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ABSTRACT.  Let f be a function in a Euclidean plane with compact support in a half disc H. The problem
of reconstruction of the function from the data of its integrals over half circles A C H with centers at the

diameter of H is studied. An explicit formula and a microlocal analysis of stability of the reconstruction are
given.

1. Introduction

Let E be an open halfplane in a Euclidean plane E and A be the family of all circular arcs

A C E, that are orthogonal to the boundary dE. For a function f in E, we call arc mean the
integral

Mf(A) = fA fds

over an arc A € A4 against the Euclidean line density ds. The function Mf will be referred to
as arc mean transform of f. Let H C E, be a half disc centered at a boundary point of E. We
study the problem of reconstruction of the original f from its arc means transform known only for
the subfamily A C A4 of arcs A C H. We call it a local arc problem. The local arc problem is of
practical importance in the following contexts:

e In seismic tomography the arc mean operator M is a linearization of the travel time mapping for
the family of geodesics A of the Riemannian metric do = ¢~'ds, where c stands for the velocity of
elastic waves. Here f is a perturbation of the slowness ¢! and M is the residual of the travel time.
See [18], [19], [7] for surveys and more bibliography. If the daylight surface is supposed to be a plane
and a background velocity field v of a medium is a linear function of depth, the geodesics are arcs
of circles orthogonal to the plane V parallel to daylight surface, where the extended field v vanishes.
Hence, the three-dimensional case is reduced to the family of Euclidean planes E orthogonal to
V and for each E the arc mean operator M is equal the linearization of the travel time mapping.
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The linearized inverse kinematic problem is reduced to a version of the arc problem. However, this
linearization is reasonable only for some restricted regions of the earth surface. Therefore the local
approach to the arc problem is more realistic comparing with the global version.

e A reconstruction of a ground reflectivity coefficient of electromagnetic waves by the method of
synthetic aperture radar image processing can be also reduced to the local arc mean transform [8],
[9].

A relation between a function and its spherical means in a Euclidean space E has been studied
in [4] (unicity theorem). John [10] has given a reconstruction of a function from the family of spheres
centered in a hyperplane E’ C E. See [17], [18], [6], [9] for other approaches to the same problem.
Note that this family of spheres is invariant with respect to a non-trivial translation group G of E,
whereas the local sampling A as above admits no invariance group. Therefore, no straightforward
harmonic analysis is applicable to the local arc problem. An original with compact support in H is
uniquely determined from the local data of arc means [4], but the reconstruction is unstable. Our
objective is to evaluate the stability; and hence, the reliability of reconstruction in the local arc
problem. This is a very special case of the general problem of resolution and accuracy in the seismic
tomography, which is considered as “the fundamental question” [20].

In Section 2 we reduce the local arc problem to the limited angle problem for the Euclidean
Radon transform. In Sections 3 and 4 we give explicit formulae for a reconstruction and state in
Section 5 a Plancherel-type identity that equalizes a weighted L;-norm of the original f (we call it
energy) with a Sobolev-type norm of its transform M f. In Sections 6 through 8 we give a microlocal
estimate of energy in terms of the arc mean transform.

If no a priori information is accessible, the energy of the original is assumed to be spread
uniformly over the cotangent bundle 7*(H). Take acurve A C H and consider the conormal bundle
N*(A) C T*(H) of this curve. Denote by N*(A) the union of sets N*(A), A € A. This is a
subset of T*(H), whose fibers N;(A), p € H are cones. We call this subset the audible zone.
We show that the part of the energy of the original contained in the audible zone can be reasonably
estimated by a norm of its arc mean transform. The complementary part of the energy in the silent
zone T*(H) \ N*(A) can be estimated with an appropriate weight. This weight is a function in the
cotangent bundle that exponentially decreases, when the point moves away from the audible zone. It
can be shown that an exponentially decreasing weight is in fact indispensable, hence our estimate in
the silent zone cannot be essentially improved. In other words, the reconstruction of the function f
is stable and reliable in the audible zone for all frequencies and in the silent zone for low frequencies;
no method can give a stable reconstruction for high frequency in the silent zone.

Similar qualitative arguments for the limited data X-ray transform are due to Quinto [16]. He
emphasized, in particular, the microlocal character of relations between smoothness of an original
and its transform.

We do not discuss here the practical problem, how to improve stability of a reconstruction
algorithm from the local data of arc means. This problem deserves another look.

2. Geometry of the Audible Zone

For an arbitrary point p € H the fiber N; (A) of N*(A) is the union of conormal lines to arcs
A € Athrough p. This set has a simple geometrical description:

Proposition 1.

For an arbitrary point p € H denote by S, the circle arc through the point p and the ends
of diameter D of H. The cone N(A) is the union of alternate angles of magnitude & — rad(Sp),
where rad means the radian measure. The line through p and the center O, of S, is the bisectrix of
these angles.
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The proof is elementary. The magnitude of N; (A) is close to 2 when the point p is close to

a point of diameter D (except for its ends). For a point p at the arc d H \ D the cone N; (A) shrinks
to the line orthogonal to this arc, see Figure 1.

