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ABSTRACT.  Itis well known that Gabor expansions generated by a lattice of Nyquist density are numerically
unstable, in the sense that they do not constitute frame decompositions. In this paper, we clarify exactly how
“bad” such Gabor expansions are, we make it clear precisely where the edge is between “enough” and
“too little,” and we find a remedy for their shortcomings in terms of a certain summability method. This
is done through an investigation of somewhat more general sequences of points in the time-frequency plane
than lattices (all of Nyquist density), which in a sense yields information about the uncertainty principle on a
finer scale than allowed by traditional density considerations. An important role is played by certain Hilbert
scales of function spaces, most notably by what we call the Schwartz scale and the Bargmann scale, and the
intrinsically interesting fact that the Bargmann transform provides a bounded invertible mapping between
these two scales. This permits us to turn the problems into interpolation problems in spaces of entire functions,
which we are able to treat.

1. Introduction

In his famous paper [10], Gabor proposed a signal representation which has had a fundamental
impact on the development of modern time-frequency analysis. Following Gabor’s original work,
we define g(x) = a=1/ 4e"‘2/ 2 fix two positive numbers xg, & such that xofp = 27, and ask when
an arbitrary f € L%(R) can be expanded into a series of the form

f&)~ D cmnglx — mxg)e™®

m,nez

for suitable coefficients c,,. The choice of lattice (mxg, n&p) in the time-frequency plane, usually
called the von Neumann lattice, seems very natural from the point of view of information theory
because it corresponds precisely to the Nyquist density. In spite of the fact that the time-frequency
“atoms”

gmn(x) = g(x — mxq)e ™% (1.1)
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span the whole space L2(R) and also coefficients ¢, can be found, Gabor’s representation has a
serious drawback (see [2, 13]): The sequence {gnn} does not constitute a frame in L2(R) [5], which
in this case means that the ratio

can be made arbitrarily small for nonzero vectors f € L%(R), and this implies that the coefficients ¢,
need not be square-summable. Nowadays, this numerical instability is usually seen as a consequence
of a more general result related to the uncertainty principle, the so-called Balian-Low theorem (see,
e.g., [3, 6]), which states that we cannot have a frame of the form (1.1) for any function g such
that both xg (x) and g’(x) belong to L2(R). Therefore, in present day’s Gabor analysis, one usually
studies lattices (mxo, n&p) for which xp&p < 27. Indeed, when g is a Gaussian, the condition
xoo < 27 is sufficient as well for the sequence g, » to build a frame in L2(R), and moreover,
a similar density condition is necessary and sufficient when the lattice is replaced by an arbitrary
sequence of points from the time-frequency plane (see [25, 30, 31]).

Nevertheless, because of the distinguished role played by Gabor’s expansion both in signal
analysis and in quantum mechanics, it is of interest to investigate more closely exactly how “bad”
the representation is, to find out precisely where is the edge between “enough” and “too little,” and
to find remedies for the shortcomings of the transform. The main purpose of this paper is to clarify
these matters and thus, in a sense, provide information about the uncertainty principle on a finer
scale than allowed by traditional density considerations. We shall see that Gabor representations
at the critical (Nyquist) density have basic properties that are analogous to those of non-harmonic
Fourier series (see [34] and [19] for survey of results on non-harmonic Fourier series): Convergence
improves if one imposes appropriate smoothness and decay conditions, and appropriate summation
methods can be designed.

Let us see how the term “finer scale” can be given an explicit meaning. We replace the lattice
(mxg, n&op) by a sequence of points which “in average” are uniformly distributed. To see the effect
of this approach while keeping matters as simple as possible in this introduction, we consider an
illuminating special case: Choose a real number § > —1, and define

fo7s) . 2
f F)g(x — mxo)e™odx| /1f12

s _ ) gx—(m+dx), n=0,m>0
8mn = &mn(x) otherwise.

We shall see that the effect of such shifts is similar to the phenomenon described by the Kadec 1/4
theorem of nonharmonic Fourier series (see [16] and also [34], Ch. 1, Sec. 10).

In addition, a literal “fine scale” playing an important role throughout the paper is the following
scale of Hilbert spaces. For @ > 0, we denote by X, the collection of those functions f which satisfy

1913, = [ (1724 wi) 17@Par+ [ (172+167) 17 @ < oo

here f stands for the Fourier transform of f € L%(—00, 00). Itis clear that with the norm || - lx, Xa
is a Hilbert space for every o > 0. We see that X, is invariant under Fourier transformation and
treats time and frequency in a symmetric way, naturally related to the uncertainty principle. For
instance, the Balian-Low theorem can be restated as saying that there is no function g € X; such
that the functions g, build a frame in Xp = L%(—00, 00). We shall call the collection of spaces
X, the Schwartz scale, as prompted by the fact that Ny>0X, equals the classical Schwartz space of
test functions.

We now describe those sequences g8, generated by the Gaussian g(x) = 7~ /4¢=**/2, which
lie on the edge between “enough” and “too little.” In mathematical terms, this means we are interested
in those sequences g3, which are complete and minimal systems in L?(—00, 00), i.e., which are
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complete and cease to be so on removal of any one of the functions gZ,,. Equivalently, a sequence
gl , is a complete and minimal system if and only if there exists a unique biorthogonal system he,
of functions from L2(—00, 00) such that

5 P _ |1, m=kandl=n
/ Emn (XA (x)dx _[ 0, otherwise.

We then associate with each function f € L2(—oo, o0) a formal series,

F~Y (e (12)
where

& (f) = f ® Foood () dx

Our work will mainly consist of investigating convergence and summability of general series of this
kind.

It is easy to identify those & for which the system g8 » is complete and minimal in L%(—00, 00).
This happens if and only if 0 < § < 1. (This statement follows from Theorem 5 and Example 2,
Section 3). In particular, it means that Gabor’s system is not complete and minimal in L2(—00, 00)
but it becomes so after one vector has been removed, since this corresponds to the case § = 1. To
some extent, this accounts for the bad behavior of Gabor’s original expansion, which corresponds
to the case § = 0 and thus has one “extra” vector. In this case the biorthogonal system exists in a
generalized sense; and none of its vectors are L? functions (see [2, 13, 14], where this biorthogonal
system was introduced and investigated). In particular it was shown in [14] that none of its elements
are L?(—o0, 00) functions for the whole range 1 < p < o0, but they do belong to L*°.

Let us now state typical results of the article for the special case of the systems g, ,.

Theorem 1.
Ifé € (0, 1/2) we have

f=Y e,

with convergence in L2(—oo, o0)-norm for every f € Xy1,2. If § > 1/2, and (a, b) & (Z \ {0}) x
Z)U (Z—- x {0}) U ((Z+ + 8) x {0}), we have

: ) )
ga.b # Rl—l—-bmoo Z Cmn(ga.b)gmn ’
m2+4n?<R?
even in the weak sense in L*(—00, 00).

To recover an arbitrary function from L?(—00, 00) and also extend the range of admissible 4,
we introduce a suitable summability method. More precisely, we shall prove the following theorem.

Theorem 2.

Let a € C2(0, 00) such that a(t) = 1fort €[0,1),a(t) € [0,1]fort € [1,2), anda(t) =0
fort > 2. Let also § € (0, 1) be a fixed number. Denote Apyp = m +inifm,n € Z, andn # 0 or
n=0and m < 0. Denote Ao =m + 6, m > 0. Then, for every f € Lz(—oo, 00),

10-a (22l e

m,n

=0.

L2(—00,00)

lim
R—00

Here Ayn =m +inifm,n € Z,andn #0orn=0andm <0,and Ao =m+ 68, m > 0.

Both these and other theorems on Gabor expansions proved in this paper are consequences of
results concerning the convergence of certain interpolation series for entire functions. Theorem 1
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follows from a somewhat more precise statement concerning entire functions, including a result
about the behavior in the boundary case § = 1/2. Theorem 1 is sharp in the sense that the X /2-norm
cannot be replaced by any norm X, with @ < 1/2.

The link between functions on R and entire functions is given by the Bargmann transform:

B:fr> F2)= (B = ”—f,q\/g / f@yeds=2 =gy (1.3)

We refer the reader to [9] as well as to the classical work [1] for basic information and background
concerning the Bargmann transform. Consider the Bargmann scale, which is the collection of spaces
B%, parametrized by a real number g8, where Bé consists of all entire functions satisfying

1/2
IFllg = (/ fch(z)lze”z'z'z(l +|zl)2”d'"z) =9 (1.4)

with dm denoting Lebesgue area measure on C.

