delta^n+1\right)^{\frac{1}{n}}\cdot y$$

and

$$z - y = \frac{\left(\delta^n + 1\right)^{\frac{1}{n}} - 1}{\delta} \cdot x. \tag{9}$$

Since the function

$$t \mapsto \frac{\left(t^n+1\right)^{\frac{1}{n}}-1}{t}$$

is increasing for 0 < t < 1, (9) implies

$$z - y < (2^{\frac{1}{n}} - 1) \cdot x \,. \tag{10}$$

For each k > 0 there is an $n_0(k)$ such that

$$(2^{\frac{1}{n}} - 1) < \frac{1}{n+k}$$
 for $n \ge n_0(k)$, (11)

since

$$\lim_{n\to\infty}\left(1+\frac{1}{n+k}\right)^n=e.$$

We now show that (11) holds with

$$n_0(k) = \frac{\log 2}{2(1 - \log 2)} \cdot (2k + 1). \tag{12}$$

The inequality

$$2 < \left(1 + \frac{1}{n+k}\right)^n \tag{13}$$

is equivalent to

$$\log 2 < n \log \left(1 + \frac{1}{n+k} \right). \tag{14}$$

Since

$$\log\left(1 + \frac{1}{n+k}\right) > \frac{2}{2(n+k)+1} \quad \text{for } (n+k) > 0 \,, \quad (14) \text{ is true if}$$

$$\log 2 < \frac{2n}{2(n+k)+1} \,.$$

Thus (11) is true if $n_0(k)$ is as in (12), and also if

$$n_0(k) = [(2k+1)C_1], (15)$$

where [u] denotes the integral part of u. The proof is complete. We have for example

$$n_0(1) = 3, \quad n_0(2) = 5, \quad n_0(3) = 7, \dots$$
 (16)

Proof of Theorem 2. From the proof of Theorem 1 it follows that

$$z-y<(2^{\frac{1}{n}}-1)\cdot x.$$

We have

$$2^{\frac{1}{n}} = 1 + \frac{\log 2}{n} + \frac{(\log 2)^2}{n^2 \cdot 2!} \, \xi \,,$$

$$2^{\frac{1}{n}} - 1 = \frac{\log 2}{n} \left(1 + \frac{\log 2}{2n} \, \xi \right), \quad \text{with } 1 < \xi < 2^{\frac{1}{n}} \le \sqrt{2} \,.$$

Thus

$$2^{\frac{1}{n}} - 1 = \frac{\log 2}{n} \left(1 + \frac{C_2}{n} \right), \text{ where } \frac{\log 2}{2} < C_2 < \frac{\log 2}{\sqrt{2}}.$$
 (17)

From (10) and (17) we obtain

$$z - y < \frac{x}{n} \cdot C(n), \quad \text{where } C(n) = \log 2\left(1 + \frac{C_2}{n}\right)$$
 (18)

and

$$\frac{\log 2}{2} < C_2 < \frac{\log 2}{\sqrt{2}}.$$

The proof is complete.

Proof of Theorem 3. We may assume that x, y, z are relatively prime. Indeed, if the theorem is true in this case, and if x, y, z are positive integers such that

$$x^n + y^n = z^n$$
 (some $n > 2$) and $(x, y, z) = d$ with $d > 1$,

set
$$x = dx'$$
, $y = dy'$, $z = dz'$. Then $(x', y', z') = 1$, so that

$$(x')^2 \ge 2z' + 1$$
; on multiplying by d we get

$$2z + 1 < 2z + d = d(2z' + 1) \le d(x')^2 < x^2$$
.

Now if x < y < z are positive real numbers such that

$$x^2 + y^2 \le z^2 \,,$$

then

$$x^n + y^n < z^n$$
 for $n > 2$,

since

$$z^n \ge z^{n-2}(x^2 + y^2) > x^{n-2} \cdot x^2 + y^{n-2} \cdot y^2 = x^n + y^n$$
.

It follows that if equation (1) has a solution in positive integers x < y < z for some n > 2, then

(*)
$$x^2 + y^2 > z^2$$
.

Now if z > y and y, z are integers, then $z \ge y + 1$ and by (*),

$$x^2 > z^2 - y^2 \ge z^2 - (z - 1)^2 = 2z - 1$$
,

whence

$$x^2 \ge 2z$$
.

Now $x^2 = 2z$ is impossible if $x^n + y^n = z^n$ and (x, y, z) = 1.

Therefore $x^2 > 2z + 1$.

The proof is complete.

Krystyna Białek
Department of Mathematics
Pedagogical University
Zielona Góra, Poland

REFERENCES

- 1 Białek K.: Remark on Fermat's equation. Discuss. Math. T. VII, 1985, 119-122.
- 2 Fell A. und Paasche I.: P 66 (Fermatproblem). Praxis der Math. 3, 80 (1961).