FIGURE 1

3. Reduction to the Radon Transform

We apply some classical mappings in the Euclidean plane to reduce the arc mean transform to
the plane Radon transform. Similar methods were used earlier for the spherical Radon transform [3],
for projective mappings [14] in Euclidean space and for the Radon transform in hyperbolic spaces [1],
[2].

Let X, X, be Riemannian manifolds and ) be a family of k-dimensional submanifolds of X,
0 < k < dim X;. A smooth mapping F : X; — X, possesses the factorization property [15] for
the family Y if the following equation holds forany Y € ) and any x € Y:

dVa(F(x), F(Y))

IR, = jr(x)Jr(Y) 3.1

with some functions jr in X and Jr in ), where d V; denotes k-dimensional volume formin X;, i =
1, 2. These functions will be referred to as Jacobian factors. In particular, any conformal mapping
F possesses the factorization property for the family of all submanifolds of arbitrary dimension
with the Jacobian factor Jp = 1.

Any projective transformation P of a Euclidean space E possesses the factorization property
for the family ) of affine subspaces of arbitrary dimension [14].

If the factorization property holds for a family ) and a diffeomorphism F and a smooth
mapping G : X5 — X3 possesses this property for the family F(Y) = {F(Y), Y € )}, then the
composition GF : X| — X3 has the factorization property for the family ) with the Jacobian
factors jgr(x) = jc(F(x))jr(x), Jor(Y) = Jg(F(Y))Jr(Y).

Choose conformal coordinates x, y in E such that E; = {y > 0} and half disc H is given in
E, by x2+ y? < 1. Let Dg, Dp be unit discs in the complex planes, W = {(u, v) : u? > v? + 1}
be the domain bounded by a hyperbola, and U = W N {u > 0} be a convex component of W. We
endow all these domains with the standard Euclidean metrics.
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Proposition 2.

There is a sequence of diffeomorphisms

E, —F) Dk —G> Dp A w

such that
(i) the mapping F possesses the factorization property for the family A, ;
(ii) the mapping G possesses the factorization property for the family F (A4) of circles orthogonal
to dDg;
(iii) the mapping P possesses the factorization property for the family G(F (A4)) of all chords;
(iv) the image of H in W is equal to U and the image of the family A, is the family of all chords in
U. The image of A is the family of proper chords.

Proof. The mappings F and G coincide with the classical isomorphisms between models of the
Lobachewski plane, if the domains E, Dk, Dp are considered as the Poincaré, Klein, and Beltrami
models, respectively (in spite of we do use no hyperbolic metric). Introduce complex coordinates
z=x+1y,21 =x1 +1y, w; =u; +1v) in H, Dg, Dp, respectively. Put

Z

l-—
=F@)=——
1 (2) Tz

This is a conformal mapping from H to Dg; hence, it satisfies Equation (3.1) with the factors

Jjr@) = JF=1

b+ 2%
For any A € A the image F(A) is a circular arc orthogonal to the boundary d Dk and F(H) is the
right half of the disc Dg. The second mapping is that of Klein:

27y

w=G(z))=——
14 |z;?

This mapping possesses the factorization property for the family of arcs A’ = F (A) with the Jacobian
factors

,/1 2
L, Jg(a) = :”, (3.2)

where r is the radius of an arc A. The image L = G(F(A)) of this arc is a chord in Dg. To
prove (3.2) we choose a unit tangent vector f to an arc A’ atapoint z; € Dg. Itsimage s = dw(t) is
a tangent vector to the chord L with the length |s| = 2|t — t'z%l(l +1z11)72. 1tis easy to check that

" —EZH = |1 - (521)2| = (1 = Ilez) rV14r2

This implies (3.2). The image of the unit arc 9 H \ D is the vertical diameter of the disc Dp and the
set G(F (H)) is again the right half disc.
The last mapping P is the projective transformation:

(u,v) =P (u,v1): u=—,v=—
The vertical diameter is going to infinity and the unit circle is transformed to the hyperbola v% +1=

u%. The disc Dp maps onto the set W = {v]2 +1< uf} and the half disc G(F(H)) to the right
component U of this set. The image of an arbitrary chord L C Dp is a chord in U, since P is a
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projective transformation. If L is contained in the right half disc, the chord P(L) is proper i.e., of
finite length. This mapping possesses the factorization property with the factors

jp@rv) = lail2, Jp(L) =/ p(L)? +sind(L)? , (3.3)

where p(L) is the distance from the origin to the chord L and (cos ¢ (L), sin¢ (L)) is its normal
vector. O

Corollary 1.

The composition S = PGF is a diffeomorphism from H to U that transforms the family A

to the family L of proper chords in U and possesses the factorization property with the Jacobian
factors

Js(@) = jp(G(F(2))jc(F(2))jr(z), Js(A) = Jp(G(F(A)))JG(F(A))JF(A),
hence the following equation holds for an arbitrary arc A:
fwdsw = Is(a) [ fds. fu = flis, (3.4)
S(A) A
where dsw is the Euclidean metric in W.