Theorem A. For each function f € L?(—o00, oc) the integral in (1.3) converges in Bg norm. It
defines a unitary operator from L2(—0o0, 00) onto B%. The inverse operator is defined by the relation

- - 1 /2 7—32—12/2 —
B 1 F > (% IF) ) = m/;/LF(Z)erZ 72 12/2e 2|Z|2dmz .

We will see that the Bargmann transform is a bounded invertible mapping from Xg onto Bg, a
fact that can be viewed as a natural extension of the well-known property of the Bargmann transform
that it is a unitary transformation of L2(—00, 00) onto the classical Bargmann space B2 = B(z,.

The Bargmann scale and its connection to distribution theory were studied by Bargmann
himself [1]. Among many other things, he found that the image of the Schwartz space and of the
corresponding space of tempered distributions under the Bargmann transform are, respectively, the
intersection and the union of the spaces Bg, a fact which follows from the connection just mentioned
between the Schwartz and Bargmann scales.

In the analysis to be presented below, we shall replace lattices by more general systems of
points irregularly spaced through the complex plane, and we shall also prove a number of other
summability and convergence results. The next section consists of a discussion of Hilbert scales in
general and also presents some properties of functions from the special scales which appear in our
study. Then Section 3 contains some information about complete and minimal sequences for the
spaces 3,29. Sections 4 and S form the body of the paper and deal, respectively, with summability

and convergence in the spaces Bg and correspondingly in x%,

We end this introduction with two remarks concerning the origin of our work. The two of us
were (independently) attracted to this topic by Daubechies and Grossmann’s paper [7]. Together
with [13, 14] this article made clear and to some extent used the connection between Gabor expansions
and interpolation problems in the Bargmann space. The writing of the present paper was motivated
by arecent lecture of Feichtinger [8] about regular and irregular sampling in Gabor analysis.

2. Some Hilbert Scales of Function Spaces

We start by reviewing the definition of Hilbert scales and some of their basic properties. (A
good reference for this material is [18], Sec. 9.) Given a Hilbert space Hp and an unbounded positive
operator A : Hy — H) satisfying

IxllHo < N AxllHy, x € D(A),
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denote by M the set of elements x € Hy, for which all powers of A are defined:
M = NisoD(AY) . .1
For vectors x € M we introduce a family of norms,
lxll e = 1A% by, x € M, @ € (=00, 00) ;

here the fractional power A% is defined via the spectral representation of .A. Note that for every fixed
x € M, o — |Ix||g, is a nondecreasing logarithmically convex function. Completion of M with
respect to the norm || - || 5, yields a sequence of Hilbert spaces H = { Hy}, where o may range over
any interval I € (—o00, 00). This sequence of spaces is called a Hilbert scale, and A is said to be
the generating operator of this scale.

We shall use the following interpolation property of Hilbert scales, see [18, Theorem 9.1]. !

Theorem B. LetH = {Hy}aer, F = {Fy}aer be two Hilbert scales, A be the generating operator
of H and M be defined by (2.1). Let also

T: M—> NgFy
be a linear operator such that, for some o) < a2, a1, 3 € I,
ITxllF,; = Cjllxllb, x €M, j=1,2.
Then, for each @ € (g, a3),
ITx|lF, < C@)lxlla,, x € M

and thus T admits an extension to a continuous operator from Hy to Fy. O

Besides the Hilbert spaces which have already been introduced, namely Schwartz spaces { X}
on the real line; and weighted Bargmann spaces B2, we are interested in the following sequences of
function spaces.

Hardy spaces with fractional derivatives. Set D = {z; |z] < 1} and D™ = {z; |z| > 1}, and
consider the spaces of analytic functions in D and D™, respectively,

HZ(D)

[¢(z) = _an?"s 16l = laol* + ) lanl*n® < oo] , 2.2)
0

1

H2(D)

o0 [0 ¢]
lw(z) =Y @ W0y = a0l + Y lanl?n® < oo] . @23)
0

The spaces Hg(]D) and Hg(]])_) are the classical Hardy spaces; other spaces appear if one
considers fractional derivatives of order «.

Weighted Paley—Wiener spaces for the disk. Given a € R, let Cg be the space of all entire
functions of exponential type with the norm

00 2 172
IFllz = ( f f |F(re'®)2e™ (r + 1)2“+‘/2dedr) <. (2.4)
« 0o Jo

1 Actually in this article a stronger statement concerning logarithmic convexity of the norm is proved, but we shall
not use this fact.
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We shall see that the indicator diagrams of functions from this space are contained in D. (For
general information about entire functions, including indicator diagrams and the Borel transform,
we refer the reader to [21], Lecture 9.)

It is clear that Hardy spaces with fractional derivatives form a Hilbert scale. For the sequence
{H2(D)}, say, it suffices to take Hy = HZ(D) and the operator

[o¢) 00
A: Za,,z" > ao+Zannz" .
0 1

We shall prove that, at least after introducing equivalent norms, the other sequences of spaces in this
list are also Hilbert scales, and this will allow us to apply Theorem 2.
The following theorem gives a correspondence between the scales {Hj (D)} and {Li}.

Theorem 3.
Let @ € [—1, 1] be given. Let F be an entire function of exponential type and  be its Borel
transform. For F € z:?, it is necessary and sufficient that ¥ € H3 (D). In this case?

Il 2@y < IFlicz - 2.5)
In particular, we have

1
F@ =5 f Sy (@)dz | 26)
T J

where Y € H‘f(]D_) and L is an arbitrary simple rectificable curve such that D lies inside L.
Proof. Let the power series representation for F and its Borel transform be

00 o0

F@ =) o ad y© =3 o

0 0

respectively.

We need to compare the H‘f (D7)-norm of y and Eg-norm of F, given by the relations (2.2)
and (2.4), respectively.

Put F1(z) = F(z) — ag. Then

i

2 o & i6 2 2 2a+1/2
== co+] f |F1 (re' )l e~ (1 + 12+ 2404y | @7
0 0

F (re“’) |2 eV (1 +r)2*2404r

here o
co=2m f 1+ r)z"‘“/ze‘z’dr ,
0

/~oo /271
0 0
/00 /ZN
0 0

2Here and in what follows =< means that the ratio of the two sides is bounded from above and from below by two
positive constants.

and also

Fi (reio) |2 e~ (1 4 )2+t 2404y

Fy (re‘9)|2e'2’r2“+‘/2d9dr : (2.8)
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since F1(0) = 0 and @ > —1, the right-hand side of the latter relation perfectly makes sense; the
equivalence itself follows from mean-value inequalities.
Now we have

oo 2w 12
f f ‘Fl (re‘e)l e~ ret124, 49
o Jo
00 2 N2 0o ad |an|2
=/ rz""”'/ze"z’f |F1 (re'e)' drd6=27r/ rz"‘“/ze_z’Z—zrz"dr
0 0 0 T~ (n!)

=~ 2 L[ snisatiya -2
=2nZ|an| 0 r e “dr
1

(n)?

00 1 71 m+2e+3/2 4 0 O3 l
— _ —_ -7 n
_ZnZI:la,,l (2) (n!)2/0 e 't dt

0o 5 1 2n+2a+3/2 1
=2n le |an| [(5) Wr(zn + 20+ 3/2)] , (2.9)

where I is the classical I'-function. All the transitions above are justified because all integrands are
non-negative. Stirling’s formula yields

[5%(—:’—)2-1*(2,: + 20 + 3/2)] = (1+n)*.

We put this estimate into (2.9) and return to (2.7) finally obtaining (2.5). This completes the proof
of the theorem. O

Remark 1. In the case @ > 0, functions from HZ (D7) have boundary values on dD~. Hence,
(2.6) can be written as

Fo) = — / Sy )y .
2mi D~

Remark 2. It follows from Theorem 3 (at least after a renormalization) that the spaces L'% also
form a Hilbert scale. Therefore, one may use Theorem 2 to prove boundedness of linear operators
in these spaces.

Remark 3. Theorem 3 is an analog of the classical Paley—~Wiener theorem, which describes all
functions admitting the representation (2.6) when L is a segment. For o = 0, this was proved in [23];
see also [15]. For general values of « and convex domains with smooth boundaries instead of a disk,
the corresponding result was proved in [26]. The paper [24] treated the case of @ = 0 and arbitrary
convex domains. In our case, the proof is a straightforward generalization of that in [23].

