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Abstract. The kernel K of a convex polyhedron P, as defined by L. Fejes Toth, is
the limit of the sequence (P,), where P, is the convex hull of the midpoints of the
edges of P,_,. The boundary 0K of the convex body K is investigated. It is shown
that 0K contains no two-dimensional faces and that dK need not belong to C2. The
connection with similar algorithms from CAD (computer aided design) is explained
and utilized.

. Introduction

Suppose P, is a planar convex polygon. A sequence (P,) of polygons can be defined
by letting P, be the midpoint polygon of P,_,; that is, the convex hull of the
midpoints of all the edges of P, _,.

It can be shown lim, P, = {¢,}, where ¢, is the centroid of P, (and of all
the polygons P,). Much more interesting is the beautiful result that the sequence
{5, P an}s Where «,, are suitable scaling factors, converges to an affinely regular
polygon. (This theorem, attributed in [9] to Neumann, was actually discovered
earlier by Darboux [5]; it has been rediscovered many times (see p. 322 of [97).)
Moreover, apart from its aesthetic appeal, there is an important application, since
the result is a central ingredient in the solution of Hammer’s X-ray problem [10].

Several generalizations of the midpoint process in R? have been studied (e.g.,
[2] and [12]), but here we are concerned with the three-dimensional analogue
Proposed by Fejes Toth in [13]. If P, is a convex polyhedron in R3, P, is defined
exactly as above. In this case, however, lim, P, = K(P,), where K is a convex body

——
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in R? called the kernel of P,. To see this, observe that since the midpoint algorithm
in R? preserves centroids, the set of all centroids of facets of the polyhedra P, lies
in the boundary 0K of K. As a preliminary example, the reader may check that
if Py is a regular tetrahedron, then P, is a regular octahedron, and P, is a
cuboctahedron; and if P, is a cube, P, is again a cuboctahedron, yielding the
interesting fact that all these polyhedra have the same kernel (up to homothety).

Fejes Toth asked what can be said about the structure of dK. As far as we
know, nothing is yet known. From examples the impression that, as n increases,
the size of the facets of P, should decrease (and so their number should be
unbounded), is obtained. We confirm this in Theorem 4, and deduce (Corollary
6) that 0K contains no facets (two-dimensional faces). We also show that 6K need
not belong to C? (Theorem 8). The obvious questions, whether 9K is strictly convex
or smooth, remain unanswered (the latter was also posed by Fejes Toth in [13]).
However, our results are evidence for the intriguing conjecture, suggested by
Zamfirescu, that the kernel is in some sense a “typical” convex body. Indeed, Klee
showed that most convex bodies, in the sense of Baire category, are strictly convex
and have a smooth boundary, and Gruber proved that most do not have a
boundary belonging to C? (see [14] and the references given there).

We have a second motivation in this note, namely, to draw the attention of
mathematicians to the connection between Fejes Toth’s problem and some work
in CAD (computer aided design). In CAD, processes called subdivision algorithms
are sometimes used to model curves or surfaces. It has been found efficient to
store a finite set of points, edges, and facets, and then generate new ones by some
algorithm, formulated so that successive iterations converge to a limiting curve
or surface, preferably smooth. Several such algorithms have been suggested, and
in some of these the midpoint operation or a similar one plays a role.

We discuss two of these algorithms in Section 4, and apply one of them to
Fejes Toth’s problem. This is a planar algorithm which was, in fact, considered
by de Rham long before CAD existed. Its analysis is quite complicated, and de
Rham devoted several papers to it. The proof of Theorem 8 of Section 4 indicates
that the midpoint operation in three dimensions is actually analogous to de Rham’s
algorithm, rather than to the planar midpoint algorithm. Furthermore, the convex
hull operation in three dimensions can create new edges in a way that is not easy
to foresee. All this suggests that a full solution of Zamfirescu’s conjecture may be
difficult to obtain.

We thank David Levin for a careful reading of the manuscript which revealed
a flaw in our previous version of Theorem 8.

2. Definitions

If E is a set, we denote by d(E), JE, int E, and relint E, the diameter, boundary,

interior, and relative interior of E, respectively. _
Suppose P is an m-dimensional convex polytope in R". Let M(P) be the midpoint

polytope of P, i.e., the m-dimensional polytope in R" formed by taking the conveX
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hull of the midpoints of the edges of P. We write M"(P) for M(M"~'(P)), n = 2,
3,..., where M'(P) = M(P).

If P, is a convex polyhedron in R?, let P, = M(P,_,) for n =1,2,.... Write
K = lim, P,. Then K = K(P,) is called the kernel of P, (see [13]).

