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ABSTRACT. For0 < a < 0o let Ty f denote one of the operators

1 , 1/r
aof(x)—?uplll"exp(“l/loglfl). of(x)—ll\gbggllla(”l‘[lfl) .

We characterize the pairs of weights (u, v) for which Ty is a bounded operator from LP (v) to L9 (u), 0 <
p < q < oo. This extends to « > 0 the norm inequalities for a = 0 in [4, 16]. As an application we give
lower bounds for convolutions ¢ x f, where ¢ is a radially decreasing function.

1. Introduction

For 0 < o < oo we define the geometric fractional maximal operator of order a by
1
Myof(x) = sup|I|®exp ( / log)
Iax |1

1 1/r
= suplim |I|* (—/f’) .
o i,

(Throughout this paper all functions will be non-negative.) If we (formally) interchange the limit
and supremum we obtain the maximal operator

1 l/r
* = l I(I - T
Mia10 = it (o 1)

= lim [Mar (@],

where

M) =swp i [ £ 0<n<t,
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is the fractional maximal operator of order . The weighted norm inequalities for the fractional
maximal operator have been studied extensively [1, 2, 9, 10, 12], but its geometric versions have not,
as far as we are aware, been examined except in the case @ = 0 [4, 16]. We will return to this case
below.

By Jensen’s inequality, Mq,0f(x) < M f(x), and a strict inequality is possible: if f =
X[1.00), then for x < 1, My o f(x) = 0 while M* of(x) equals oo, if @ > 0, and equals 1, if ¢ = 0.

The purpose of this paper is to charactenze the two-weight, weak type and strong type norm
inequalities for My,0f and M, f. (By a pair of weights («, v) we mean non-negative, locally
integrable functions.) Our four main results are the following:

Theorem 1.
Given) <a <oo0and0 < p < q < 00, the following are equivalent:
1) ,v)e W;,’f’q; o © there exists a constant ¢ such that for every interval I

1 q/p
m/ |1|'+<"-‘/P>q [e"p(mf hg”)] ’

a/p
@) u({r: Maof @) >y}) = (f f”v) :

Theorem 2.
Given(0 < a <o0oand0 < p < q < oo, the following are equivalent:

(1 (u, v) € W™ : there exists a constant ¢ such that for every interval I
p.gie’ ry

q/p
/Map.o (v"x:) u<cll|4r;
1

q/p
) fR (Maof)'u<c ( f f”v) )

To state the corresponding results for M, , we introduce the following condition.

Definition 1. We say that v € Ig 0, 0 < B < o0, if

1 1 e
limsup——(— | v™° < o0
[71*=A \11] J; ’

where the lim sup is taken over all intervals  with 0 € I as |[I| - oo and o \( 0.

Theorem 3.

Given) <a <ooand0 < p < g < o0, the following are equivalent:

) (u,v) e W pqa and v € lppo;

¢ » q/p
. * —_—

@) u(lx: Meor® > }) = ([;‘f ") :
Theorem 4.

Given0 < a <ooand0 < p < q < o0, the following are equivalent:

(1) (u,v) € W;"q*a and v € Inp,oo;

q/p
@ [ @zorru<e ( [ f”v) .

Remark 1. We shall see that in Theorems 1 through 4, if «p > 1 then there are no restrictions on
p and g other than 0 < p < g < 0o. On the other hand, if 0 <ap < land 1/p — 1/g9 > «, then
the norm inequalities are trivial since u will be identically zero.
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The case @ = 0 and p = g was examined extensively in [4, 16]. The proofs given in [4] are
based on norm inequalities for the minimal operator

mf(x) = mf — f
f T f.
We refer the reader to [4, 5] for further details.

The proofs of Theorems 1 through 4 will follow a similar pattern: we firstexamine the fractional
minimal operator of order o:

me f(x) = lll”“’ff 0<a<o00.

A limiting process will then give us Theorems 1 and 2. Then to prove Theorems 3 and 4 we establish
a condition on f for My o f and M 0 f to be equal and use the I,p oo condition to get the general
result by an approximation argument.

We note that while the general argument follows that in [4], the factor |7|* introduces compli-
cations which require non-trivial extensions to the proofs given there.

Our results are restricted to the real line because at present we do not have n-dimensional
versions of the norm inequalities for the fractional minimal operator. As soon as these can be
extended to n dimensions, the theorems of this paper immediately extend to higher dimensions.

The remainder of the paper is organized as follows. In Sections 2 and 3 we prove Theorems 1
and 2. In Section 4 we examine the structure of the weight classes that appear in these theorems. In
Sections 5 and 6 we build the machinery necessary to prove Theorems 3 and 4; the actual proofs are
in Section 7. As a corollary we give a sufficient condition for the strong-type norm inequality which
omits the Iyp oo condition. In Section 8 we give an application of My o and M, a0 to convolution
operators T f = f x ¢, showing that they can be used to find pointwise lower bounds forTf.

Throughout this paper all notation is standard or will be defined as needed. Again, by weights
we will always mean non-negative functions which are locally integrable and positive on a set of
positive measure. Given a Borel set E and a weight v, | E| will denote the Lebesgue measure of E
and v(E) = fE vdx. Given 1 < p < 00, p’ = p/(p — 1) will denote the conjugate exponent of p.
Finally, ¢ will denote a positive constant whose value may change at each appearance.

2. Proof of Theorem 1

We define the geometric fractional minimal operator of order &, 0 < a < 00, by

1 1
ma0f(x) = mee P(|I|fl gf) .

It follows immediately from this definition that

1
ma,0f(x)

We introduce the geometric fractional minimal operator since, unlike the geometric fractional
maximal operator My o, it can be written as a limit of sublinear operators — in this case the mgs.

