

Werk

Titel: A new geometric inequality.

Autor: Abi-Khuzam, Faruk

Jahr: 1988

PURL: https://resolver.sub.uni-goettingen.de/purl?378850199_0043 | log19

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

El. Math., Vol. 43, 1988

LITERATURVERZEICHNIS

- 1 Blaschke W.: Kinematik und Quaternionen (VEB Deutscher Verlag der Wissenschaften, Berlin 1960).
- 2 Krames J.: Über Fusspunktkurven von Regelflächen und eine besondere Klasse von Raumbewegungen (Über symmetrische Schrotungen I). Monatsh. Math. Phys. 45, 394-406 (1937).
- 3 Tarnai T. and Makai E. jr.: A Movable Pair of Tetrahedra. Im Druck.
- © 1988 Birkhäuser Verlag, Basel

0013-6018/88/030065-11\$1.50+0.20/0

A new geometric inequality

Let $\omega \in (0, \pi)$ be defined by the equation

$$\cot \omega = \cot \alpha_1 + \cot \alpha_2 + \cot \alpha_3 \tag{1}$$

where α_1 , α_2 , α_3 , are positive numbers satisfying

$$\alpha_1 + \alpha_2 + \alpha_3 = \pi \,. \tag{2}$$

If α_1 , α_2 and α_3 are interpreted as the three angles of a triangle (T), then ω is called the Brocard angle of (T) and there exists a number of identities relating ω and α_1 , α_2 and α_3 [4]. This note is concerned with the problem of finding inequalities between ω and α_1 , α_2 and α_3 . Since the appearance of [1], this problem has received much attention. At present the following inequalities are known [1-3].

$$2\omega \le \frac{1}{3}(\alpha_1 + \alpha_2 + \alpha_3) = \frac{\pi}{3}.$$
 (3)

This is the oldest known inequality and follows from the inequality $\cot^2 \omega \ge 3$ which is readily obtained from (1). The next inequality is

$$2\omega \le \sqrt[3]{\alpha_1 \alpha_2 \alpha_3} \tag{4}$$

which was proved in [1]. It is sharper than (3). In [2] it was shown that

$$\omega^3 \le (\alpha_1 - \omega) (\alpha_2 - \omega) (\alpha_3 - \omega), \tag{5}$$

an inequality that implies (4).

Using the method of Lagrange multipliers, Mascioni [5] proved the inequality

$$2\omega \le 3\left(\sum 1/\alpha_i\right)^{-1}.\tag{6}$$

This inequality is sharper than (4), since the harmonic mean of three numbers is less than or equal to their geometric mean. A different proof of (6) appears in [3]. Since

76 El. Math., Vol. 43, 1988

(5) implies that ω is less than or equal to the geometric mean of $\alpha_1 - \omega$, $\alpha_2 - \omega$ and $\alpha_3 - \omega$, it is natural to ask how ω is related to their harmonic mean. In the present note we prove

Theorem 1. If ω is defined by (1) and (2) then

$$\omega \ge 3 \left\{ \sum 1/(\alpha_i - \omega) \right\}^{-1}. \tag{7}$$

Equality holds if and only if $\alpha_1 = \alpha_2 = \alpha_3 = \pi/3$.

Proof: Let $f(x) = \cot x - \frac{1}{x}$ where $0 < x < \pi$.

Then $f'(x) = -\frac{1}{\sin^2 x} + \frac{1}{x^2}$ and $f''(x) = 2\csc^3 x \left\{ \cos x - \left(\frac{\sin x}{x} \right)^3 \right\}$. Since $\sin x < x$ for $0 < x < \pi$ we have f'(x) < 0. In [5], it was shown that $\left(\frac{\sin x}{x} \right)^3 > \cos x$ in $(0, \pi)$.

Then f''(x) < 0 in $(0, \pi)$. It follows that f is a concave decreasing function in $(0, \pi)$. In particular, if $x_1, x_2, ..., x_6$ are six numbers in $(0, \pi)$, then

$$f\left(\frac{x_1+x_2+\ldots+x_6}{6}\right) \ge \frac{1}{6} \left\{ f(x_1) + f(x_2) + \ldots + f(x_6) \right\}.$$

If this inequality is used with the six numbers $\alpha_1 - \omega$, $\alpha_2 - \omega$, $\alpha_3 - \omega$, ω , ω , ω , all of which lie in $(0, \pi)$ we obtain

$$\sum_{i=1}^{3} \left\{ \cot \left(\alpha_{i} - \omega \right) - \frac{1}{\alpha_{i} - \omega} + \cot \omega - \frac{1}{\omega} \right\} \le 6 \left\{ \cot \left(\frac{\pi}{6} \right) - \left(\frac{6}{\pi} \right) \right\}$$

$$\le 6 \left\{ \cot \omega - \frac{1}{\omega} \right\}, \tag{8}$$

where the last inequality follows because $\omega \le \pi/6$ and $\cot x - 1/x$ is decreasing in $(0, \pi)$.