We use Remark 2 to study properties of functions from Eg. We note first that the scales {Hg D)}
and {HE,, (D7)} are mutually dual, as follows by an obvious rewriting of the Riesz representation
formula:

Lemma 1.
The dual space (Hg(lD))* may be realized as Hza(ID“). Ify@Q) =39 apt " le Hza(]])_),
d@) =D bat" € Hg(]D), then the corresponding functional Ay has the form

Ay(@)=($,¥) = anbn
0

with
"A'#"(Hg(n))' ~ ”WHHZO,(D‘) :
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If, in addition, ¢ is analytic in a vicinity of Clos(D), this functional may be written in the form

1 Sm————
(9. ¥) = mew@)es(nd;,

where the curve L is such that D contains inside L and also ¢ is analytic inside L.
For each z € C the function ¢ — €% belongs to HZ,, (D) for all @ € R. Therefore, one may
read (2.6) as
F(z) = (e*, ¥ ()
for F € .C‘z, with some ¢ € Hg (D7); here (-, -) stands for the pairing between H(f (D7) and Hia D).
Lemma 2.

For eacha € R

le? ]l g2y = 121%7 4k, 2 > 0. (2.10)

Proof. When « is a non-negative integer, the H,f(l]))-norm is equivalent to the usual Hardy norm
of the function and its derivative of order «, respectively, and one can check (2.10) directly, by
estimating the integral along 3D representing the corresponding norm. In order to obtain (2.10)
when « is a negative integer, we have to consider e as a functional acting on HEa (D7), which is
possible thanks to the previous lemma. For intermediate as we may now apply Theorem 2. O

Lemma 3.
Let F € L%. Then

F(z) = o(D)|z|™* Y4ell as 7 > 0.

Proof. Theorem 3 allows one to restate the lemma in the following form. The sequence of operators
K, : HX(D™) — C defined by

K, ¥ o> (€7, 9 () |z|oT /e

converges strongly to zero as |z] — oo. This proposition is clearly valid on the set of those
VS Hg(D_) which are holomorphic in the closure of D™. This set is dense in H(f(ID_). Hence it
is enough to prove that sup, {|| K || H}(D‘)—»C} < 00. The latter follows from the Schwarz inequality

lleZ v ()| < |e* ||H3a(D) 1Yl 2~y

and the previous lemma. O

When studying convergence of interpolation series, we shall need integrability conditions on
contours of a certain special shape.

Definition 1. We say that a simple closed curve y is K-bounded if it is star-shaped with respect
to the origin and may be parametrized as y = {¢{ = p(@)e%; 0 € [0, 2]} with
1<p@®) <2, and peC'[0,27], |P'O)<K.

Lemma 4.

Let a function F € L?, be given, and suppose that for some K > 0 yny = {{ = pn ©)e~%;6
[0,27]}, N = 1,2,... are K-bounded contours.

Then, for each sequence Ry — oo,

Rﬁa+1f |F(RnE)|2e2RVE | de| — 0 . (2.11)
YN
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Proof. Consider the operators
1/2 = 1/2
Ve L2 = LY(), Ve : F > RGTPF(Ry e RV = REYV2 1y (0 F)
The conclusion of the lemma is clearly satisfied for those functions whose Borel transforms are

holomorphic in the closure of D™. These functions constitute a dense subset of £2, and hence it is
enough to prove that, for each @ € R,

Sxp{“ VN.a ||cg->Lz(yN)} <00. (2.12)
We shall prove this for integer as and then use Theorem 2. '
Consider the case & = 0. Set fy(8; F) = fn(pa(0)e0; F). Let yr € HOZ(ID") be the

Borel transform of F. We prove

3 —-1/2
1 fv®; Pl 202my < Const Ry 1Y Fl 2 - @.13)

from which (2.12) follows for « = 0. We have

2 : .
lfn(o; F)| le"‘w’"(") f " UrE?)es Ruan @ g (em)
0

2w )
< Constf YF (e“’)'e—R~p~(6)m(e'("—9>—1)dﬂ
0
2n
< Const / YF (ei")'e_RN(“’S("_G)—Udl? )
0
By the triangle inequality,
fn(6; F) | < Const —RN(cos(ﬁ—e)—l)" ‘
" 1 L20.2m) ~ 1V Fllz20.2m) Y

But the first factor is, up to a constant multiple, ||¥F|| HX(D")" Hence, a calculation gives

“e_RN (cos(@—8)—1) “ < Const Ry,
L'(O.Zn')

from which (2.13) follows.
Let now a be a positive integer. In this case, Yr € Hg(ID“) and
”‘/’(Fa) “H&( D7) < Const || F|| 2 An integration by parts yields

F (RnO) =/ Vr(D)e’Vdr = (-1)* / .‘/,(“)(T)etRN;dT
ltl=1

(RNC )*
It remains only to use the case @ = 0 already considered.
In the case @ = —pf, B a positive integer, we represent Y r as Yr(t) = Yo(r) + P(1/7),

where P is a polynomial of degree at most 8 + 2 and ¥o(r) = O(1/ #+3) as 1 — o0o. Then

F (RnY) =f Vo(r)e*®Vdt + Q (Rn?) .

It|=14€

This may be done such that

||1/f0||H2(D )= "\/fF"HZ(D y < Const ||F||[;2 )
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and Q(z) = (()‘HZ) ckz", where, for each k, we have |cx| < Const || F|| c2 Now it is easy to

estimate || Ry™/2 Q(Ry¢)e RN 2., 1. Besides, the function

¢ 9] ¢p-1
W1(§)=f d(lf d(z---[ digyo (¢p)

(o]

is well-defined, belongs to H&(ID‘) and ||y ]| H2X(D") < Const ||yl H} D) Integrating by parts,
we obtain

F (Ry¢) = (=1)P (Ry?)P Y1(0)e™ RV dr + Q(RNE) .

Itl=1
To get (2.12) in this case, we use what has already been proved when o = 0. O

Remark 4. In what follows, we will use this lemma to study functions from B2 as well. To this
end, we need a slight modification of the lemma connected with a (future) change of variables.

Given a simple closed curve y with the origin lying on the inside of y, set y% = {¢%; ¢ € y}.
Thus, y2 is a closed curve which goes twice around the origin. Then the conclusion of Lemma 4 is
still valid if one replaces yy by y,% in (2.11); the proof of this statement is a trivial modification of
the construction above.

Below we establish some properties of the spaces 3,23. To begin with, note that, when 8 > —1,
the norm || - || B} is equivalent to

1/2
. 2
I lgg1 = ( / [C |2 | F (2)|2e~ 2! dmz) ;

In what follows we shall be interested only in 8 > —1 and thus use this norm and the corresponding
scalar product (-, -) B.1- These quantities can be expressed via Taylor coefficients: For F(z) =

2 k>0 azk € Btz, and G(2) = } ;>0 bzt € B,z, we have

1
"F"ég,l =n§:|ak|22k—+mr(k+ﬂ+ Ty, (2.14)
k>0
and
— 1
(F,G)g | =nzakbk2kTﬂ+—lr(k+ﬂ+1). (2.15)
k>0
In particular,
k! — K
||F|l§g(,) =nkZ|ak|22k_+T, (F,G)g =n2(:)akbsz+T. (2.16)
>0 k>

Using Stirling’s formula, we see that {B},} (at least after a renormalization) form a Hilbert scale. We
also use these expressions to get a convenient duality relation.

Lemma 5.
Let B € (—1,1) be given. Then the dual space (B%)* may be realized as Biﬁ. For each

Ve B2 p the corresponding functional Ay has the form

AyF = f f FQU@e-2 dm, @2.17)
C

and
||Aw||(3§)‘ = I¥lg, -
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Proof. Using (2.14) and (2.15), we express the functional in terms of the Taylor coefficients and
then, using (2.16), we transform this expression into (2.17). O

It follows from (2.16) that, for F(z) = ¥_,50an2" € B,

Effp(z)ezzwe—zmzdmz _ <F, 382"'12>
b4 C T B(l)

k! 2 2kwk
=Ty AT = Fw), (2.18)
k>0
i.e., the function 5

Ey(z) = ;em (2.19)

is the reproducing kernel of B(z).

The relation g
- f f F@e?ve 2 gm, = F(w) (2.20)

C

holds for each function F of type at most 1 with respect to order 2. Indeed, if F is such a function,
it follows from (2.18) that it holds for F(rw) for each T < 1 since F(tw) € B% for t < 1. Now let
7 approach 1 — 0. The limit of both sides of (2.20) makes sense.