Lemma 1.
Given) <a < oo, if f7 € L,’aC for somer > 0, thenasr 0,

= Ma,0(1/1)(x) . 2.1

Mar (fNY)YT N ma 0 f(x)
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Proof. First observe that the limit exists since

1 . 1/r 1 1 , 1/r
<|1|'+w/f) ‘W(mff)

and the right-hand side clearly decreases with r. Let R be the limit. By Jensen’s inequality

1 1 1 1 A1 1 (1 Rt
Wx(lnf gf) m“[ (mf,“gf)] fw(mf,f) ’

s0 my,0f(x) < R. For the reverse inequality, let A < R. Then, if we fix I with x € I, forr > 0 we

get
r 1/r 1 rl/r
* < ) <|7Ta(mff) '

Since f” is locally integrable for r small, if we let r N\ 0 we get

1 1
A< — I .
e °"p(|1|f gf)

Hence, A < mq o f(x). O

Remark 2. Lemma 1 remains true (with essentially the same proof) if we replace f with f/x;
for some interval / and assume f/x; € L"(I) for some r > 0.

Lemma 2.
Given0) <a <ooand0 < p < q < oo, the following are equivalent:
(@))] (u, v) € W, 4. With constant co: for any interval I,
1 L\ (p+Da/p
— [y .
] f |1I'+("’""”)" (III fl )
v \9/P
@ wrimas@ <t < S ([ 27

In the implication (2) — (1), co = ¢y, and in (l) — (2), c| is at most cg29/P.

Proof. (2) — (1). Clearly, we may assume that [, v!//?*!) < co. If v = 0 on I, then letting
f=1/xsand y = 1, (2) implies that u = 0 on I. Therefore, we may assume that [, v!/(P+D > 0.
Then if we let f = v!/P*D /x;, we see that for x € I,

1
Mo ) = T /vl/(P+l) -

< |-

and (1) follows with co = c;.
(1) > (2). Let E, = {x : mq f(x) < 1/y}. Then for every x € E|, there exists an interval I, C Ey

such that
1 / < 1
| L1+ Iy y

Hence, Ey = |J, Ix. By a well-known result, this collection can be replaced by a countable
subcollection {I;}. Further, we may assume that this collection has overlap of at most 2. (See, for
example, Lemmas 2.1 and 2.2 in [5].) Therefore, since (4, v) € W), 4., With constant co,

—-q (f v,/(p+1))(p+1)q/p
co I;
V<2 |

e (f’i f)q

(5) < )l

j j



Geometric Fractional Maximal Operators 49

By Holder’s inequality,

1/(p+1) 1/(p+1) p/(p+1)
W+ = [ 2D ey (2 f
I 1 fP/(P+D) —\J; fP I ’

q/
so u(Ey) < %2— ( /] 1 7"7) p. Finally, since ¢ > p and the sum is over intervals with overlap at
most 2, we get
24/p q/p
u(Ey) < <0 ( / L) .
ye R fP
O

Remark 3. If (4, v) € Wp 4. WithO < p < g < oo and 1/p — 1/q > a, then the weak-type
inequality (2) is trivial since # must be identically zero. We will show this in Section 4.

Proof of Theorem 1. Using (2.1) we may restate (2) of Theorem 1 as

) ¢ v \4/P
@) u({x:maof) < 13)) < (fR F) .
Proof. (2') = (1). Clearly, we may assume that exp (I—;f i 1 log v) < 00. If this expression is

0, let f = v”"/x,. Then for all x € I, mgof(x) = 0, so for all y > 0, (2') implies that
u(I) < c|I19P/y4. This implies u = 0 on I, so (1) is trivial. Therefore, we may assume that

exp (]}—I J; log v) > 0. In this case, again with f = v!/?/x;, if x € I then

1 1 1/p
<l—— — 1 =1
maof () < oo exp(”I f, ogv) /y

for some 0 < y < 0o. Then (2') implies that

¢ ! YP aip
exp —flo v) |I19/P |
1] (m e
which gives us (1).

(1) = (2'). Given any r > 0, the W"fq; o condition gives

(p+r
Ll — exp(i [togiriess i
i Jr - |1|1+a(e-1/p) 1 J;

1 1 (14+p/r)q/p
g | = p1/Q+p/r)
[11+a@=17P) \11 J; '

Since g/p = %/L; and g = ragq/r, we see that (u,v) € Wp/rq/r.ra With constant co. Now
fix f such that f© € L,loc for r sufficiently small, let Ey, = {x : mqof(x) < 1/y}, and let
Ej, ={x: mpo(f7)(x) < 1/y"}. By Lemma 1, u(Ej) /7 u(Ey) asr ™ 0. By Lemma 2

«(E)

ul) <

IA

u({x :mer (f7) ) < 1/¥"})
24/P¢, v ¥
(ne’r (/IR (f')”/')

29/P¢, (/ v )q/p
oy \Ursr '

IA
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If we let r N\ O this gives us (2').
Now to prove (2') in general, fix f. Then forn > O and m > O, let I, = [—n, n] and
Jnm = min(f, m)/xy,. Then fy  is locally integrable on I, so the previous argument shows that

q/p
u ({x : ma0 famx) < 1/y}) L, ( —v—)

y9 \J1, min(f, m)P

¢ v \4/P ¢ a/p
¥ (/1 F) Tty (/1 v) '

Note that f, m < f/x1, for all m, so mq 0 fa.m < ma,0(f/x1,)- Hence,

u({x s mao (F/x1,) ®) < 1/y}) <u({x : maofamx) < 1/y}) .

Therefore, since v is locally integrable, if we first take the limit as m ' oo we get

w ({x : mao (F/x1) @) < 173)) < —( f fp)q,,, .