If K is the kernel of P,, we define the centroid set C(K) of K by C(K) =
{x: x is a centroid of a facet of some P,, ne N}.

Suppose F is a facet, i.e., a two-dimensional face, of the polyhedron P,. If there
is a facet G of P,_, such that F = M(G), we say that F is of type 1. Now suppose
F is a facet of P, which has the following property: there is a vertex v of P,_,
such that each vertex w of F is the midpoint of some edge of P,_, with v as one
endpoint. Then we call F a type 2 facet of P,. For each n, we let

0, = max{d(F): F is a facet of P,}

and
0% = max{d(F): F is a type 2 facet of P,}.

As is usual, we denote by C* the class of curves (or surfaces) whose every point
has a relative neighborhood which is the range of an open set in R (or R?,

respectively) under a k-times continuously differentiable mapping. Smooth means
belonging to C!.

3. The Kernel Has No Facets

Lemma 1. For each n, every facet of P, is either of type I or of type 2.

Proof. Let F be a facet of P,. Let proj, denote the orthogonal projection onto
a plane IT orthogonal to F, and let h be the line in IT containing proj, F.

If proj, P,_, lies on one side of h, it is easy to see that F must be a type 1 facet
Qf P,. Suppose, then, that h N int(proj, P,_,) # &. By our choice of Il, proj, P,
lies on one side of h. Let E be the open half-plane in IT on the other side of . If
tv{o or more vertices of P,_, project into E, there is an edge of P,_, whose
midpoint projects into E, contradicting E N proj, P, = J. Therefore a unique
vertex v of P,_, projects into E. It follows that each vertex of F must be

:he midpoint of an edge of P,_, which has v as one endpoint, and so F is of
ype 2. U

Lemma 2. For each n, Op < 0p_yq.

P roof. If F is a facet of P, of type 1, then F = M(G) for some facet G of P,_,.
he diameter d(G) is the distance between some pair of vertices of G, and F contains
fone of these vertices. Therefore d(F) <d(G) <,_,.
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Suppose F is a type 2 facet of P,. Let v be the vertex of P,_, from the definition.
Let {w;} be the vertices of F and, for each i, let ¢; be the edge of P,_, containing
v and w;. Finally, let G; be any facet of P,_, containing e;. Then

d(F) < 3 max; ;{d(e) + d(e))}
<} max; ;{d(G) + d(G)}
S %'2511—1 = 6n—l’

and the lemma follows. O

Remark 3. We do not know if there is a ¢ < 1, depending on P, such that
0, < cd,_, for each n. On the other hand, given ¢ < 1, there is a P, with 6, > ¢d,.
To see this, let H be a regular hexagon in the xy-plane centered at the origin, and
for ¢ > 0 let Py(e) = conv{(0,0, +¢), H}, i.e, a regular double pyramid over H.
Then, given ¢ < 1, we can choose ¢ small enough so that for Py(¢) we have
0% > ¢d,. More elaborate examples show that, given ¢ < 1 and n > 1, there is a
P, with 62 > ¢é,.

Theorem 4. §, — 0.

Proof. Suppose the sequence (d,) does not converge to zero. Since d, < d,_; by
Lemma 2, we have 6, - a > 0 and §, > a for all n. Therefore there are sequences
") and (u), where u{" and u{? are vertices of the same facet F, of P,, such
that §, = d(F,) = |ul" — u?| - a.

Suppose there is an n, such that F, is of type 1 for n > n,. For each n > n,,
there is a least integer k, such that there are facets G of P; with F, = G{" and
G, = M(G™), k, <i<n— 1. Suppose there is an m such that k, < m for all
n > nqy. Then each F,, n > n,, is descended from some facet of some P;,0 <i<m,
via the midpoint operation. However, there are only finitely many such facets, and
for each one successive midpoint polygons converge to its centroid. Therefore, for
sufficiently large n, we must have d(F,) < a, which contradicts 6, > a. Thus k, > ®©
as n— 0. Let F, = G{. Then F, is not of type 1, so by Lemma 1 it must be of
type 2. Also, d(F,) < d(F,) < 6, , so d(F}) = a.