In particular, applying the inverse Bargmann transform, we have, for w = u + iv,

32
(‘B_le) o S (g) f/ezme2:z-z¢~r2/2e—2|z|2dmz
c

1/2
(E) e—t2/2 (Eu)(Z), eZIZ'—ZZ)

T

p—
S~

I b

1

B
~
&

2
B()

l

21/2222- 202 /2—2i
(;) et +v e luve—(t— u)“/2-2itv ) (2.21)

1

]
|
FN

Consider the “windowed exponential functions” (see [14])

1 INP 5 2 ;
ew(t) = n[/4 (}_) eZIuve—(l—-Zu) /2-2itv . (222)

We will study expansions of functions from L2(—00, 0o) with respect to the systems of the form
{ew}weg, where Q is a lattice in the complex plane.
The following statement links the spaces B,ZS and £2.

Lemma 6.
Let B € R be given. Each function ® € sz, admits the representation

d(w) = Fy (wz) +wk (wz) s

where F| € £§/2_1/4, F e 5,23/2+1/4r and

1
®)%, = = [ 1F1)? F> || . 2.23
I "Bé 2(" 1|IL§/2_W+II zllcgmm (2.23)

Proof. Set®(w) = ®;(w)+w®P2(w) where ®; are even functions. Since (P1(w), w<I>2(w))B§ =
0, we have |I<I>(w)||fgz = ||<D1(w)lléz-i-llw(bz(w)lléz. Now we can write @ (w) = F;(w?),j = 1,2
[ B B

and direct calculations give F; € L',% j2-1/a0 F2 € L% /241/4» and also (2.23). O
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Corollary 1.
Let F € B%,. Then

1ZPF@)e™ " >0, 7> 0. (2.24)

This is just a combination of the present lemma and Lemma 3.
Now we reformulate Lemma 4 for functions from B%,.

Lemma 7.

Let a function ¢ € Bg be fixed. Let also, for some K > 0, yy = {¢ = pn(©)e™%;0 €
[0,27]}, N = 1,2,... be K-bounded contours.

Then, for each sequence Ry — oo,

R,zv"“/ |® (Ry¢)I2e 2R 1de| > 0 as N - 0.
YN

Proof. This lemma is just a combination of Lemma 4, as modified in Remark 4, and Lemma 6.

(]

The Bargmann transform connects the scales {Bﬁ} and {Xg}. We shall need this fact only for
B € [0, 1], which allows us to simplify certain technicalities.

Theorem 4.
For B € [0, 1], the Bargmann transform is a bounded invertible mapping from Xg onto Bg.

Proof. In view of the interpolation theorem (Theorem 2) and the fact that B(Xy) = By, it suffices
to consider the case 8 = 1 only. For this case we have || F(z) || B < lzF (2) || 32- On the other hand,

if F is represented in the form (1.3) we have zF(z) = B(f'(t) — tf(¢))(z) because for 8 =0 B is
a unitary operator, [|zF(z)llgz = Il f'(t) — tf @)l L2(—o0,00)- The latter quantity is just the norm of
fin X;.

3. Complete and Minimal Sequences for Blzg

Definition 2. A sequence of points A = {Ax} C C is called a complete minimal sequence (c.m.s.)
for B% if for each Ay € A, the 8-interpolation problem

F(Am)=0if k#m, and F\x) = 1; F € B}

has a unique solution.

The problem of describing all complete minimal sequences for B% seems to be exceedingly
difficult. We shall introduce an important class of very regular c.m.s. More precisely, we shall
consider lattices, slight perturbations of lattices, and some other natural generalizations of lattices.

Definition 3. Given y > 0, we say that an entire function S belongs to the class S, if

(i) all zeros {Ax} of S are simple and

."f A. - A. — 6 0 ’ 3.1

IS@| = (1 + |z~ e,  dist(z, (M) > €. (3.2)
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A quite general construction of functions in S, was given in [29], see also [28]. In order to
connect lattices with functions from S,,, we need to study the Weierstrass o -function.

Example 1. Let a lattice Q = aZ + be'®Z = {w = am + be'?n; m,n € Z} be fixed with main
periods a,be’®, we assume a, b > 0, 6 € (0, ), and absin = /2. Let also ¢(z) and o (z) be the
Weierstrass o-functions corresponding to this lattice. (See, e.g., [33], vol. 2 for basic information
about the Weierstrass functions.) We recall that

1 1 1 Z
(@ =_+ > [ +—+——},

_ 3
wemyoy V2 "% @ @

and
Z\ 42
0(z) =2 l—[ (1——)e“’ Wl
w
weQ\ {0}
The latter function o is an entire function for which 2 is the zero set. The Weierstrass functions
satisfy the relations

t(z+a)=0@)+n, n=2@a/2),
Lz +bel®) =¢@) +m, m=20bef)/2);

mbe'® — na =2im (3.3)
and N
o(z+a) = —o()eM@te/? | o (z + be‘e) = —o (g)em(z+be?/2) (3.4)
We set :
B=—n—1. 3.5
7l (3.5)

Then using (3.3) through (3.5), one can check directly that
V(@) = lo ()]~ B

is a doubly periodic function in C with main periods a and be. Denote by IT the elementary cell
of the lattice 2. The function W vanishes at the vertices of IT and being continuous is bounded
away from zero and infinity on {z € IT; dist(z, 2) > €}. Thus, by periodicity, we obtain the global
estimate

‘a(z)e”‘gZz = emz, dist(z, Q) > €,

i.e., the function
$o(2) = o (2)e B

belongs to Sp. Note that ab sin 6 is the area of IT, so €2 has density
density(Q2) = 1
ensity(2) = 5— .

which is precisely the critical density. O

If y is an integer, nontrivial examples of functions from S,, are obtained by multiplying or

. . . _R,2
dividing ¢ by a polynomial factor. For instance, the function z~!o (z)e~3%" belongs to S;. In order
to obtain examples of functions from S,, of “maximal growth” when y is not an integer, we need to
make a more elaborate modification.
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Example 2. This is a continuation of the previous example. Take § € (—1,1), § # 0, and
consider the function

z
I—["Zl (1 - an+a8) ganta

zl_[n?_l (1 - %)e‘—f;

The transition from ¢y to ¢s corresponds to a shift to the right by aé of those zeros of ¢y which

lie on the positive axis. We denote this partly shifted set, i.e., the zero set of ¢, by Q5. A direct
calculation shows

Z
$5(2) = bo(2) RIPYNE o 8 (3.6)

b4 I'(—z/a)
—adT'(—z/a+6)
Stirling’s formula, together with the relation y (z)I"(1 — z) = 7/ sin 7z, gives

¢5(z) = Const ¢o(2) .

1652 = (1 + [z)~%ek’, dist(z, 25) > €,

that is ¢5(z) € S—5. One can construct other examples in a similar way. d

We shall prove our theorems for general functions from S,,, keeping in mind the model cases
that have just been described.

First we obtain a bound for functions from S, in the neighborhoods of their zeros.

Lemma 8.

Let S € Sy, A = {At} be the sequence of its zeros, and n € (0, §/2) be given, here § is the
constant from (3.1). Set Ky, = {z; |z — Ax| < n}. Then

1) = 1z — Al 1+ [2)) Ve, ze Ky, k=0,1,2,... . 3.7)
and \
|S" )| =< (1 + |A]) ™7 e (3.8)

Proof. Consider the Weierstrass o -function o (z) corresponding to a square lattice Q = aZ +iaZ
with the side a = +/2/m. In this case b = 0 so we use 0 (2) instead of ¢o(z) Given a A; € A, take
6 € (0, 27r] so that dist(Kx, €' Q) > €. It follows from the previous construction that

—i 2
la (ze 'a)l =el" ze K.

Now consider the function 5@
Z
V()= —— .
M= o )
We have, uniformly with respect to k,
W (@) < A +1z))7Y, z€ K.

Since W does not vanish in K}, both maximum and minimum principles may be applied in Ky,
which yields (3.7). Relation (3.8) follows from

. 8" (Ak

W AOI< (L + DT and W () = — K
o (Aee’?)

Theorem 5.
Let B € R be given, and suppose that S € S,. Denote by A the zero set of S. Then

(i) A is a uniqueness set for B% (ie, F € Bfg and F|p = Oyields f = 0)ifandonlyify <+ 1;
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(i) A is a minimal set for B,z8 (i.e., for each A € A there exists F) € B% such that F(A) = 1 and
Fxla\p) =0) ifand only if y > B.