By definition, f/x1, \ f, so a straight-forward argument shows that mq o(f/x1,) \ Mq,0f.
Hence, by the monotone convergence theorem,

u({x:mao (f/x1,) ®) < 1/y}) /u({x :maofx) <1/¥}) ,
and (2') follows at once. O

IA

Remark 4. As in Remark 2, if (4, v) € Woora With0 < p,g <ooand 1/p — 1/q > a, then
this result is trivial since u = 0. See Section 4

3. Proof of Theorem 2

We begin with the strong-type norm inequality for m, o. Note that in the case « = 0, p = g,
this gives a new and somewhat simpler proof for the minimal operator than that given in [S]. For the
proof we need the following lemma, which will also be used in Section 4.

Lemma 3.
Given a non-negative, locally integrable function h, a non-negative Borel measure w, ¢ > 0,
and an interval 1, let {1g} be a collection of intervals contained in I such that, for each , |, I hdu <

Nu(p)'*e. IfJ = Ug Ip, then [y hdu < 2 Nu()*2. A similar result holds if we reverse
the inequalities and replace 2'+Y* N with N /2'*® in the conclusion.
In the case o = 0 and for Lebesgue measure, Lemma 3 is originally due to Muckenhoupt [11].

A proof in this case is also given in Lemma 4.1 in [5]; the proof there also works in the case of « > 0
and for arbitrary measure with essentially no change.

Lemma 4.
Given0 <a < oo and0 < p < q < oo, the following are equivalent:

¢)) (u,v) € W; - with constant cy: for any interval I,

q/p
f __“_E =<0 (_/ 0') ,  where o = /@D .
1 Ma (G/Xl) 1

) u v \9/P
- < —_ i
) fm maf)? = ! (fn f”)
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In the implication (2) — (1), co = c1; in the implication (1) — (2), ¢} = nco29/P, where p
is an absolute constant.

Proof. (2) - (1). If welet f =a/x;, then the W* e condition follows immediately from (1).
(1)—(2). We first assume that v is everywhere positive. We will treat the general case at the
end.
Fix f > O such that 1/f € L?(v). We may assume without loss of generality that 1/f has
compact support. Otherwise, replace f by fn = f/X(-n.n)- Then mq fn(x) \ mq f(x) and (2)

follows for general f by the monotone convergence theorem.
Now fix € > 0 and let a. = 1 + €. For every k € Z, define
A = [Jc:a;"_1 <mgf(x) <a:kl .

Let x € Ai. Then there exists an open interval I¥ > x such that

1

k—1 —k
a < <a

¢ |Ia’:‘|l+°’ Ik ! ¢

Hence, Ay C U If . Therefore, for each k there exists a countable subcollection 1 f such that
Ar c U I" (This is a classical result; see [5] for a proof.) Now define disjoint sets E" by:
E" = I1 N Ak and j > 1, E" (I" \ Ut<j ; k) N Ax. Then each Ay is the union of the E"s and the
Efs are pairwise disjoint for all j and k.

Now, since it is clear that W; gia € Wp.q:a> by Lemma 2, u({x : mq f(x) = 0}) = 0, so

/mﬁﬁ B Z/ (m:f)"

keZ

-y f i
ik E;f (maf)q

IA
Q
mny
s
o
[e5]
~ R
—
Q
na
=

I+ay\ 9
i

—q
j 1
= ot u(E}) | = : fi-a =L,
k.j o (If) o (If) i
where o = v1/(PtD_ Note that 0(1}‘) > 0 since v is positive, and o (1 }‘) < oo since by Holder’s

inequality
v 1/(p+1) (p+1)/p
o(l’.‘ < f— /f < 00.
/) (1,* f”) (1;

Let w be the measure on X = N x Z defined by

X " q(l+a)
" (E}) .Ij |

w(j, k) =

Define two operators

Sh(j, k) =

sighe
o (Ij‘) ,
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By Hoélder’s inequality, Sh(j, k) < T(h™")(j,k)!/" forall r > 0. Let r = p/2; if T is bounded
from L2(0) to L%4/P(X, w), then

_ 2 2q/p v \9/P
L—af_/XS(f/a)"dwgag‘/;(r((g/f)l’ ) deaZc(/l;F) )

Since T is bounded on L* with constant 1, by Marcinkiewicz interpolation it will suffice to show
thatitis weak (1, g/p). (The constant c above will be an absolute constant y times the weak (1, g/ p)
constant.) Fix A > 0 and let

Eyx={(j,k) € X : Th(j, k) > A} .
Then (E") |I Iq(l+a)
_ J
 (Ey) = (J%Ej& Y

Since the f s are open, | J 1 f = |J I, where the I,s are open, disjoint intervals. Further, each Ef is
contained in a unique I,,. Butif x € Ef, then

1
ma (o/1) ) = — e [ o,
|1’.c | 1t
j
so by the W;, - condition,

wEY = Y /E

(v, 4
] k)EEA ma U/XI,,)

= LT fnr

" Eicl,

Z/ my a/)(,"
COZ(/I-" Cr)q/p .
%/lfha>‘/l‘}a

Since 1/f has compact support, all the I,,s are contained in some large interval. By Lemma 3,

2

- / ho > f o

AJr, In
Therefore, since g > p,

a/p 1 a/p 1 q/p
q/p z : = /p( =
co E,, (/{n a) < cp2 : (A /;n ha) < cg2? (A -/l;ha) ;

This establishes that T is weak (1, g/p). The constant in (2) is at most co29/Pal. However,
€ is arbitrary, so taking the limit as € \, 0 we get that constant in (2) is at most pco29/7.

U/Xl,.