From (8) we obtain

$$\sum_{i=1}^{3} \left\{ \cot \left(\alpha_i - \omega \right) - \cot \omega \right\} + 3/\omega \le \sum_{i=1}^{3} \frac{1}{\alpha_i - \omega}. \tag{9}$$

The proof of (7) will be complete if we show that the sum on the left-hand side of (9) is positive. This is the difficult part of the proof. It depends, in part, on the following identities satisfied by ω . Their derivation is quite easy.

(i) $\cot \alpha_1 \cot \alpha_2 + \cot \alpha_2 \cot \alpha_3 + \cot \alpha_3 \cot \alpha_1 = 1$;

(ii)
$$\prod_{i=1}^{3} (\cot \omega - \cot \alpha_i) = \prod_{i=1}^{3} \csc \alpha_i;$$

El. Math., Vol. 43, 1988

(iii)
$$\sum_{i=1}^{3} \csc^{2} \alpha_{i} = \csc^{2} \omega ;$$
 (10)

(iv)
$$\sum_{i=1}^{3} \csc^{4} \alpha_{i} + 4 \cot \omega \prod_{i=1}^{3} \csc \alpha_{i} = \csc^{4} \omega.$$

We now consider the sum on the left-hand side of (9). We have

$$\cot (\alpha_i - \omega) - \cot \omega = \frac{\cot \alpha_i \cot \omega + 1}{\cot \omega - \cot \alpha_i} - \cot \omega = \frac{-\cot^2 \omega + 2 \cot \omega \cot \alpha_i + 1}{\cot \omega - \cot \alpha_i}$$
$$= -(\cot \omega - \cot \alpha_i) + \frac{\csc^2 \alpha_i}{\cot \omega - \cot \alpha_i}.$$

Thus

$$\sum_{i=1}^{3} \left\{ \cot \left(\alpha_i - \omega \right) - \cot \omega \right\} = -2 \cot \omega + \sum_{i=1}^{3} \frac{\csc^2 \alpha_i}{\cot \omega - \cot \alpha_i} \,. \tag{11}$$

From (10; (i)) we have

$$\cot \alpha_1 \cot \alpha_2 = 1 - \cot \alpha_3 (\cot \alpha_1 + \cot \alpha_2) = 1 - \cot \alpha_3 (\cot \omega - \cot \alpha_3)$$
$$= \csc^2 \alpha_3 - \cot \alpha_3 \cot \omega.$$

Thus

$$(\cot \omega - \cot \alpha_1) (\cot \omega - \cot \alpha_2)$$

$$= \cot^2 \omega - \cot \omega (\cot \alpha_1 + \cot \alpha_2) + \csc^2 \alpha_3 - \cot \alpha_3 \cot \omega = \csc^2 \alpha_3.$$
(12)

A similar formula holds for $\csc^2 \alpha_1$ and $\csc^2 \alpha_2$. Returning to the second sum in (11) and using ((10); (ii)) and (12) we obtain

$$\sum_{i=1}^{3} \frac{\csc^{2} \alpha_{i}}{\cot \omega - \cot \alpha_{i}} = \frac{1}{\prod_{i=1}^{3} (\cot \omega - \cot \alpha_{i})} \sum_{i=1}^{3} \csc^{4} \alpha_{i} = \frac{1}{\prod_{i=1}^{3} \csc \alpha_{i}} \sum_{i=1}^{3} \csc^{4} \alpha_{i}.$$
 (13)

If we use (13) in (11) and then use ((10); (iv)) we obtain

$$\sum_{i=1}^{3} \left\{ \cot \left(\alpha_{i} - \omega \right) - \cot \omega \right\} = \frac{1}{\prod_{i=1}^{3} \csc \alpha_{i}} \left\{ \sum_{i=1}^{3} \csc^{4} \alpha_{i} - 2 \cot \omega \prod_{i=1}^{3} \csc \alpha_{i} \right\}$$

$$(14)$$

$$= \frac{1}{\prod_{i=1}^{3} \csc \alpha_{i}} \left\{ \sum_{i=1}^{3} \csc^{4} \alpha_{i} + \frac{1}{2} \sum_{i=1}^{3} \csc^{4} \alpha_{i} - \frac{1}{2} \csc^{4} \omega \right\} = \frac{1}{2 \prod_{i=1}^{3} \csc \alpha_{i}} \left\{ 3 \sum_{i=1}^{3} \csc^{4} \alpha_{i} - \csc^{4} \omega \right\}.$$