In particular, if y € (B, B+ 1], A is a complete minimal sequence for B%,.

Proof. To begin with, note that, for y > g + 1, we have S, C B%. So in this case A is not a
uniqueness set for B%.

Ify <B+1,thenS, N Bé = . In this case A is a set of uniqueness, since otherwise there

exists a nonzero F € B% vanishing on A. The latter is impossible by the following argument. The
function X = F/S is then an entire function, and (3.7) and (2.24) yield

X(2) =o(1)(1 + |z)) P, as z > oo, dist(z, A) > €.

The maximum principle extends this inequality for all z € C. Therefore, X is a polynomial,
degX < —B+y < 1,thatis X = C, where C is a constant and F = CS. Since S, N B,% =@, we
have C = 0, which is a contradiction. Statement (i) is proved.

In order to prove (ii), we observe that A clearly is minimal for y > B since, in this case, for
each A € A the function S(z)[S’'(A)(z — A)]~! belongs to B% and solves the §-interpolation problem.
Suppose ¥ < B. Then, foreachA € A, A\{A}is the zero set of S(z)(z — N le Sy +1 and according
to (i) is a set of uniqueness for Bf;. Therefore, there is no solution to the §-interpolation problem in
this case. |

Corollary 2.

Let A be a lattice of which the area of the elementary cell equals 2/n. If A is an arbitrary
point from A, then A \ {1} is a complete minimal sequence for B2.

Corollary 3.

Let B € R be given, and suppose that y € (B, B+ 1]1and S € Sy. Denote by A C C the zero
set of S. Then to each function F € B% one can associate an interpolation series

S
F@~ Y Fo0 g (3.9)
k

) (2= 2i)

the partial sums of which belong to B%,‘

The system of normalized reproducing kernels
En = {exp (2h) - el /2]

does not form a Riesz basis in B2, otherwise A would be a complete interpolating sequence in B%.
The expansion (3.9) is dual to the expansion with respect to this system (we shall see this when
proving Theorem 10). Therefore, it cannot converge unconditionally. We refer the reader to [17],
Ch. 5 for the connection between unconditional convergence and Riesz bases. For simplicity let
B = 0. Then, in the case y = 1/2 even conditional convergence cannot take place, as follows from
Theorem 11 below. For y € (0, 1/2] the question of convergence of the series in 8(2) is still open
(though we believe that the answer is negative). This resembles a still open question concerning
non-harmonic Fourier series: Does there exist a basis of complex exponentials in L2(—, ) which
is not an unconditional basis?

In the next sections, we shall present a summability method for series (3.9), and study conditions
on F which guarantee convergence of the series in B%-norm.

Now set 8 = 0. Using the Bargmann transform, we can reformulate the conclusion of
Theorem 5 for the windowed exponential functions defined in (2.22).



142 Yurii I. Lyubarskii and Kristian Seip

The connection between the sequence of weighted Bargmann spaces and the Schwartz scale
is given by the Bargmann transform.
Theorem 6.

Lety € (0,1], S € S be given, and A be the zero set of S. Then the family

e(A) = f{ex(t); A € A} (3.10)

is a complete and minimal sequence in L%(—00, 00).

Proof. According to Theorem 5, A is a complete minimal sequence for B2, and so the family
e(A) these functions are defined in (2.22) is complete and minimal in B2. Besides, the Bargmann
transform maps L?(—00, 00) unitarily onto B2. By (2.22), the image under the Bargmann transform

of a single function is the normalized reproducing kernel e~ AP Ej(2) [see (2.19)]. Therefore, it
suffices to prove that the system

E) = e Er@ire A

is complete and minimal in B2. Both properties are easily verified. Indeed, if E(A) is not complete
in B2, there exists a nonzero F € B? which is orthogonal to all Ex € E(A). By (2.18), this
implies F(A) =0, A € A, contradicting the fact that A is a complete and minimal sequence for B2

Moreover, the functions e g (@)[S"(Ak)(z — Ax)]~! form the system biorthogonal to E(A), and
this implies the minimality of E(A). O
The proof of the previous theorem yields the following corollary.

Corollary 4.
The functions

I |2 | S(Z) )
S S (S'(Ak)(z—m ®

form the system biorthogonal to e(A) in L*(—00, 00).

Under the assumption of Theorem 6, we may associate to each function f € L%(—o00, o0) the
series

FO~ ) cn(Pen @), G.11)

ALEA

with coefficients o
e / FORn@®dt (3.12)

where the h,, are defined by (3.11).

4. Summability of the Lagrange Interpolation Series in the
Bargmann Space

In this section, we shall present a summation method for the series (3.9). For the sake of
simplicity, we confine ourselves to the “standard” Bargmann space B? = B(z). One can also apply
the same method to study the case of arbitrary 8. We shall also restate these results for systems of
windowed exponential functions in L2(R).

In order to describe the summability method, we fix a functiona € C 2(0, oo) suchthata(t) = 1
fort € [0, 1], a(t) € [0,1] fort € [1,2],and a(t) =0 fort > 2.
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Theorem 7.
Lety € (0,1) and S € S, be given, and denote by A = (A} the zero set of S. Then, for every

F € B,
Al F (M)
F@) -S$ ey AU
@5 zk:a( R ) SO0k — 9 |,

Proof. We use methods from [25]. Consider the operator £ : B2 — BZ defined by

|)~k|) F )
Y F =S R )SO0N00 — )
rRF(2) = 5(2) ;“ ( R ) SO —2)

lim
R—>o00

We need to prove that
IF@) — ZrF@)lg2 >0, R—> o0, FeB>.
We begin by establishing an integral representation for £g. To this end, we shall need an

analog of the residue theorem.

Lemma 9.
Let o C C be a bounded domain with smooth boundary, and p(x, y) be a C'-function in the
closure of w and h a meromorphic function in w with only simple poles ¢, and continuous on dw.

Then 1 q 2
P
— h()dt = — h—d Resg h . 4.1
T fawp(C) (8)d¢ ”/fw T m;+2p(cn) es¢, 4.1
Proof. Thislemmaisjusta versionof Green’s formula, which canbe found, e.g.,in[12, Thm. 1.2.1].
O

Fixz € Cand R > 0, and take o = (¢; || < 3R), p(¢) = ar(¥) = a(iZ|/R), and
h(§) = F)/ISE)( — 2)]). Then (4.1) yields

_ L[ _FQ© 3
/f SQ)C —2) ap REMme

FOo  FQ
A - .
* Zk BN e S XD

Multiplying by S(z), we get

S(Z)f/' F@g 9
XRrF = F - 1)F d
RF(2) (z) + (ar(2) — DF(2) + - SO -0t ar(§)dmg
= F(@)+ A rRF(z) + A2 rF(2)
and we need to verify that
ff |A; RF@)%e 2 dm, > 0, as R—> o0, j=1,2. 4.2)
(o}

While this is trivial for j = 1, the case j = 2 requires special consideration.
For @ € R, consider

LX(C, |zI*) = |<1>(x,y); 11 2 ey = ] fc |®@)I*|z/**dm, <oo} :

We write L2(C) when o = 0, and we denote the unit ball in these spaces by B(L2(C, |z|%)).
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For ® € L%(C) set

JR(®) = f / Az.J'eF(z)<l>(z)e_'z'2dmz : 4.3)
C
When j = 2, we see that (4.2) is equivalent
sup [IJR(<1>)| . deB (LZ(C))] 50, R— .

First we modify the right-hand side of (4.3). A calculation gives

D& (K
af““‘zmu“(R)'

Since S € Sy, it is clear that the function ¢(z) = ®(2)S(z)e~ 2" satisfies

wawﬂ#wm<c 4.4)

with some constant C < co common for all ® € B(L?(C)). We put this function ¢ into (4.3) and

obtain 1 F®) ¢, (K] 6(2)
, Z
J”@)‘ﬁ// SO (T)ffcc—zdm‘d"'"

We make the substitutions z — ZR and { — ¢ R, and rewrite this as

1 F(RC) C o)
J<I>=—R"’f/ f/—dd , 4.
R(P) o SRE) m a'(¢l) mzdm; 4.5)

where ¢(Z) = Rt ¢(RZ). Observe that [see (4.4)]

fﬁwmﬂﬁwm<c,

C being the constant from (4.4). In what follows, we omit the sign~.
Note that the outer integral in (4.5) is taken only over the annulus A = {1 < || < 2}, since
a’(|¢]) vanishes outside A. To estimate it, we shall need the following lemma.