IA

IA

Now if (j, k) € E,,
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Finally, to prove this for arbitrary v, replace v by v + 1, n > 0. Then the W* ¢: CODStant
of (u, v+ n) is o, and (2) follows for (u, v) by letting n \ 0, provided 1/f is locafl'y 'integrable.
However, if f is such that 1/f € LP(v) then 1/(f + €) is locally integrable and again in L?(v).
Since mq(f +€) \\ mq f, by the monotone convergence theorem (2) follows for general f. O

Proof of Theorem 2. Using (2.1) we may restate (2) of Theorem 2 as

) u v \9/P
@ fgreUs)

(2") — (1). If we substitute the test function f = v!/P/x; into (2”), thenforx € J C I,

1 1/ l) l[(lf )]‘/P
exp| — [ logv!/? exp| — [ logv

17 "(m e e [P\ir ), 8
[ e (57 f )]

= €X| — ogv o
171 P\ 171 J, %8

ma,0f (x) = mapo (v/X1) (x)l/p ,
and so (1) follows from (2.1).
(1) = (2"). Forr > 0, let o, = v/(P*7)_ Then for J a subinterval of I,

oo (5 [1069)] = 7 [o (g frome)|
s ogv €X o ogv
e [P\, % e [P\ J, %8
1 1/ ,)P/’ 1/ ,
— a o — a
|J|oP (I-’l 7 AN
1 1 pi¥ 1
z (—f"r') '—1+a7f0,’-lll“’
[J1*P \|J| J; |J] J
1 (p+r)/r
r ar
(|J|1+°"f,°’) H=

1
Map.0 W/ X1) ) < N mer (07 /x1) )P < mg, (0] /x1) )P/ - il fl o/ .

Therefore, for x € I,

IA

IA

Hence, forx € I,

Therefore, using identity (2.1), if we substitute this into (1) we get

u a/p
r
/——q/,SCo(/O,) :
Imar(arr/Xl) 1

where cg is the W;’f’;:a constant of (4, v). Since o] = /4D ang q/p = %%, (u,v) €W,
with constant cg. Therefore, by Lemma 4, given a function f”,

u salp v \9/P
_ < — A
fmma, (fryarr = He (fm f”)

By Lemma 1, if 7 is locally integrable for all » > 0 sufficiently small, then mq, (f" YW N\ maof,
so (2" follows by the monotone convergence theorem. To prove (2") for general f, we use an
approximation argument identical to that at the end of the proof of Theorem 1. O

/r.q/r.ar

Remark 5. (i) In the implication (1) — (2) the constant in (2) is at most wnco29/P, where cq is
00, *

the Wp‘q;‘x constant of (u, v).
(ii) Just as we noted in Remark 3 above, if 1/p — 1/gq > « then this result is trivial since if

* 00, * — . o s D
(u,v) € Wp'q;a (or Wp'q;a) then u = 0. We will prove this in Section 4.



54 David Cruz-Uribe, SFO, C.J. Neugebauer, and V. Olesen

4. Structure of the Weight Classes

Since a strong-type inequality implies the corresponding weak-type inequality, we immediately
have the following inclusions:
Wy o C Wpgia and W;oq'a C W;"q -
An immediate consequence of this is that unless 1/p — 1/g < « then all of these weight classes are
empty. To see this, suppose that 1/p — 1/g > « and (4, v) € W, 4.4:

1 L\ (p+Da/p
— | vl -
1 ./ III‘+(" \pe (lll fz )

Since v is locally integrable, if we let | 7| — 0, by the Lebesgue differentiation theorem the right-hand
side tends to O since 1 4+ (@ — 1/p)g < 0. Hence, u is equal to 0 almost everywhere, contradicting
our assumption that u is positive on a set of positive measure.

We will now show that the first inclusion above is actually an equality and that the second two
inclusions are proper. This is to be expected from the results in [4, 5], and our proofs are similar to
those given there.

C Wpgia -

Theorem 5.

If0<a<ooandO0<p=<q<oothenW, ., =Wpga.

Proof. Suppose (u,v) € W 4.0:

1 rrbalr 1/(p+1)
|l| / |1|1+q(a—1/p) (m[lf’) , whereo = v )

We must show that
u a/p
oy iy A
1 ma (@/x1)? I

Let E; = {x € I : mq(0/x1)(x) < 1/t}. Then for each x € E, there exists x € I} C E; such that

;/cml
e e

Since E, is open, it is the union of disjoint intervals; so by Lemma 3, E; = |J I}, where the I|s are

disjoint and
1 f 2l+a
—_— o< 2
I+a ==
THI f

k

00 R 00
L=qf ﬂ—‘u(E,)dr=q/ +qf =L +L;.
0 0 R

Clearly, Ly < R?u(lI). Since (u, v) € Wp 4.0,

(o]
L, < qu 171y " u (1) dt

< c/m a1 Z |I,:|_(l+“)qa (I,:)(”H)q/” dt
R

*® 1 t|(1+a)g/p 1
q-
ch g Z |I"| t(p+Dq/p dt

1
Ra/P

Therefore,

IA

|1|(l+a)q/p

IA
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Thus,

g |1|(1+ea/p

Now let R = o (I)7/P fu(I). Then the W), 4., condition implies that

RYP = c|I|(+ea/p
= oW’

and it follows at once that L < ¢ (f] a)q/". O
We summarize Lemmas 2 and 4 and Theorem 5 as follows:

Theorem 6.

Given) < a < ooand0 < p < q < o0, the following are equivalent:
() (u,v) € Wp g:a;

(ii) The weak-type inequality (2) of Theorem 2;

@iii) (u,v) € W*q :

(iv) The strong-type mequalu‘y (2) of Theorem 3.

We now construct examples to show that the inclusions W f’a C W°°q .« C Wpqa are

proper; thus, the above equalities fail in the limit. We do this on R with the indices 0 < & < 0o and
1/p—1 /q =a,0 < p < g < oo. First, a straight-forward calculation shows that (e*, e3P*/24) ¢
WP q.a \ W p q;a’

The second example is adapted from one in [4] and the reader is referred there for complete
details.

Define the pair (u, v) by
(14 x712) 27, = rta)
Step 1: (u,v) € W;"q.a.