Now we calculate the Jacobian factors. By (3.2) we find

-2
jo(F@) =2yl +2* (1+ |z|2) (3.5)

For an arbitrary arc A € A we denote by [a, b] C D its diameter; —1 < a < b < 1. Denote by
a, B, y the angles of the triangle (a, b, 1). We have a = —cota, b = cot 8. The arc A’ := F(A)
joins the points F(a) = —exp(2i) and F(b) = — exp(—2:8) and is orthogonal to the unit circle.
The radius of the arc A’ is equal r = tan y, hence J5(A") = cscy according to (3.2). The chord
L := G(A’) has the same ends, hence p(L) = —cos(x + 8) =cosy; ¢(L) =a — B. By (3.3)

we conclude that
14122\ 14122\
iP(G(F@) = (——Xl‘ ) =( )

1—|z|?

and

Jp(L) = \/cos2 y +sin?(a — B) = /1 — sin2a sin 2

Taking in account (3.5) and (3.3), we get

4y 1 —sin2asin2p
] = —-0=, Js(A)= :
Js(@) = 12P? s(A) Ty

We need to express the second factor in terms of the chord L = S(A). Write the explicit formulae
for the mapping S:

142242 2x I 2 ul—vi -1
= 5 ,S— ) = )
S(x, ) (1—x2—y2 1—x2—y2 (o 82) u+1 u+1

If the arc A is leaned on the diameter [— cot ¢, cot B], the chord L has the ends S(a) = (— sec 2«, tan
2a), S(b) = (—sec2B, —tan28). The vector (cos ¥, sin(8 — «)) is orthogonal to L. We have
| sin(B — )| < cos y, whence the angle ¥ of this vector ranges in the interval (—m /4, w/4). The



30 V.P. Palamodov

angle ¥ and the parameter g € R (the distance to L from the origin) are coordinates on the variety
V1 of chords: L = L(q, ¥). These coordinates relate to the parameters of arc as follows

a+b cos(a — 1—ab
tny =——1—, g= = e = (3.6)
1+ab V1 —=sin2asin28 /(1 +ab)? + (a + b)?
The Jacobian factor Jg can be written as a function of ¢ and g:
JT—=sin2asin 28 1
Is(a) = £ < (37)

siny Vg% —cos2y

Note that the quantity g2 — cos 2y vanishes simultaneously with the chord L(g, ¥).

4. Interpolation and Reconstruction

From (3.4) and (3.7) we know the integral of the function fw(u,v) = (4y)~!(1 — x2 -
y?)? f(x, y) along an arbitrary proper chord L against the Euclidean line element dsw. This is
a continuous function with compact support in W. By the projection theorem we have for any
—n/4 <y <m/4andanyt € R

fw(tcosy, tsiny) = f exp(—iqt) f Swdsw
R L(q.¥)

Mf(A(q, ¥))
—1qt)————dq , 4.1
fexp( ) q% —cos2y 1 @b

Thus, the Fourier transform of the function fw is known in the cone D = {(o, 7) : 02 > 72}.

Remark. The right side of (4.1) contains the integration along the family of arcs A(g, ¥) with
a constant angle ¥, which means that the quantity x4 = —cot ¥ = (1 4+ ab)/(a + b) is constant.
Consider the complexification Ec of the plane E. An arbitrary circle A is the real part of a com-

plex conic Ac that contains the points with the same abscissa and the ordinates y4 = /1 — x2 =

/—cos2y csc . Consequently, the integral in (4.1) runs over the pencil of arcs A, whose com-
plexifications Ac pass through the points (x4, ya). [

Now we use the interpolation method of [5] to reconstruct this function outside D:

sin (v/A2 — 82
¢ (o) =exp (\/82 —-02)/ ( Yoo )

r wi-ol

dpM)dr, RVE2—-02>0 4.2)

where 0 € I' := (—00, —8) U (8, 00) and § is an arbitrafy positive number. The formula (4.2) is
valid for an arbitrary function ¢ € La(R) such that supp¢ C [—1, 1]. The support of the function
fw is compact and hence is contained in a strip ¢ — a| < r. Apply the interpolation method to
the function ¢, (0) := fl (0, t) taking 7 as a parameter and f(u, v) = fw(ru + a, v). We have
fi(o, T) = exp(tar ') fw (r 1o, T). The righthand side is known for |o| > r|t|. We set§ = r|t|
and get for an arbitrary 7 the equation

fw (A, T)dA 4.3)

fw(o,t) = oot [ sin (n/;?__?f) pla(—o)

A2>12 A — o]

for an arbitrary o, T. Now we apply the inverse Fourier transform and recover the function f.
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We can use another interpolation formula [13] instead of (4.3)

fw(o,T)
00 (—l)kak &' (k= —0) e—l(‘T-HYk)
= cosh (r/72=?) ) —fon )+ F con 1) | 44)
- o +

= %k Ok

1
ak——(k+2) ok:=,/1'2+a£, k=0,1,2, ...