Lemma 10.
The relation

(To)(z )—/ &C)d mg (4.6)

defines a bounded operator from L%(C, |z|?) into LZ(A), the space of functions square integrable
on A with respect to Lebesgue measure.

Proof. For ¢ € L2(C, |z|%) we set

¢$1(2) =

otherwise,

I ¢(2), 1/2<lz| <3,

and ¢, (z) = ¢(z) — @1 (z). We see that the norm of T'¢; is bounded by virtue of the triangle inequality
and the fact that the function 1/z is locally integrable with respect to the Lebesgue area measure.
We also find that T'¢, is uniformly bounded on A. This follows from the Schwarz inequality if one
takes into account that y € (0, 1). O
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We may now express Jgr(®P) in the following form:

1 l_yf/F(Rc)i,
Jr(®) = 2”R L S®RD Icla(l;l)(ﬂt)(ndm;.

Set {¢1, 82, ..., tnm)) = R™1A N A, so that {R¢1, ..., R¢n(r)} are the zeros of S in the
annulus R < |z| < 2R. Let € > 0 be so small that the disks {¢; [¢ — ¢;| < 10€/R} are pairwise
disjoint. Define D; = {{; |{ — ¢;j| < 5¢/R}and Eg = UDj, and put w(¢) = ¢/[¢la’(¢]), which
is a C!-function in A. We have then

- F(Rg)
J<I>=—R"’(f/ f/) THEH
() = e T L) SR ©TOGm,
= Lr@) +hz@).
We will prove that
o lasolio ()| w0 R mata

Relation (3.7) gives an estimate from below for S(R¢) when { € A\ Eg. We have

Ihx@)| < Const / /A RIF(RD)|e (T $)(¢)dm,

172 172
< Const ( /] 1F(R;)|2R2e“2”‘“2dm;) ( [ |(T¢)(c)|2dm<)
A A

) 172 1/2
= Const ( f / |F()e 2! dm;) ( f f I(T¢)(§)|2dm;) )
RA A

By virtue of Lemma 10, the last factor on the right side of the inequality is bounded uniformly for
¢ € B(L%(C, |z|*)), and the first factor approaches zero as R — o0o. So the validity of (4.7) for
m = 1 is proved.

When estimating I g (¢), we replace the integrands by their principal parts. We rewrite I g (¢)

R F(R?) F(RE))
T ;f 1., |58 - Tmpr =g wTOEHng

1 F(R;;)// 0@ g

= Y M. R+ M@ R).
j J

as

We shall prove that, forl =1, 2,

sup [

For the case I = 1 we use the representation

F(R?Z) _ F(Rg;) _ _1_] F(Rw) dw
S(RE)  S'(REHRE —¢&)  2mi Jyw—gjj= S(RW) w—¢’

> M (¢, R)

;¢ € B(LX(C, |z|2”))] -0, R—> 0. 4.8)
J

teDj,
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which is valid for 5eR™! < t < 10eR™!. Set Aj =1{¢: 8¢R™! < |¢ — gjl < 10e R~} and
integrate with respect to ¢ from 8¢ R~! to 10¢ R~! to obtain

F(Rt)  F(Ry) /f F(Rw) w—¢; dmy,
S(RE)  S'(REHRE —¢;)  dem S(Rw) lw—¢jlw—¢

We put this into the expression for M (¢, R), change the order of integration, and get

A _ R F(Rw) w—{¢; w()
M@, R) = 57— ffA} SR ]w_;_ﬂffuj o [$@)dmedmy

In order to estimate the inner integral, we notice that, for € D;, w € A;, we have |w —¢{| > 3¢/R
and
()
| / f 2 To e

< cOnstﬁ(ff dm;) (f/ |T¢(¢)|2dm,;)
3e D;
< Const (// |T¢(§)l2dm;)

After returning to M; (¢, R) we obtain, using (3.7),

|My, (o, B)|

172
< Const </f |T¢(C)|2dm§> R2// |F(Rw)|e~ 'R’ dm,,
Dj Aj

1/2 1/2
< Const (// |T¢(§)|2dm;) (]/ |F(w)|2e-2""'2dmw> ,
Dj RA;j

and finally, by the Schwarz inequality,

> IMy (4, B
J

172 1/2
< Const Z// |F(w)2e= 2" dm,, fo T ()| dm,
j RA,' j Dj
) 1/2 12
< Const (/f |F(w)|2e™ 2! dm.,,) (// |T¢({)|2dm§) -0
R<|w|<2R A

as R — oo. This completes the proof of (4.8) forl = 1.
We proceed to prove (4.8) for [ = 2. We have, by the Schwarz inequality,

/2

> IMy (9, R)|

(Z

_F(RE))
RYS'(RZ;)

/2
) : 4.9)

2) ( l//D T,
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We use the idea from the proof of Lemma 8. Let a sufficiently small number n € (0, §/2) be fixed, &
being the constant from (3.1) and Ky = {z : |z —Ax| < n}, which are disks that are pairwise disjoint.
Let also o (z) be the Weierstrass o -function corresponding to the lattice Q = +/2/7Z+i~/2/n. For
eachk = 1,2, ..., N(R), choose 6 so that dist(Ky, ¢'% Q) > n. Then |o (ze~%)| < ¢, 7 € K.
Therefore, IF(z)Ie‘IZ|2 = |F(z)/o(ze~%)|, z € Ky and

— 2 —i
|F ) e M5 < | F(M) fo (hee %) 2

. 2
< Const f/ IF(z)/a (ze"‘e") dm, < Const f/ |F(z)|2e_2lz|2dmz.
Ky Kk

In particular,

Z |F()~k)12 =2 l? < Const Z f/ |F(Z)|2 -2|z) dm,

R<|Ag|<2R R<|Ak|<2R

< Const f/ |F(z)|2e_2‘zl dm; -0, as R —> 0.
R—n<|z|<2R+n

By (3.8), this gives an estimate for the first factor on the right-hand side of (4.9):
Z F(Rg))
d

RYS'(RE))
Therefore, it suffices to prove that the second factor on the right-hand side of (4.9) is bounded
uniformly with respect to ¢ € B(L?(C, |z|*")). In other words, it is enough to prove that

2
< Const Y |FOPe ™ 50, R - .
R<|A¢|<2R

2
@@) = O8N 1y ryam, | <, (4.10)
b, ¢—¢;
2
w(c,)// T‘M) <C, 4.11)

C being independent of the particular choice of ¢ € B(Lz(C, |z|27)). Since w is a smooth function
in A, there exists ¢ > 0 such that

lo@)l <ec, and |[0@) -0 (&)]/ (¢ -¢)] <¢ 4.12)

for all ¢ € A. Therefore,

w(t) w(t,)

D; -

———— T ¢()dm;

2
. Const—Z// ITo @) Pdm, .

This together with Lemma 10 implies (4.10).
In order to prove (4.11), consider the maximal function

M¢(Z)—SUP—//C | lp()ldmg ,
—=zZ|<r

r>0 7

the truncated singular operator

$()
H, ————dmg ,
39(z) = /fg —z|>8 (£ — € -2? e
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and the maximal singular operator
H*$(2) = sup {|Hs¢ (2)I} .
>0

We need the following lemmas.

Lemma 11.
The operators M, Hj, and H* are bounded, considered as operators from L*(C, |z|?") into

L2(A).
The proof of the lemma is standard; see, e.g., [32, Ch. 2], for similar statements.

Lemma 12.
There exists an absolute constant C > 0 such that, Joreveryé > 0, each¢ € B(L%(C, |z|?)),
and points £, ¢, ¢ € A satisfying | — {| < 8 and |{ — ¢| < & the following inequality holds:

Hssd () — Hssd ©)| < CMo(@) . @“.13)

This lemma is a well-known fact, which was used in the proof of inequality (10) in [4]. We
refer the reader to [27] where the complete proof is presented.

Now we are able to prove (4.11). After substituting the explicit expression (4.6) for T and
changing the order of integration, we obtain

T() / f / / dmy
dm; = —_— dm,.
//D, il B S M e

The inner integral on the right-hand side can be computed as follows:

f/ __ dmy 25@R 22— ¢ 2#Dj,
D;j K—CJ (Z—C) IZ_C/I(Z_Q)— ZGDj.