For intervals of the form I = [0, t] we have

1t _ 1 a/p -
Hwme fon( )]
t Jo 7]

Since 1 + g(@ — 1/p) = 0, the W°° o condition is satisfied for intervals of the form [0, t]. If
I =[a,b],0 <a <b < oo, then we must show that

be=267'* _ ae'z“_l/2 1 bl alp _ =2
b—a exp |Il_/ ogv = cexp W .

but the proof given in [4] now applies with ¢ = 2.

Step 2: (u, v)¢W°°'
If1 =[O0, t]ander then

1 1 t q/p
map,0 (V/X1) )P < [ﬁ-e P(l l./ logv)]

11t q/p _
[exp (?./(; log v)] =277

and
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Hence,

——1 ‘/.‘ “ > 1 ft (l + —1/2)d
e — X x .
ta/p J, Map.0 (U/X[o,:])q/p ta/p—aq |,

Since q/p — aq = 1, the right-hand side tends to co as ¢ — 0.
The next theorem shows the relation between the A, condition and the weight classes of this
paper. Recall that (4, v) € A if

S0 1 (l /‘ l_p,)p—l -
— uy — v < 5
r I Jr I J;

First we need the following lemma.

Lemma 5.

Let (u,v) € Ap. Then, given 0 < c| < 1, there exists 0 < c3 < oo suchthat AC I, |A|<
ci|I| implies u(I) < couv(l \ A).

Proof. 1If B =1\ A, then by Holder’s inequality

1 1 r /4 RN Y4
1=— [ WM/Py=lP < (——/ v) <—f vl"’> ’
|B| Jg |B| Jp |B| Jp

from which it follows that

, p—-1 p—1
<Gl G ()
|B| /B 1 J; |B|
Since (u,v) € A, we get

7]

1 ¢ P=1
o= 1 =\is1) B
(i fiv=7)
Since |A| < c1|I| weseethat |B| > |I|(1—cy), and thus, u(I) < cov(I\ A), where c; = ¢/(1—cy)P.
O

Theorem 7.

Given (u,v) € Ap, suppose that v is bounded away from zero. Then for every q > p,
(u,v) € W,‘jf’q;a, wherea = 1/p — 1/q.

Proof. Fix g > p andlet c; = p/q. Without loss of generality, assume that v > 1. Let I be an

interval and let
A=[xe[:v(x)zexp(—q flogv)] .
plIl J;

Then |A| < q—fll’()? f;logv = c1]I|. Then by Lemma 5,

u(l) 502/ v < coexp (iflog) .,
A plIl J;

since on I \ A, v(x) < exp (F‘IITI J; log v). Therefore, (u,v) € W®

e whenao = 1/p — 1/q.
O
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Remark 6. Theorem 7 is false without the restriction that v is bounded away from zero. Let
u = v = |x|. Then (u,v) € Ap, p > 2, butif (4, v) were in W",’f’q:a then

1 a/p 1 a/p
m/;u [cxp(l—l—I logu)] sc(mflu) ,

which is impossible if g > p.

We now consider the case of “equal” weights — u = w?, v = w” — when 1/p — 1/q = a.

Our goal is to generalize Theorem 1.1 of [4] and show that in this case the three conditions W;°q*a,
and W, ;.o are equivalent to the Ay, condition. To do so we will need the A, 4.4 classes

of Ijluckenhoupt and Wheeden [12]. They showed that if 1/p — 1/g = «, then a necessary and

sufficient condition for the “one-weight,” strong-type norm inequality

1/q9 1/p
(o) ze )
R R
1 g 1/q 1 _y 1/p'
"p(ulf“’) (mf,"’ ) =
Theorem 8.

Given0 <a < 00,0 < p<q <oosuchthat1/p —1/q = «, and a weight w, the following
are equivalent:
00, *
1) (w9, wP) e qu ”
(2) (W, wP) e WiO..;
(3) (w?, wP) e Wy g.a;
“4) w? € Ax.

Proof. First note the above inclusions show that (1) — (2) = (3).

(3) = @). If (w?, wP) € Wp 4.0, then

1
/ /- ( q)p/(p+l)q (p+1)q/p
] 1] '

Hence, (w?)P/(P+14 satisfies the reverse Holder inequality with exponent (p + 1)q/p. Therefore,
by a result of Stromberg and Wheeden [15], w? € A.

is the A}, 4., condition:

(4) = (1). Foreveryr > 0,

_/Man‘o (w—pXI)q/p w? < / Mapr (w“"x,)q/”’ w?
: I

Since w? € Ay, there exists s > 1 such that w? € A;. Fixr sothats — 1 = q(1 — r)/pr, and let
v=wP', qo=gq/pr,and po = 1/r. Then 1/po — 1/q0 = apr and v € Ap; 4o.apr- To see this,

note that
(=) Gif)™
(_I_;_I/;wq> (%‘/I‘(wq)—pr/q(l—r))q(l—r)/Pr
s—1
- @) Gafer)
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and the right-hand side is uniformly bounded since w? € A;. Therefore, by the result of Muckenhoupt
and Wheeden given above,

q 90/ Po
fMap, (w“prxl)q/pr w? = / Mep, (v—l) 0 90 <ec (/ v—povpo) = c|I19/?
1 1

q P 00,
and so (w?, wP) € W) . O

Remark 7. Fix p, ¢, and « as in Theorem 8, and let po, go, and B be such that 1/pg — 1/g0 = B

and ¢ < qo. Then if w € Ap 4, a straight-forward calculation shows that w € A,, where

r =1+ go/py. Hence, (w?, wP) € W;?é?u.

5. Comparison of M, and M.,

We begin with an observation we designate as alemma because we will use it frequently below.

Lemma 6.
Given0) <a <ooand0 < p < oo, then

Mg o(fP)(x) =My, , o f ()" .
Proof. Letz = pr. Then

20 (f7) @) = lim Mar (£77) ()7 = lim Maz/p(f)" = Mgy, 0 f )P . O3

The next result is the analog of Theorem 1.4 of [4].