or this interpolation we need to measure the function fw (o, T) only in the hyperbolae 02 = 72 +
ak, k=0,1,.

where

Remark. Accordingto (4.3)as well as to (4.4) the main instability factor is equal exp (r«/ 12—0o 2) ’
It can be shown that a factor of this form is inevitable for any method of reconstruction. O

Theorem 1.
For an arbitrary function f € Ly(E) with compact support supp f C H the formulae

Y
72 (1—x2—)?)°

and (4.1), (4.3) [or (4.4)] give a reconstruction from the data Mf(A), A € A

flx,y)= /};2 exp(t(u(x, y)o + v(x, y)t))fw(cr, T)dodT ,

5. Plancherel Theorem for Arc Means

For an arbitrary function f € Ly(H) we consider the global arc mean transform Mf defined
on the family A, of all arcs in the halfplane E that are orthogonal to the boundary. The variety
A is parameterized by the coordinates ¥, —n/2 < ¥ < 7/2 and g € R. We call the function

. Mf@.¥)
8q,¥) = ——=
q% —cos 2y

the normalized arc mean transform.

Theorem 2.

For arbitrary square-integrable functions fi, fo with compact supports in H and their nor-
malized arc mean transforms g\, g the following identity holds:

2 f g1(p, ¥)82(q, V)
RZ

—n/2  (p-9? T (poqp PYv,

1—x2—
on? f —Z—Lfmx ) Fax, y)dxdy = —

where the principal value of the interior integral is taken.

For the Radon transform in plane, this result is due to Reshetnyak [11]. Write the right side in
more explicit form:

n/2
/ /2 g1(p, ¥)g2(q, rlf)d iy
R

—n/2 (p— )2
/2 _ o

_ __/ fgl(Pnlf)gz(q,wq) in(p, W)g2(q,¢f)dpdqd¢
/2 -

n/2
= / fgl(p ¥)2,(q, ¥)log|p — qldpdqdy (5.1)
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For a function h = h(q) of one variable we introduce the convolution operator
d
D\2h=asp, a=_—9__ p_9%
271q| 172 dq

This is an operator of fractional derivative of order 1/2. Now we formulate the Plancherel-type
theorem in a different form:

Theorem 3.
Under the same assumptions we have

n/

1—x2_2 ) 2
@n)? f —’;y——y—fl(x,y)fz(x,y)dxdy= i fm D'2g\(q, ¥)D'g1(q, ¥)dgdy ,

-7
Proof of Theorem 2. We calculate the lefthand side by means of Plancherel’s theorem for the
Fourier transform:

@r)? l—_—’ﬂf 5 (x, y)dxdy = 21)? > wdud
2 1(x, y) falx, y)dxdy = Qn)° | fi,wfr.wdudv

= /fl,wj_gz.wdﬁdﬂ=/n/2

-m/2

fR 81, V)&, (t, W)|t|dtdyr ,

where det 3(u, v)/8(x, y) = —8y(1 — x* — y2)~3. Consider the interior integral in the right side
and again apply Plancherel’s identity

/éx(r,w)éz(t, V)lt|dt =27f_/F* (81, ¥)lt]) 82(q. ¥)dq (5.2)
where
F*(h) = /exp(tqt)h(t)dt

The image of the product g; (#)|¢] is equal the convolution of g; and of F*(|¢|). Since of the equation
F*(|t|) = —1/m|q|?, the righthand side of (5.2) is equal to the principal value of the integral

_2/ 81(p, ¥)ga2(q, ¥)dpdq
R? (p—9q)?

Integrating this quantity against the density dyy we complete the proof of Theorem 2. By partial
integration in the right side we get the formula (5.1). O

Proof of Theorem 3. Applying Plancherel’s theorem once again we find

21 f §10F;(0leldr = f G1(9)Ga(g)dq , (5.3)
where
Gi= F* (s 0l'?) = gix F* (11"7%), i = 1,2
We have 1 i i
* ]/2 = - - —
2 (1) = ~ 57 = Zg T

Therefore, the right side is equal

@m)! f D"g1(q, ¥)D?g:(q., ¥)dg
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and Theorem 3 follows. O
Definition. We call the integral

. 1—x2—y2
Iy = [ 1 iy

the energy of a function f in H. By Theorem 3 we have

/2
1= [0t )| deay. 54

where g is the normalized arc mean transform of f. It follows that the arc mean transform can be
extended to the space of all originals f with finite energy. The normalized image g of the extended
arc mean transform belongs to the non-isotropic Sobolev space W!/29(R x [—n/2, /2]). In fact,
this transform is defined in terms of two Fourier—Plancherel transforms. Theorems 2 and 3 still hold
for the extended transform. O

For the arc mean transform restricted to the family of arcs A we get the following identity:

Corollary 2.
For any function f € Ly(H) we have

/4
lfw(a r)i dodt =
—mn/4 JJfcos 2y

where D = {(0, T) : 0% > t2} is the set of conormals to proper chords in U.

plr_2J\9.¥) Mf(q,¥)

2
dqdvy , 55
,——————q =027 qdy (5.5)

This follows from (4.1) by integrating against dy in the interval [—r /4, 7 /4].
Corollary 3.
For any function f with finite energy, the equation Mf = 0 implies f = 0 a.e.