From the above it follows that we can assume there is a subsequence S of N
such that F, is of type 2 for ne S and d(F,) - a as n — oo through S. Choose 2
subsequence T of § such that the line segments s, = [u{", u!®] converge in the
Hausdorff metric to a line segment s = [u", u®] of length a in 8K, where K 15
the kernel of P,, as n — oo through T. Let t be the line containing s. _

For each ne T, there are vertices v, 1 <i<3, of P,_, such that uy =
10® + v+ V) and @ = [v¥, v9* V] is an edge of P,_,, i = 1, 2. By taking a further
subsequence if necessary, we may suppose that e{") is the longer of these edges,
ie., de?) = c,d(e") for some ¢, < 1. Let 9, be the angle between e!") and e(?. Then

[d(F,))* = H[d(es")]* + [d(ef)]* — 2d(e})d(e;?) cos 3,),
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giving d(el") = o,d(F,), where

2
= (1 + ¢ — 2¢, cos 9,)!/?°

Now a, > 1,s0 d(F,) < d(e!") < J,_, for ne T. Thus «, — 1, as n — oo through
T. This implies that ¢, —» 1 and 8, > n, as n - oo through T. It follows that
v® = o) as n — oo through T, where v lies in t " 0K, 1 <i < 3, |[o'") — v =
[0 — | = a, and v'? is the midpoint of s.

The edges e!") of P,_, converge to the segment [v'*), v®] of length a. Each "
belongs to a facet of type 1 or type 2. In either case there are vertices w) of P,_,,
1 <i < 3,such that o) = {w® 4+ wi* D) and ¥ = [wd, wi*]isanedgeof P,_,,
i =1, 2. Now the argument above shows that w{’ - w'), where w'” lies in t N 0K,
1<i<3, W —=w?| = |w? —w3| =a, and w? =u") is the midpoint of
[V, v'®]. Hence |w — v'¥|| = 5a/2.

Replacing e’ by f'V and repeating the argument yields a point x® in t N 0K
with [|[w) — x| = 3a, and so on. We deduce that 0K contains line segments of
arbitrary length, which is impossible. O

Corollary 5. The centroid set C(K) is dense in JK.
Proof. Let e > 0 and x € dK be given. There is an n, such that, for each n > n,,
there is a point x, € 0P, with ||x — x,| < /2.

By Theorem 4 there is an n, > n, such that 6, < ¢/2 foreach n > n,. If x, € F,,
where F,, is a facet of P,, and c, is the centroid of F,, we have

”x - Cn” < l|x - xn” + ”xn - cn”

<

for n > n,, as required. O
Corollary 6. 0K contains no facets.

Proof.  Suppose D is a facet in K. Then there is a c € C(K) with c e relint D, by
Corollary 5. For some n, ¢ is the centroid of a facet F, of P,. Then D c F,.
However, if H is the plane containing F,, then P, n H — {c}, a contradiction. ]

4. Subdivision Algorithms

We begin by describing a planar algorithm studied by de Rham, which we then
apply to obtain information about the kernel of a polyhedron.

L_Ct Qo be a planar convex polygon with vertices qo, . .., g, ;- (We always take
the indices of g; modulo n.) On the edge [g;, g;+ ], consider the points g5; and
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d5i+1 which divide the edge into three segments, [q;, g%, [4%i» 92i+1], and
[4%i+1> 4;+ ], in the proportions f,, «, and f8,, respectively, where f; + a + f, = 1.
The points q;, i =0, ...,2n — 1, form the vertices of a polygon Q,. The process
may be repeated, with the same proportions, to obtain a sequence (Q,) of polygons.
Then Q = lim, Q,, is a convex body in R2

Let y; = Bi/a, i = 1, 2. De Rham’s interest in the limiting curve 0Q stems from
the surprising fact that, for all but a single pair of values of the parameters y;, /Q
has singular properties. In a series of papers (see, for example, [6]) he showed that
if y; <1, i=1, 2 (which includes the case where each side of the polygon Q, is
trisected), then 0Q is smooth, but if y;, > 1, i = 1, 2, then dQ has no tangent at a
countable dense subset of 4Q; further, unless y, = y, = , no subarc of 3Q belongs
to C2.

In contrast to this is the special case y, = 7, = 1. Here it can be shown (e.g,
Section 2 of [3]) that 6Q is a continuously differentiable curve consisting of a finite
union of parabolic arcs, each joining adjacent midpoints of the sides of the original
polygon Q,. This was also known to de Rham, but in the CAD literature it is
called Chaikin’s algorithm (see [4], [11], or [3]), since until recently it was not
realized that de Rham has priority. We need the following result concerning this
algorithm.

Lemma 7. Let Q, be a planar convex polygon with vertices q;, i =0,...,n— 1,
and let Q be the limiting convex body obtained from Q, by Chaikin’s algorithm.
Then 0Q belongs to C? if and only if [q;— 1, q;+,] is parallel to [q;, q;+,] for
i=0,...,n—1.