Theorem 9.
Suppose that a function f is supported in a compact interval Iy, f € L™(ly) for some
0 <rp <ooandlog f € L'(Iy). Then

M;of(x) = Muof(x), ae xeR.

Proof. We only have to show that M o f (x) < Mg,0f (x) forae. x. We first assume thatrg = 1.

STEP 1: If xo ¢ Iy, then M;‘of(xo) =0.
Let Iy = [a, b] and let r be such that 0 < r < min(1, 1/a). Suppose x9 > b. (The case
xo < a is handled exactly the same way.) Then

b*—a

xX0—a

1/r
Mar(f')<xo)‘/’s( ) (xo —a)® Mf (b*) ,

where M is the Hardy-Littlewood maximal operator and b < b* < xg. To see this, fix t € [y
and let J = [t, xo]. Now fix b*, b < b* < x¢ and let I* = [a, b*]. Note that for any such b*,
Mfb*) < | fll1/(d* — b) < oo. Then, since f = 0 off of Iy,

l ffr l/r _ I-’nl*l l/r 1 fr l/r
|J|1=er J, -\ e 17 0 I* Jyars
|Jm,.|)‘/’ a( 1 )
X0 —a
( ) O \marm et

b*_ l/r
( “) (xo —a)* Mf (b*) .

Xo—a
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As r N\ 0 the right-hand side tends to 0, and it follows that My ¢ f (x0) = 0.

STEP 2: If f(x) > y > 0 on Iy, then M;'Of(x) < Myof(x),ae. x € lp.
First observe that for x € Iy, the intervals used to compute My, (f")(x)1/",0 < ar < 1, can
be taken to lie in Iy. Second, by homogeneity we may assume that y > 1.

Fix § > O and let x € Iy. Then for each n € N with o/n < 1 there exists I,, C Iy containing
x such that

1 n

Since forx > 1andn € N

I
i gy g X L B
n n
it follows that
M-8 < (e +—— [ 1ogf+—t—— [ 5)
a,0 = n nllnll—a/n I nzllnll—a/n I,
1
<

a 1 "
1A (1+n|1n|/lnlogf+n—2Mf(x)) :

If we pass to a subsequence we may assume that either 7, — I, a non-degenerate interval with
x € I C Iy, or I, > {x}. In the first case, since

M n
lim (1+‘ﬁ+—5) = ¢
n—>o00 n n
if a, — a. we see that
1
Mo f(x)—8 < |I|"exp (m fl log f) < Mgof(x).

In the second case, if I, — {x}, sincelog f € L!(lp), wehavefora.e. x € Io,M;'Of(x)—s <
0,ife > 0,and if ¢ = 0, M;"Of(x) — 68 < f(x) < Myof(x). In either case, since § > 0 was
arbitrary, M;'()f(x) < Mqyof ).

STEP 3: M;‘Of(x) < My o f (x) for arbitrary f.
We reduce to the previous case: let

fx), fx)=1/n
fn(x) = l/n, f(X) < l/n’x € 10
0, x¢lp.

Since f, > f, by the above calculation, M;,o fx) < M(’;‘o Jn(x) = My 0 fn(x), so it will suffice to
show that

lim Ma,0fn(x) < Moo f(x),
n—0o

for a.e. x € Iy. Note that the intervals I used to compute My o fn(x) lie in I, since if I \ Iy contains
a non-degenerate interval then [, log f, = —oc. Fix § > 0, and choose I, C Iy containing x such

that
o 1
[1,1% exp log fn
|In| In

1 1
n « Tw 1 s l n
b °"p(|1,.|/1,.l°gf+un|f," °gf/f)
Moo f (x) - exp {M (log (fu/f) x15) )} -

Myofa(x)—46

IA

IA
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The desired inequality follows if
Jim M (log (fa/f) X1,) (x) =0,
forae. x € Ip. To see this, note that
(1) {M (log(fn/f)x1,)(x)} is non-increasing in n;
(ii) 0 < log fu/f < |log f| € L' (Iy);
(iii) [{x € Io : M(log(fn/f)x1e)(¥) > Y} < [}, 10g(fa/ ).

Since || Io log(fn/f) = 0asn — oo, the sequence in (i) tends to 0 in measure, and hence, has
a subsequence which converges a.e. to 0. This completes the proof if ro = 1.
Finally, in the case f € L (Ip), ro # 1, note that f™ e L!(ly), so by Lemma 6,

M o f (0 = Mo (f7°) (x) = Mo (£7°) (¥) = Majrof ). O
6. The Condition I,

The next four lemmas are technical results about the Ig o, condition. For the convenience of
the reader we repeat the definition from the Introduction.

Definition 2. Let0 < B < 0o. We say that v € I  if

1 1 l/a
limsup——(— [ v™° < 0
\71*=A \11] J; ’

where the lim sup is taken over all intervals I with 0 € I, |I| = 0o, and o \ 0.
The next lemma shows that the condition 0 € I can be weakened to xo € I for any fixed xo.

Lemma 7.
If v € Ig o, then the above lim sup is finite with the condition 0 € I replaced by xo € I.

Proof. Suppose not; then there exists a sequence of intervals {I;} with xg € I, |Iy| = 00, and a
sequence ok \, 0, such that

1 1 1o
lim —(—/ v'“") =00.
ko0 |Ie|'=8 \|It| J),

By Holder’s inequality we may assume that ox > €, where {€;} is any sequence converging to 0.
Define this sequence by letting J; be the smallest interval containing 0 and Ix. Then |Ji| = (14-€x)| k|
with g — 0. Therefore,

1 1 L 1 1 1 o) /o
e v“’k) > (——f v” ") — 00,
||t —# (Ifkl ./;k (1 + ) =PHYoe | R 1=B \ | Jy,

a contradiction. O

Lemma 8.
Suppose " € L,‘DC for somer > 0. Given K C R compact, let fx = fxr\k. If xo € R and
0 <a < oo, then

1 1/o 1 1/o
) U L L[\
N (m‘-w fzf ) MR (III“““ /If")
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where the lim sup is taken over all intervals I with xo € I, |I| - oo, and o — 0.