Indeed Equation (5.5) implies that fw = 0in D. The function f is holomorphic, hence it
vanishes everywhere.

6. Microlocal Evaluations of Energy

‘We show that for an arbitrary original f with sufficiently small compact support in H the part
of its energy which is held in the audible zone N*(A) is estimated in terms of the arc mean transform.
We parametrize the variety A by the coordinates g, ¥ [see (3.6)], where g runs over R and ¢ over
the interval (—n /4, 7 /4). For a function h = h(q, ¥) in the variety A we define the norm

n/4
i = [

—n/4 J Jcos2¢

pin__ta¥)

2
dgdy .
Vg% —cos2y 4

Now we state an estimate of energy for originals with small support. Introduce Euclidean coordinates
0 in E* and denote by S* the unit sphere.

Theorem 4.

Let p € H and V be a cone in E* such that {p} x V N §* @ N*(A). There exist a compact
neighborhood K of the point p and a positive constant C such that an arbitrary function f with
finite energy such that supp f C K satisfies the inequality:

A 2
[ 170 a6 < cumevane-1f1 6.1)
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For originals with arbitrary support the following statement is true:

Theorem 5.
For arbitrary compact sets K, L and an arbitrary cone V C E* such that

KEL€EH, LxVNS*e&N*A) (6.2)

there exist positive constants a, c such that for any function f with finite energy the following
inequality holds

cfv |F (ex /)I*d0 < IMfII%y /5 + llexp(—al®) FllL, - I fln

where ek is a smooth function such thatex = 1in K andeg =0in H \ L.

In other words, the part of energy of f in the audible zone N*(.A) is estimated in terms of
its arc mean data Mf plus a term, which is small for high frequencies of the original f. We shall
deduce both theorems from lemmata of Section 7 and complete the proof in Section 8.

For the part of energy in the silent zone, the reconstruction is exponentially unstable. For a
nonempty compact set K C E we denote its supporting function in E* as follows:

| 6 1xk=max{0(p), p€ K}, 6 €E*

Take a quadratic form Q of signature (1, 1) in E* and consider the cone V(Q) = {6 : Q(8) < 0}.
Denote by §(K, Q) the number such that

min (16 1 + 1 =0 1 ~25(K, Q)v=0®)) =0, (6.3)

It is well defined and positive.

Theorem 6.
Let K be a compact set in E and Q be a quadratic form in E* of signature (1, 1). For an
arbitrary function h € Ly(E) such that supph C K the following inequality holds:

~ 2 . 2
f lexp (—5(1{, Q)\/Q(O)) h(9)| do < f lh(o)l de (6.4)
V(-0) V(Q)
Combine this estimate with Theorem 4 by taking a quadratic form Q such that V(Q) = V:

A 2
/ |exp (<3(K, ©)V/0®) £(6)| d6 < CIMS a2~ £

In the audible zone this inequality follows immediately from (6.1). The local silentzone E*\ N (A) is

contained in the cone V (— Q), consequently the integral of the density | f|2d@ with the fast decreasing
weight exp (—5 4/ Q) is estimated in terms of the arc means transform Mf.

7. Estimates in the Audible Zone

First we find a bound for the Fourier transform of f in terms of the function

fw(p) ﬁfew(—t(ou + ™)) fw(x, y)dudv, p = (0, 1)

Consider the complexification E¢ of the space E with the complex coordinates X = x +1X, y =
y + 1y. We abbreviate these notations to p = (x, y), p = (X,y) and p = (X, y) = p + 1 p. First
construct a family of quasianalytic cutting functions.
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Lemma 1.

For arbitrary sets K € L € E there exist positive constants €, C such that for arbitrary
positive s > 0 there exists a smooth function ex = ek (p, s) in Ec such that

0<ex(p.s) < 1 if peE; (7.1)
ex(p,s) = 1, if pek; (7.2)
ex(p,s) = 0, if pe E\L; (7.3)

lex (B.s)] < Cexp(s), if |pl<e; (1.4)
|dex (B.9)| = C|plexp(=s), if |p|<e. (7.5)