Therefore,

Te() f lz—m2 25e f f 9@
d =
.//D,- =T D,-¢(Z)(Z—§j)2 C\D; (Z—C)2

Taking into account (4.12), we see that in order to obtain (4.11) it suffices to prove

(z — { )2 dm,| <C 4.14)

and

/ f 6 (2)
R2 ap; @—¢ )2

The estimate (4.14) follows from the Schwarz inequali}y and the assumptionthat¢$ € B (L3(C, |z]*)).
In order to prove (4.15), we choose the points £;, {; € {¢; |¢ — ¢;| < 8} so that

Z{R 2H55¢(;,)\ <C, 6=¢/R. 4.15)

Hssp(£j) < max(2 - l?f| 5 Hss (), NR'}, (4.16)
~gjl<

and _
M¢(Z;) < max(2 . i?ﬁ Mo, NR)}.
o'
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Here, as before, N (R) is the number of points {£;} in A. Because of (4.13), the proof of (4.15) may
be reduced to the problem of checking the inequalities

> |r2Hss (g‘,-)|2 <c, Y |r Mo (;})lz <cC.
j j

We confine ourselves to the first inequality only. Without loss of generality we may assume that the
right-hand side of (4.16) equals 2 inf 1t—¢;1<8 Hss@ (£). Therefore,

2
) ~\ |2 2
;’R Hso (&) < zj:(énf[;_;jdm”d’(;)ldm‘)
1
< Constﬁ;/[;_cj<slea¢(C)|2dmc

1
< Const—ﬁ/L|Hsa¢(§)|2dm§-

Finally, the proof of (4.15) is completed by an application of Lemma 11. This was the last inequality
in the whole chain of inequalities (4.8), (4.10), (4.11), (4.14), and (4.15) which we needed for proving
Theorem 7. O

In the theorem above, we required y € (0, 1). A lattice corresponds to the case y = 0 and
a lattice with one point deleted corresponds to the case y = 1. (See Example 1.) In order to
get a sequence corresponding to intermediate values of y, we have to modify some lattice, e.g., as
illustrated in Example 2.

For the case ¥y = 1, corresponding to a lattice with one point deleted, we may formulate a
theorem; here the function a is the same as in Theorem 7.

Theorem 8.
Let S € S) be given, and denote by A = {\;} the zero set of S. Then, for every F € Up>oB§,

Akl F(Ae)
F(z) - 5(2) ;a (7) Sk —2)

The proof is similar to the proof of Theorem 7 and is omitted.

lim
R—>o0

B2

Question. Let S € S;, A = {\} be its zero set. What regular linear summation method, if any,
sums the series (3.9) to F with respect to B2-norm for arbitrary F € B2? O

Theorem 7 may be used to obtain a summation procedure for the series (3.11) as well. Under
the assumptions of this theorem, the corresponding system of windowed exponential functions e(A)
[see (3.10)] is a complete and minimal system in L%(—00, 00), and the Fourier coefficients e ()
of a function f € L%(—o0, 0o) with respect to this system are defined by (3.12) and (3.11). With
the function a as before, we will obtain the following theorem.

Theorem 9.

Lety € (0,1) and S € S, be given, and denote by A = {A;} the zero set of S. Then, for every
f € L*(—00, 00),

=0.

L2(—00,00)

lim
R—o00

fO-Y a (%) ca (e (t)

k
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Proof. The statement of the theorem is obviously true if f is a finite linear combination of functions
from e(A). Since such functions are dense in L2(—00, 00), it suffices to prove that the operators
Xg : L?(—00, 00) = L%(—00, o0) defined by

X)) =Y a (' I;') e (Den ()
k

are uniformly bounded with respect to R. Since the Bargmann transform is a unitary operator from

L%(—o00, c0) onto B2, it is enough to prove that the operators Yz = BXzB~! : B2 — B? are
uniformly bounded with respect to R. It follows from (2.22), (3.11), and (3.12) that Y has the form

Akl S(2) oIV
Y, AR kZ
raFi Z ( )(F(Z)’ SO0 — m),;ze :

For G € B? we have
| Akl S
GO
g ( )( » TG Ak)> o

A
Z (l kI)G()‘k)SrAS(Z) >
a M-,

Thus, the conjugate operator Yy is defined by

* l kl S(Z)
Yo G — E _—
RG “( R )G( O SR =)

k

(YRF,G)p2 =

I

The uniform boundedness of these operators was proved in Theorem 7. Therefore, Yg, and hence
X R, are bounded as well. This completes the proof of the theorem. O

Remark 5. Theorem 2 stated in the introduction is a special case of this theorem for the function
S defined in Example 2.

5. Convergence of the Interpolation Series

Let y € (0, 1] and a function S € S, be given. Denote by A = {Ax} C C the zero set of
S. Then A is a c.m.s. for B2, and each function F € B? can be associated with its interpolation
series (3.9). In this section, we prove that it is convergent in a weaker norm, and, in particular,
compactwise, when y € (0, 1/2) (Theorem 10). However, quite amazingly, this fails completely
when y > 1/2 (Theorem 11). We also formulate restrictions on F € B2 for the series (3.9) to be
convergent in 82-_norm.

Theorem 10.
Suppose that y € (0, 1/2). Then the series (3.9) converges in B> 1j2-norm for every F € B2,

Proof. We start by obtaining an integral representation for partial sums of the series (3.9). Rep-
resentations of this kind can be found in [22, Thm. XVIII]. Assume that Axs are numbered so that
|Ak| < |Ak41] for every k. We can then construct a sequence of contours I'y and numbers Ry — o0
so that

(i) All T'ys have the form I'y = Ryyn where yy are K-bounded for some K > 0 independent of
N (see Definition 1).
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(i) dist(A,T'y) > € for some € > 0, € does not depend on N.
(iii) 'The points {kk}’lv lie inside I'y, while {)‘k}?vo-pl lie outside "y .

Indeed, take any Ry € [|An|, [AN+1]] and produce Ty from the circle |z| = Ry. If the distance
between this circle and a point from A is smaller than €, just make a smooth deformation of this
circle in a vicinity of this point. We omit the technicalities.
Put also
_ |} 1, ifzliesinside I'y
@) = { 0, otherwise.

Now consider

S' (M) (z — Ak) 5(2)

N
F(Ae)
INn(@G F)=S _—
NGz F) (z); o e
the partial sums of (3.9). Set
1 F@)
I F ——d¢. 5.1
V&)= 501 by S0 - 0 B
The residue theorem yields
S FOw F(2)
IN(Z;F)=Z‘——— N(EZ)—.
1

whence
N F)=F@)+{S@In(z; F)+ (xn(2) — 1) F(2)} .

We need to prove that the B2 1j2-horm of the expression in braces vanishes as N — oco. That
l(xn (@) — DF )] B, — 0 as N — oo is obvious. (Here and in what follows we calculate

the Bg-norms for functions, which are not necessarily entire. However, the expression in (1.4) still
makes sense.) It remains to be proved that

I1S(z)In(z; F)"BE,/Z -0, N—> o©. (5.2)

Let €2 be a Lebesgue-measurable function on C? satisfying
oo p2m
bl
oo p2m . . . 252
IN(F, Q) =f f Q(ret?)S(re®) Iy (re'?; F) e “"dwdr .
A N R

It is clear that (5.2) will follow if we can prove that

. 2
Q(re"”)j 62 dudr < 1. (5.3)

Set

sup {|In(F, Q2)[} > 0, N - o0,
where the supremum is taken over all 2 satisfying (5.3). We have

2n F() —2 2
) - zw iw ’ dwd
i In(F, Q) / f re re )-/l:N S@) (rei® — ) dte wdr

F(C)ff Q(2)S8(z) —2|z|2 “1im.d
erS(c) Marsern il
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Set
1 2 2
—_ =lz|*),1—1/2 =lzl*|, =¥
6@ = 5— (R@e " 21772) (s@e 1217 .
Since S € S, the second factor in the right-hand side is bounded. Thus, we obtain

F@©) ¢(z)
v S

/ / ¢ (2)|%dm, < C,
C

C a constant independent of Q2. Putting ¥ (z) = Ry¢(Rnz), we still have

ff ¥ (2)%dm, < C .
C

A change of variables z = Ryz/, ¢ = Ryt in (5.4) yields

- F(RnE) Vf(z) 12—
IN(F, Q) = R/? V/ V2~Y dmyd
N( ) N oy S(RNT) 7| mydt',

ff ¥ (@)%dm, < C,
C

C independent of 2. In what follows we will omit the sign ’.