Proof. 1t is known (see p. 120 of [3]) that dQ is a finite union of parabolic arcs
given by

Plt) = (Gdi-y — i + 3i+ ) + (@i — G- )t + Hqi— 1 + q)

for0<t<1,i=0,...,n— 1. The arc p{t), 0 < t < 1, joins the midpoints p,(0) =
Ygi—, + q) and p(1) = ¥q; + q;+,) of two adjacent sides of Q,. Note that

Pi1) = gi+1 — 4 = pi+4(0),
i=0,...,n— 1, which shows that Q belongs to C'. Also, p/(t) is constant, and
the curvature at p(t) is the length of the vector
pi(t) x pi
261
i=0,...,n— 1. Using p(1) = p;,(0), we see that 6Q belongs to C? if and only if
pi1) x p = pi1) X pis 1
or
pi1) x (pi+1 — p) = 0,
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i=0,...,n— 1. This is equivalent to the condition that p;,, — p; is parallel to
pi1),i=0,...,n— 1. Since

Pivi— P =(qi —2qis1 + Giv2) — (i1 — 20 + Gis 1)
=(Gi+2—qi-1) + 349 — qi+1)
=(qi+2 — qi-1) — 3pd1),

this reduces to the condition that g¢;,, —g;_, is parallel to g¢;4,; —q;,
i=0,...,n—1, as required. O

Theorem 8. There exists a polyhedron P such that the boundary of the kernel of
P, does not belong to C>.

Proof. Let Q, be an quadrilateral in the xy-plane in R3 which is not a parallelo-
gram. To ease our description, we also assume that Q, is not a trapezium, though
this is not actually necessary. Suppose gq;, 0 < i < 3, are the vertices of Q,. The
polyhedron P, is the right cylinder with vertices (q;, +1), 0 < i < 3. We need to
follow Fejes Toth’s algorithm through several steps.

Let R; be the rectangular facet of P, with vertices (q;, +1) and (q;,,, +1). Note
that each P, will be symmetric about the xy-plane. For our purposes, it will suffice
to fix i and consider at the nth stage of the algorithm the facet M"(R,) of P, and
the set %' (P,) of facets of P, which meet both M"(R,) and the open half-space
G, 3, 2): z >0}

The facet M(R;) of P, is a parallelogram, and the set # ;" (P,) consists of the
n-gon M(Q, x {1}) and two triangles, S; and S,,,, with one vertex at q;, ¢;.,,
respectively (see Fig. 1). The facet M%(R,) of P, is rectangular. Two rectangles,
R{Y, R, each of which share a vertical edge with M2(R,), are contained in & ;' (P,).
The latter also contains two triangles, S{" and S{?), which have an edge in common

Qo x {1}

S,
S, +1
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with M?(R;) and M*Q, x {1}), respectively. Finally, #; (P,) contains the two
triangles M(S;) and M(S;, ;). We also assume without loss of generality that S{"
and M(S;) meet in an edge (see Fig. 2). The key observation here is that one edge
of M(S,) is parallel to one diagonal of M?(R)), and one edge of M(S;, ,) is parallel
to the other diagonal. This parallelism produces two trapezoidal facets at the next
stage.

The following facets comprise &' (P;) (see Fig. 3). Firstly, the three parallelo-
grams M3(R)), M(R{")), and M(R{?); two trapeziums, T, and T;, ,, which share an
edge with M3(R,) and with M*(S;), M*(S,, ,), respectively; a triangle S;, which has

ar(st)

M?(Sis1)
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common edges with M(S{"), M(S{?), and T, ,; and the triangle M(S!"). Note that
the latter has a horizontal edge, which is parallel to the horizontal diagonal of
M?*(R)); this results in a trapezium at the next stage.

The next iteration produces the facets in % (P,), which form a configuration
(see Fig. 4) that is preserved by alternate steps of the algorithm. We have the
rectangles M*(R;), M?(R{"), and M?(R{?); two parallelograms, M(T;) and M(T,, ,);
a trapezium T, which has common edges with M*(R;) and M(T;); and a triangle
S, which meets both T; and M(T;,,) in an edge.

The parallelograms M(T;) and M(T;, ) each have a diagonal which is parallel
to a diagonal of M*(R,). Using this fact it is easy to see that #(P,), and by
induction, & ;'(P,,), for n > 3, also contains three rectangles, two parallelograms,
a trapezium, and a triangle, in the same configuration. In particular, the rectangles
M*"R)), M?"~%(R{)), and M?"~%(R{?) are facets of P,,, and their centroids lie in
the boundary of the kernel of P,. The intersections of these rectangles with the
xy-plane form three consecutive edges of the polygon Q, obtained from Q, by
Chaikin’s algorithm; namely, the edge whose midpoint is ¥g; + g;,,), together
with the adjacent edge on either side. The midpoints of these edges, which are
precisely the centroids of the just-mentioned rectangular facets of P,,, lie in the
limiting curve Q obtained from Q, by Chaikin’s algorithm.