Proof. Take a smooth functiona : R — Rsuchthata = 1fort < 2,a =0fort > 9/4 and
0 < a < 1 otherwise. Set

a(p)=a(p?)+2ud (p?)pp, P =x2+y pp=xi+yy
The function & is smooth in Ec and 8a(p) = 21a” (p?)pp - pd 1-3 Define the function
e 2n@ exp(=s7?)a), P2+ n) = [exp(-sp)a(p?) dp
that depends on a parameter s > 0. We have n(s) > 0 for s > 0, sn(s) = 7 as s — 00 and
[1eGonap <n e (552) [exo (-sp) @ plap < cempts) )
for |p?| < 1, since | exp(—sp?)| = exp(sp? — sp?) and [ exp(—sp?)|aldp ~ 7 /s as s — oo. We
e de (p,s) =n(s) Lexp (—-sﬁz) 2a” (pz) pp-pdp,

since exp(—s 132) is an holomorphic function. Note that a”( p2) vanishes for p? < 2. This implies
the estimate

f'ée (p.s)|dp < M |p|n(s)" " exp (sﬁz)f

exp (—spz) dp2 o
p?>2

where M = max |ta”(t%)|. The integral in the right-hand side is equal s~ exp(—2s). The product
sn(s) is bounded from below by a positive constant c. Therefore, the previous inequality implies for
1Pl =1

f |5e (p,s)|dp <C |ﬁ|exp (5[)2 - 2s) <C |ﬁ|exp(—s), C=MJc 1.7
We have suppe(-,s) C 3/2B for any s, where B means the unit ball in E. Choose € > 0 so

small that K + 3¢ B C L and denote by x the indicator function of the compact X + 3¢/2B. Set
ec(p,s) = e 2e(p/e, s) and

ex (5.5 = [ ec (' +15.9) x (p = p) dxay. p'=(x.)
The function ek (p, s) is nonnegative since the functions a, e, x are. The inequality ex (p,s) < 1

follows from x < 1 and f ec(p, s)dp = 1. This proves (7.1). The properties (7.2) and (7.3) follow
from the inclusion supp e. C 3¢/2B. By (7.6) we have for |p| < €

lex (p,s)| < f lee (p + 15, 5)|dp’ < Cexp(s),
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which implies (7.4). The inequality (7.5) follows from (7.7). O

Take the family of functions ex constructed by means of Lemma 1 and write

2m)2F (ex f) (6) = fE fw . exp(t®(8, p, p)ex (p)j(p) fw(p)dp Adx Ady , (7.8)

where 8 = (&, 1), dp =do Adt and

=)
@@, p,p) = —tx —ny+oulx,y)+tv(x,y), j(p) =4y (1 —x2_ y2)
Consider the 4-form in E x W*:

w = exp(L P8, p, p))j(p) fw(p)dp A dx A dy

This form has a meromorphic continuation to the complex space Ec x W¢ with a pole at the variety
20 4 =Y
X“+y°—-1=0.

Lemma 2.

There exists a continuous field q = q(6, p, p) in V \ 0 x H x W* \ D that is homogeneous
of degree 0 with respect to V- x W* and which satisfies the inequalities:

g8, p,p)l =< €, (7.9)
t(alé| +blpl) < [IP@,p+1tq(0,p,p), p) (7.10)

for6 e V, pe L, pe W*\ D, 0 <t <1 and some positive a, b.

A proof will be given in the next section. Take an arbitrary point 6 € V, choose a big parameter
r, and consider the 5-chain M (r) in Ec x W* given by the mapping

H x (B*(r)\ D) x [0,1] > Ec x W*, (p,p,t) = (p+1tq(6, p, p), p) (7.11)

where B*(r) is the ball in W* of radius r. Define an orientation by the form dx Ady Ado Adt Adt.
By Stokes Theorem we get

/ exw = f d(exw) = / 56,( AW (7.12)
IM(r) M(r) M(r)

The boundary d M (r) consists of the four pieces:
IM(r)y = Mo(r)UM(r)UH(r)UW(r), (7.13)

where My (r), M| (r) are the intersections of M (r) with the hyperplanes t = 0 and t = 1 oriented by
the forms Fdp A dx A dy, respectively. The pieces H(r), W(r) are the intersections of M (r) with
the hypersurfaces p € dH, p € 3(B*(r) \ D), respectively. We have

ex|H(r) =0, o|W()=0. (7.14)

Indeed, the first equation follows from (7.3). The images of the vectors d/dx, 3/dy, 9/9t, y under
the mapping (7.11) generate the tangent space of the chain W(r), where y is an arbitrary tangent
vector to the boundary of B*(r) \ D. The form dp = do A dt vanishes on any pair of these vectors,
which implies the second Equation (7.14). Combining (7.12), (7.13), and (7.14), we get the relation

/ emo:/ eKw—f i-?eK Aw. (7.15)
My(r) M (r) M(r)
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On the other hand, we have

/ eKw_,/eKj/ exp 1 ®) fw dpdxdy = (27)*F (ex f) (6)
My E w*

asr — oo, where My = Mp(r) UL x D. R .
For an arbitrary B > 0 we introduce the notation fw g(p0) = exp(—Blpl) fw(p).

Lemma 3.