Lemma 13.
Suppose that 0 < y < 1/2. Then the operators Ty defined by

(Tny) (¢) = f / MIZI_Ilz_’dmz
cz—¢

are bounded from L*(C, dmy) into L*(yy), and also

2inJN(F, Q) = / | =YY dm,d¢ (5.4)
r

with the normalizing condition

with the normalizing condition

S:P { T~ ||L2(C,dmz)—+L2()'N)l <00

Proof. Write C = A U Ay U A3, where A| = {z;|z] < 1/2}, A2 = {z;1/2 < |z| < 3}, and
= {z; 3 < |z|}, and define, respectively,

Tn.j V() T~,,~:1f(¢)=ffA glzl“”‘ydmz, F=1,2,3.
J

The Schwarz inequality implies that Ty ; and Ty 3 are uniformly bounded. In order to prove
boundedness of Ty ; it suffices to prove that, for each o € Lz(yN) with ||a||L2(yN) < 1, the quantity

n(a, ¥) =f a($)Tn 29 (8)de
YN
satisfies

In(e, V)| < CLIV I L20ay.dm) (5.5)

(the weight |z|~¥~1/2 is of no importance when z € A;). We have

non = // @ “—“%dcd o
yN

a(z)
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If yny where the unite circle the standard estimates show that a(z) belongs to the Hardy spaces
H*(D;, ) and H*(D3, ) in the interior and exterior of yy, respectively, and also

"a"H2(D;~)a "a"HZ(D;fN) < Const ”a"LZ(yN) . 5.6)

Therefore,

f / la(z)|?dm,, / f la(z)|2dm, < Const llall 2(,y) . (5.7)
A2NDjy AND3y,

and now (5.5) follows from |la||;2(,,) < 1 by applying the Schwarz inequality. In our case the
relations (5.6) and (5.7) still hold. In order to see this one can in addition consider the Riemann
mapping of D} and D;',’N onto the exterior and interior of the unit disk, respectively, and use the
fact that, due to K-boundedness of the curves yy these mappings have a derivative that is bounded
uniformly with respect to N, the latter follows from Kellog’s theorem (see, e.g., [11], Theorem 6,
p. 374). O

It follows from the fact that S € S,, and property (ii) of the contours I'y that

IS (Rwg)| > Const |Ry¢|™Y e RVEF ¢ e yy .

Finally, we have

1/2-y F(RN?) ‘
lUN(F.@)| < Const RY fy g TV
" 12

Const RY/ f |F (Rwe)| e NP | Ty g ()] 1dg |
YN

1/2
2 _9R2 1712
< Const Ry { f |F (Ry¢)|* e 2RN 1] Id;l} ITN Y llL2¢y)
YN

12
< Const [RNf |F(RN;)|2e-2R§r‘“2|d;|} -0, asN - 00
YN

uniformly with respect to 2 satisfying (5.3). The last step follows from Lemma 7. This completes
the proof of the theorem.

Theorem 10 is sharp in the following sense.

Theorem 11.

If y < 1/2, then the series (3.9) converges pointwise and uniformly on compact sets for every
F € B2 Ify > 1/2, there exist F € B? such that the series (3.9) diverges for all z for which
S(z) #0.

Proof. We use notation from the previous theorem. Let I'y be a sequence of contours as above
and, given the quantity Iy (F; z) be defined by (5.1) for some F € B?. To prove the pointwise
convergence when y = 1/2, we need to show that Iy (z; F) — 0 uniformly on each compact set
K c C. The estimate (3.7) yields

Y
lIv(z; F)| < Const f F@)e " 1y
YN IZ““

When z belongs to a fixed compact set K, we have

1414

lZ_ClxR;}_l, tel,, N> oo,
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so the Schwarz inequality yields

2
lIn(z; F)P < constRzzvy(/ IF(CRN)Ie"'“ZR'ZVIdC')
W
< ConstR;‘:,yf IF({RN)lze_mlzR%ﬂd{[ -0, as N—o ©

YN

by Lemma 7 and because y < 1/2.
Now let y > 1/2. We proceed to construct a function F € B2 such that (3.9) diverges

whenever S(z) # 0. Thus, we seek
[0}
2’!
F@ =Y bn/ 2
0

with ¥ |b,|? < +00, and a sequence of integers Ny — oo such that

F@) d¢
-/I“N S({)Z— _/_)

for any fixed z. We observe that it will suffice to find F such that

F()=S@)+0 (Izl_y—”e‘“z) (5.8)

for ¢ € 'y, because then

F(@) d¢
—— —— =27+ O(R,®
ﬁNk S({)Z—' + (

We prove that this can be achieved and also find an appropriate sequence Ny.
Consider n = (1 + x)2r2, with |x| < % Then by Stirling’s formula

n
ﬁ':r (1’"’ )2 e = (1) (1- log(14x))2r2—log r
2 2y,2
- le +0(x*)re—logr . (5.9)

Set

2
S(z)=2an\/nj!z ;

we want to pick the b, as a subsequence of the a,. To this end, we need appropriate estimates on
the a,,. For R sufficiently big put

AR) = [z:ﬁR—cs |z| <~/§R+c] .
where ¢ > 0 is a suitable constant. Then, since S € §,,
/ f 15(¢)2e= 2" dm, < Const R~ .
A(R)
On the other hand, fix some d > 0. Then

[ ] sore™ am: = f Yl e

VIR—c [n—2R2?|<dR
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For eachr € [V2R — ¢, /2R +c]and n satisfying |n — 2R?| < dR we have n = (1 + x)2r2 with
|x] < Cr_1, C being a constant depending on ¢ and d only. Now (5.9) yields

- 2
/[ GRS S

|n—2R2|<dR
for some C; > 0, and we have
Z las|*> < Const - R"=% .
|n—2R2|<dR
1425

We fix some & € (0, 1), put e = 2y — 1, and choose Ny so that the distance between Ry, and k¢
is minimized. We claim that then

FR=Y, ) an\/gz"

k=1in—2R}, 1<RY'®

has the desired properties. It is clear that

2 144
By = an, |n—21'eNk|§R +
0, otherwise

yields a square-summable sequence, and direct estimates based on (5.9) and the fact that the yys are
nearly circles of radius Ry give

F(z) = S@2) + 0(e'~1™), zeTy, k=1,2,...,
so that (5.8) holds. O

The following result describes the convergence of the interpolation series for a lattice with one
point deleted.

Theorem 12.

Let S € Sy and § > 1/2 be given, and denote by A = {Ay} the zero set of S. Then the
series (3.9) converges in B2-norm foreach F € Bg.

The proof of this theorem follows the same pattern as that of Theorem 10. The main difference
is in the analog of Lemma 13: The corresponding operators are no longer uniformly bounded, but
their norms are O (log Ry) as N — o0o. However, this is still enough to carry the proof through. We
omit the details.

Let us finally use Theorem 10 to establish convergence for expansions of functions from
L?(—00, 00) in the system e(A) and thus obtain a theorem of which Theorem 1, stated in the
introduction, is a special case.

Theorem 13.

Lety € (0,1/2) and S € S, be given, and denote by A the zero set of S. Then the series (3.12)
converges in Lz(—oo, 0o)-norm for every f € X2
Proof. Asin Theorem 10, we assume that |Ax| < |Ax4]| for every k. Put

S(z)
§' (An)(Z — An)

and consider the operators Gy : B2 — 32_l 2 defined by

F,(2) =

N N
GNG)@) =) GAn)Fr, (D) = Y (G, Ex,) P, (2)
1 1
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N an arbitrary positive integer. It follows from Theorem 10 that these operators are uniformly
bounded with respect to N. Taking into account Lemma 5, we may consider the adjoint operators
&} acting from Bf 12 into B2. They are uniformly bounded as well with respectto N. For H € Bf 1
we have

N
(NG, H) = (G, E),()(Fs,. H) ) ,
1

whence
N

Gy : H> Y E\(2)(F,, H).
1

The Bargmann transform maps B2 and Bf /2 onto L%(—o0, ) = Xp and X /2, respectively,

and the operators ’IB‘]G’,‘\,%, acting from X;,; into Xo, just produce the Nth partial sums of
the series (3.12). These operators are still uniformly bounded. Therefore, in order to prove the
L?(—o00, oo)-convergence of the series (3.12) for each f € Xy, it suffices to obtain such conver-
gence on a set which is dense in X1/;. In particular, we can take all linear combinations of functions
from e(A) which are dense in X1/,. This completes the proof. O
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