Proof. Let L be the left-hand side of the above equality, and let R be the right-hand side. Since
it is immediate that R < L, we only have to show that L < R, and so we may assume that L > 0.
There exists (|Ix|, ox) = (00, 0), xg € I, such that

1 l/ﬂk
L = lim (——/ f”") .
k=00 \ |I| 1= [},
We may assume that 1 /0 < |Ik|'/2. Let y =IL;,NK,Ly =1\ K. Then
1 1/ox 1 1/ok
)" = Gl )
(llkll_aak '/;k IIkll_aak Jk Ly

0] 1/o%
1 a,,)l/ak . f-’k fo*
= —_— + = .
(IIkll_""’" /lk T Iz, ™

Note that klim f° < |K|; further, since 1/oy — oo and L > 0,
=00 J J

1
1—aok / fak >
[Tk I

for some 0 < Tt < 1, and k > ko. Hence, for all k such that aoy < 1/2,

f_/ fak)l/ak ( 2K| )I/Uk
1 < (1+2 <{1+
( ka fak flk fak

2|K| 1/ox 2|K| I/
(1 + l1—ao; ) = (l + 1—ao; ) ’
T L] % T [ L 7%

and as k — oo the right-hand side tends to 1, which implies that L < R. O

The next result allows us to restrict to functions of compact support.

Lemma 9.
Suppose that v € Ig o and f € L'(v). If J, = [—n, n], then

Mjof) = lim Mj,(fxs,)®), xeR.

Proof. Since v € I o, there exists M > 0 and 1 > g > 0 such that if [I| > M,

1 1 1/eo
T (——fv“’“) <C<o.
[I|*=8 \ 1| J;

Fix x € R. There are two cases.

Case 1. There exists N > 0 and intervals {I;} such that x € I} C Jy and such that

1 k
* - i P — 17k
Mpof () = lim, (|1k|l—p/k ./Ik / ) '

Then forn > N we have Mg  f (x) = Mg (f xJ,) (%)
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Case 2. No such sequence exists. Then
1/o0
Mjof(x)= limsup |I|? ( /f") , xel.
(111.0) > (00,0) 1]

Since f > f x,,, the desired equality follows if ME'O f(x) = 0. To see this, fix € > 0 and choose a
compact set K such that flk\ x fv < €. Let fkx = fxr\k; then by Lemma 8,

1/o
Mg of(x) = limsup IIIﬁ( ffx> , xel.
(11,0)—>(00,0) ||

But by Holder’s inequality,

I |ﬂ( 1 / )l/d f f ( 1 / _a/(l_a))(l—o’)/o‘ < ce
KV = ,
1 |1|l B\

provided 0 /(1 — o) < 0¢. Since € > 0 is arbitrary we are done.
O

Remark 8. Note that the same argument using Holder’s inequality shows that under the hypotheses
of Lemma9, f” € L,'ac(dx) for some r > 0.

The next result will be used to establish the necessity of the Ip o condition in Theorems 3
and 4.

Lemma 10.
Assume that v ¢ Ig oo. Then there exists f € LY(v) such that M;,O f(x) = oo for every x.

Proof. Since v ¢ Ig , there exists a sequence {Ii} of intervals with 0 € Iy, |Ix| - oo, and

o — 0 such that
1 l/(Tk 3 1 ﬂ
— v’”") > k7 || P .
(”kl '/;k

f6) =) @) xp &) .

Then f € LY(v). Butif xo € R, then M;,of(xo) = 00. To see this, let r > 0 be such that
rB < 1, and let J; be the smallest interval containing x¢ and Ix. If oy < r, then

1 1/r IIkI 1/r 1 1/o%
B r 17Kl B ]
Wil (uu/ f) 2(ukl) 5 (|Ik|/ fk)
IIkI 1/r ﬁ( 1 [ _ak)l/ak (lIkl)l/r
—— _k
(w) A\ 15 ), 7]

As k gets arbitrarily large, | Ik | /| Jk] = 1,50 Mg, (f")(x0)!/" = oo forall r. Hence, M3 o f (x0) = 00
and we are done. O

Let ag|I| = 1/k2, and let

\%

Mg, (f7) (xo)'/"

7. The Proof of Theorems 3 and 4

We will only prove Theorem 4; the proof of Theorem 3 is essentially the same.
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We first rewrite (2) of Theorem 4 by replacing f by f!/7; we then use Lemma 6 to get

@ /R(MZ,,,of)q/Pu = /R (M;.o (fl/p))q v <c (_/R fv)q/p .

(2”") — (1). The inequality Mapof < M p of and Theorem 2 immediately imply that (4, v) €
W:°q*u Now if v ¢ Inp 0, then by Lemma 10 there exists f € L!(v) such that M* 0.0 (x) = oo for
every x € R. This contradicts (2") since we have assumed that |{x : u(x) > 0}| > 0

(1) = (2"). The proof follows from Theorem 2 and an approximation argument. Let Jy =

[-N,N]. By Lemma 9, M 0( fxmw) /M p of as N /' oo, so by the monotone convergence
theorem it will suffice to show that for each N,

q/p q/p |
/ apO fXJN u<C(]fXJ~> ’ fGL(v)

For each n € N, define

fx), f&x)=1/n, xely
dn(x) = 1/n, f(x)<1/n, xeJy
0, x¢Jy.