For any compact sets K, L, and cone V that satisfy (6.2) and any constant 8 < b there exists

a constant ¢ > 0 such that for any s > 0 and an arbitrary function f in H with finite energy the
following inequality holds:

A 2 ~ |2
c [ \Fexnitae <exps) [ |fwal do+ [ |fu] dp+ew-2s1y  16)
v W*\D D
Proof. Write (7.15) as follows

f exkw=L+0L+13,
My

where
ne) = / e
LxD
LO) = exp(—ald) / /W K o) DYDY 6.5 Faadp AdE A5
BO) = - f T PO, . 0D fu ek (5.9 ndp £ d Ad5
M(r)
@, p,p) = ®06,p+itqg,p)—1tald|+blpl)

Write the first integral in the form [1(8) = F (eKjF*(xfw)),whereF = Fry-0,F* = Fp_(u)

are Fourier transforms and x is the indicator function of the cone D. By Plancherel’s identity for
the Fourier transform we have

/ 12 de
\%4

(27r)2f |eKjF* (xfw)|2dxdy
@t [ T e ()
@ry’CL f

IA

" A 2 4 A 2
F (xw)[ auav = @mter [ o) do. a7y
D
where C; = maxg 2y(1 — x2 — y2)~!, The second integral is estimated pointwise:
1@ < Cpexp—alol+5) [ |Fwato)|dp (7.18)
W*\D

with the constant Ci = max{|j(p +19)|, p € L, |q| < €}. Here we use (7.4) and the inequality
|exp(1W)| < 1. The kernels exp(—a|6|) and exp(—b'|pl), b’ > O are square-integrable. Therefore,
(7.18) implies the following inequality:

A 2
f ILI*d6 < C’ exp(2s) f | fw.s| do (7.19)
v W\D
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for an arbitrary 8 < b (and the constant C’ = C(b — B)~2).
Write the third integral as a three-fold one

1
1;(6) = / ( / ( f j () exp D @, . ) Fw dex (5, s)) dp) dx ady,
H B*(r)\D 0

where p = p + 1tq. From (7.5) follows the estimate |dex (P, 8)| < Ctexp(—s), where C does not

depend on s, hence in virtue of (7.10) we have

113(0)|

IA

1
C exp(—s) f ( f exp(—r(a|o|+b|p|))tdr) || o
w*\D 0

IA

Coxp(=s) [ +161+ 1072 |fwio)| do
W*\D
The kernel in the right side is square-integrable and, moreover,
[ o+ 1o0~ap < c+ 1602
hence, the right side is estimated by the quantity
C exp(—ys) A |2 12
Contn ([ |ifar)”
(14100 W\D
We extend the integration to W and apply Plancherel’s Theorem:
Y 5 5
|Fw| do < [ 1wl dudv = 11,
W*\D

This gives the estimate
C exp(—s)

6O < g 11

and
fv B dp < Cexp(=29) 1 F1}

This together with (7.17) and (7.19) imply the lemma. O

Lemma 4.
For arbitrary sets K, L, V as above there exists positive ¢ such that

. 2 \1/2
[ \F expitao < IMfI 0+ (f | Fw.s0)| dp) 1/ 1e
14 w*\D
Proof. Take the number s that validates the equation
A 2 2
exp(@s) [ |fwa| do =110}
w*\D
We have s > 0 in virtue of the inequality

A 2 ~ |2
[ 1wl o < [ || ao = @nr* [ 11w dudv = @mia 11

(7.20)
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Substitute this parameter in (7.16) and get (7.20). O

Now we assume that the compact K is so small that §(S(K), R)+/R(p) < Blp|, where R(p) =
72 — a2, Apply (6.4)to h = fy:

[ |walao< [ |exe (-850, RIVR) @) a0 < [ |w[" do
W*\D w* D

By Corollary 2 the right side is equal | M f ||34' 12 Therefore, the second term in (7.20) is estimated

by the product ||Mf|l 4,12 | fllz. The first term is also bounded by this product, since (5.4).
Consequently, Lemma 4 implies Theorem 4. Theorem 5 follows from this lemma and:

Lemma 5.
There exist positive numbers ¢, C such that

~ 2 . 2
/w'\olf wa(o)| dp < f lexp(—clonf@)| a

for any function f with finite energy.

We shall prove this lemma in the next section.
8. The Estimate in the Silent Zone and Lemmata

Proof of Theorem 6. Choose Euclidean coordinates &,  in E* such that the minimum in (6.3)
is reached at the vector 6y = (1, 0), i.e.,

[60 1k + [ 60 Tk=26(K, Q)v—Q (6o)

Choose a point g € E such that [ 8y 1x +60(g) = —60 1k —60(q) and set K’ = K + q. We have

[60 1x'=1 —60 1x'=8(K, Q)v—Q (60)

This implies that there exists a constant b such that the inequality

F&,m k=< 8(K, Q)v—Q(,n) +bin|

holds in E*. The support of the function hy(p) = h(p — q) is contained in K’. By the above
inequality and the Paley—Wiener theorem we have

liq (£.7)| = cexp (1 (3, 57) 1x7) = Cn) exp(8(K, Q=0 n)

in the complexified space E¢.. Therefore, we can apply the interpolation formula (4.2) to ﬁq(o) =
exp(——ze(q))fz with respect to the variable &:

A in (5(K, Q=00 ) »
hq(g,n)=exp(a(K,Q),/Q(e))/ sin (3(K, Q)v—0@, ) h(x, n)dA ,

0(Lm)<0 |A —§|

It can written in the form of convolution in variable &:

(1 - x)exp (—a(Q, K)\/E)fl —exh,
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where

dEpL :
e®) = . h=yxsin (3L, ©V=0)

and y is the indicator function of the cone V(Q). The convolution with the kernel e is a unitary
operator in Ly (R). Therefore, for each n we have

f(l—x)|exp (s, Q)@)ﬁ\zds =flﬁ|2ds sf|xﬁ|2ds.