It follows that the kernel K(P,) contains two sequences of points in the xy-plane,
each converging to ¥(g; + ¢;, ). One of these sequences belongs to the parabolic
arc of 0Q with endpoints g;_, + ¢;) and #q; + ¢;+,), and the other to the
parabolic arc of dQ with endpoints ¥q; + ¢;+,) and ¥q;+, + ¢:+,). Our assump-
tions on Q, imply, by Lemma 7 and its proof, that the intersection of the boundary
of K(P,) with the xy-plane does not belong to C2. Therefore the boundary of
K(Py) itself is not in C2. O

~ Chaikin’s algorithm—de Rham’s with y, = y, = 3—motivated several algo-
rithms in R3. For example, the Doo algorithm in [7], following earlier work of
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Catmull and Clark, “smoothes” a polyhedron by an iteration very similar in spirit
to Fejes Toth’s algorithm. For a convex polyhedron P,, the Doo algorithm
proceeds as follows. If F is a facet of P, a new facet is formed by joining, by line
segments, the midpoints of the line segments whose endpoints are the centroid of
F and a vertex of F. If F is an m-gon, the new facet is also an m-gon, called a type
F facet. Suppose F, and F, are facets of P, with an edge e in common. If G, and
G, are the corresponding new type F facets, then G, and G, each have an edge
parallel to e and of length half that of e. Joining the corresponding endpoints of
these edges by line segments, we obtain a parallelogram. Such parallelograms will
also be new facets, called type E (for edge) facets. Finally, suppose v is a vertex of
P,. For each facet F of P, with v as a vertex, there is a new type F facet G
contained in F. Facet G has a vertex vy at the midpoint of the line segment joining
the centroid of F with v. We consider the set of points vy for such F to be the
vertices of a new “facet,” which however will not in general be planar. We call
these new “facets” type V.

In this way a new “polyhedron” P, is defined. We now iterate this con-
struction—using all facets, planar or not—to obtain a sequence (P,) of “poly-
hedra.” The limiting body H we call the Doo kernel of P,,.

Although this algorithm is more complicated to describe than Fejes Toth’s, the
analysis of 0H is in some ways easier, since its construction does not employ the
rather unpredictable convex hull operation. For example, the type F and type V
facets at each stage are surrounded by a carpet of type E facets (parallelograms).
In the CAD literature some efforts have been made to determine the smoothness
properties of dH and the boundaries of kernels of other algorithms (see [1], [7],
[8], and Section 4 of [3]). Our final result, however, shows that the Doo kernel
suffers from the disadvantage that it does not preserve convexity.

Theorem 9. There is a convex polyhedron whose Doo kernel is not convex.

Proof. Let P, be a convex polyhedron with the following properties:

(i) Po 0 {(x,y,2):z >0} is the pyramid with vertices (0,0, 1), (+1,0,0), and
0, +1,0).

(i) The segments [(0, 1, 0), (1,0, 0)] and [(0, —1,0), (—1,0,0)] are edges, so
that there are two triangular facets, T, and T, above the first and third
quadrants in the xy-plane.

(iii) The two facets containing (0, 0, 1) above the second and fourth quadrants
are hexagons, H, and H,, which extend below the xy-plane and are such
that H, is the reflection of H, in the z-axis.

(iv) The lowest facet of P, is horizontal and has its centroid, b say, on the z-axis.

Suppose that t; is the centroid of T; and h; is the centroid of H; for i = 1, 2.
The type V “facet” of P, corresponding to the vertex v = (0,0, 1) of P, has four
vertices, at ¥t; +v), 3(h; +v), i=1, 2. The centroid of this “facet” is ¢=
(v/2) + (t; + t, + hy + h,)/8. Our assumptions (i)(iii) above imply that c lies on
the z-axis, and it is clear that ¢ # b.

Now, for i = 1, 2, t; lies in the boundary dH of the Doo kernel H of Py. If H
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is convex, the point p at the intersection of [¢,,t,] and the z-axis belongs to H
and has positive z-coordinate. However, both b and ¢ belong to dH, and by
choosing H; sufficiently long we may ensure that ¢ has a negative z-coordinate,
as does b. This is impossible, so H cannot be convex. O
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