By Remark 7 after Lemma 9,
fre L,oc(dx) for some r > 0. Hence, ¢, € L'(Jy) and logg, € LY(Jx). Therefore, by
Theorem 9,
M;,,vodh,(x) = Map.0¢n (x),

for a.e. x. Therefore, by Theorem 2 and Remark 4,

alp ar
[ (00" 0 e ([ )"
where cg is the W°:*

p.q:a CONStant of (u, v). Clearly, the left-hand side is greater than [ M;p_o( Fxo)Pu;
further, since ¢, < (f+1/n)xyy € L'(Jy, v), by the dominated convergence theorem, flR Pnv > fR fxiyv.
This completes the proof of Theorem 4.

The conditions v € Iyp 0 and f € LP(v) restrict the size of f at infinity. The question arises
if these conditions can be replaced by simpler sufficient conditions. The next theorem gives such a
result.

Theorem 10.

Let0 <a <ooandfix0 <r < 0o such thatar < 1. For 0 < p < g < oo the following are
equivalent:

a1 ,v) e W:’q’?a with constant co;

(2) There is a constant 0 < ¢ < 0o such that for all f € L™ (dx)

‘LM;_Of"uSC(/;f”v)q/p.

Proof. (2) — (1). We must show that [; Map o(v™" x,)9/Pu < c|I|19/P. Fix I and let

_Jvx), v(x)=1/n
""(")‘[ 1/n, v(x)<1/n.
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Since 1/v, /' 1/v, and since for every interval J, [,logl/v, — [, log1/v, we have that
Mep o(v; ' x1) /' Mapo(v™'x;). Therefore, since v;'x; € L"(dx) and Mgpof < M, of

(2) implies
/Mc{po v x: uSC(/v,."v) :
1

and the W;‘;fa condition follows by the monotone convergence theorem.

(1) = (2). Fix f € L"(dx); without loss of generality we may assume that f € LP(v). Let
I, =[—n,n],n € N. Thenforany € > 0, (f + €)x5, € L"(dx). Since log(f + €) € LI(I,), by
Theorem 9,

Mg o ((f +€)x1,) ) = Moo ((f +©x1,) ), ae.x eR.
Therefore, by Theorem 2,

/ .0 fXI,. < /I;M;'O ((f +€)Xl,.)qu

q/p
= /RMa.o ((f+ex)u<c (/1 (f+€)”v) :

Since f € LP(v) and v is locally integrable, the right-hand side is finite and so by the dominated
convergence theorem,

q/p q/p
/RMZ.o(fXI,)"uSc(fl fPu) 50(/ fp,,) _

To complete the proof we need to show that M 0( fxi) 7/ Myof. But f7 € L'(dx), and since
0 <ar < 1,1 € Iy - Therefore, by Lemma 9 ,‘O(f’x,,,) /' M;,'O(f’), and the desired limit
follows from Lemma 6. O

8. Convolutions and M; ,, Mg,

Let ¢ : R — R, be radially decreasing with ||¢||; = 1, and let Tf = ¢ » f. Point-wise
estimates of 7 f (x) from above —e.g., |Tf(x)| < ||¢||1 M f (x) — are well known. The next result
shows that T f (x) can be estimated from below using the operators M}, ; and Mp o.

Theorem 11.
Fix0 <, B < 0o and let

00 -1
[_2;. .¢(_t)dt] s
e* Jo t¢

2(1+ B) /w p()tPdr .
0

A, @)

B(¢, B)

" Tfx) 2 max {A@, )Mz (£7) 07 B@. AMpo (F7) 07} .

Proof.  We first consider M?* a.0- Let 0 < o < 1; then by Holder’s inequality with respect to the
measure ¢ (x — y)dy,

| = /R 6 — N FT OV dy

o 1—o
( fR f(y)¢<x—y)dy) ( fk f(y)'”/“—"’¢<x—y>dy) .

IA
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Hence,
1<Tf®- [T ()], r=o0/1-0).

We need to estimate 7(f~")(x). We use the identity ¢(x — y) = f0°° Xxe,(y, t)dt, where
Ex(y,t) ={(y,t) : ¢(x — y) > t}, and interchange the order of integration to get

(= [ " f foyayar,

where I, = {y : ¢(x — y) > t} is an interval centered at x. (Here we use the fact that ¢ is radially
decreasing.) For r such thatar < 1,

o0
T @ < [ el e Moy (7).
Since |I¢| = |{x : ¢(x) > t}| = A4(t), the distribution function of ¢, we get
[e¢] o0
/ Lyl dt = / Ap() ! dt
0 0
[o o] oo
f o (tl/(l-—ar)) dt =(1— ar)/ #* ()T~ dt,
0 0
where ¢* is the non-increasing rearrangement of ¢. Again by Holder’s inequality, for0 < r < 1

> ¢*(t)dt < (/00 ¢*(r)dt) .
0

tar tl!

0

Hence,
e <T@V s a—an [ "D e M (£ 0
0

and the desired inequality follows if we let r N\ 0.
For Mg o(1/f)(x) we proceed as above and write

Tf(x) = fo > |1x,|‘+f’(

With the same notation as above the last integral equals

/w rp()! TPt = /oo ** (zl/(”ﬂ)) dt=(1+p) fw o*()thdr .
0 0 0

f(y)dy> dt > mgof(x) fo M )P dt .

| &)+ Ji,

The desired inequality now follows from equality (2.1). O

Remark 9. (i) Ifa« = B = 0, then A(¢,0) = B(¢,0) = 1 and so Tf(x) > Mo(f~H(x)~!,
where My = M o is the geometric maximal operator studied in [4, 16].
(i) Let pe (1) = e~ @D (t/€) and let T, f (x) = infe>0 Pe * f(x). Then

T.f(x) 2 A@ )Mz (£71) 07

To see this let, ¥ = €. Then ||¥]|; = 1,50 ¥ * f(x) = AW, )M ,(f~")(x)~!. Since
¥ x f(x) = €“Pe x f(x) and A(Y, ) = e *A(¢, ), the assertion follows at once.
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