Integrating this inequality with respect to 1, we obtain the following inequality for L;-norms:

- o (i, W) < o :
Proof of Lemma 2. Assume that 6 € V and p € W* \ D. The gradient of the phase function
Vo = (<p;, 4’}) =0+ (0Vu + V) 8.1)

is the sum of the vector —8 € V and of the vector p* = oVu + 7Vv which is contained in the
cone Vp, =d S;‘,(W* \ D). The closures of the cones V and V,j‘ have no common non-zero element
because of (6.2). The angle between these cones is a positive continuous function of p € L. For
arbitrary non-zero vectors 6,6’ € E* we denote by ¢ (6, 6') one half of the angle between these
vectors such that 0 < ¢ (6, 8’) < m /4. Similarly, we define an angle ¢ (6, U) for a vector and a cone
U. For arbitrary elements § € V,6’ € V' we have

|6 +6'|> = (1 —cos2¢ (9,6) (|0|2 ¥+ |9’|2) > sin2¢ (6, V') 161% +sin? ¢ (6/, V) |6’
It follows from (8.1) that

sin2 (6, V,) 1012 + sin2 ¢ (0%, V) |0*|* < IVOI* < (101 + |0*])*
Set
SO) = m1251n 29(0,Vp) 1012, T(p) = mmsm 2¢ (0%, V) |po* |

nd S©)+ (o)
) p
q=86————>5VP,p,p)
VO, p, )l
inV x L x W*\ D, where § is a positive parameter to be specified. The functions S and T are
continuous and homogeneous of degree 1, hence the field g is continuous and homogeneous of order

0 with respect to the variables 6, p. It has the following upper bound:
(sing (6, V,) + sin ¢ (0%, V)
2sing (0, V) sing (p*, V)

Choose 8 small enough to validate (7.9). Show that the field g satisfies (7.10). By Lagrange theorem
we have forsome t/, 0 <t/ <t

lg (@, p, p)| < 6mgx

J®6, p +1tq, p)

t2
= tV®@®, p, p)g @, p, p) — —3V2<b (6, p+1t'q, p) (g6, p, p))

12 (5(9) + T(p))?
N T _
HSO) + T~ g e
(v +t23) (SO6) +T(p)),

SO)+ T(p)
2IVol

V30 (9, p +1t'q, p) (VO)

V230 (8, p +1t'q, p) (VO)
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The quantity B is uniformly bounded with respect to all variables, since (7.9) and the relation
V2@, p + 19, p)| = O(18] + |p|). Therefore, for sufficiently small ¢ the right side is estimated
from below by, f.e. 2t/3(S + T). This proves (7.10), if we take into account that S and T are
continuous and positive. O

Proof of Lemma 5. Write fw_ﬂ(p) = foE‘ v, where

v =exp(—t® 6, p, p) — Blpl) £(6)dO A du Adv

Choose a number g’ < . By the method of the previous proof we find a field ¢ = q(6, p, p) such
that

-3, p+19,p) +B'lpl = 16| (8.2)
for a positive ¢’. We construct this field in the form

o Vo, p, p)
IV®@, p, o)l + Blol’

where o is a positive parameter. The denominator does not vanish in V x W* \ D. This field is
well-defined continuous and homogeneous of degree 0. We have

q ==

Vo2

—30@, p+1q.p)+ Blpl =0 —
p+ig.p)+h Vol + Blp]

+Em+o@§

If o is sufficiently small, the right side is estimated from below by ¢’|#| for some positive ¢’. Fix
6 € E*, anumber r and consider the 5-chain N(r) in E* x Ec given by the parameterization:

@ €B(r),peE,tel0,1)— (0,p=p+1tq(, p, p))

The form v is holomorphic in 6 and p; hence,

/ U= / dv =0
IN(r) N(r)

Inequality (8.2) implies that integral of v over the piece of dN (r), where |#| = r tends to zero as
r — oo. Comparing integrals over two pieces of the boundary of N(r), wheret = O and t = 1
correspondingly, we get the equation

/ U=f exp (—19(9, p +1q, p) — Blp) f(O)dEdndudv
WxE* WxE*

By (8.2) we can estimate the right side by the integral over E* of the density exp(—c IBI) f 0)d6.

This integral can be estimated by Lz-norm of the function exp(—c|6]) f for any ¢ < ¢/, whence
Ifw p'l < Cllexp(— c|0|)f|| in W*\ D. The L;-norm of fw g in this cone is estimated by the
supremum of the left side, since 8’ < B. Consequently, the last inequality implies Lemma 5. O
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