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On Convex Bodies that Permit Packings of High Density

H. Groemer*

Department of Mathematics, The University of Arizona,
Tucson, AZ 85721, USA

Abstract. It is well known that an n-dimensional convex body permits a lattice
packing of density 1 only if it is a centrally symmetric polytope of at most 2(2" —1)
facets. This article concerns itself with the associated stability problem whether a
convex body that permits a packing of high density is in some sense close to such
a polytope. Several inequalities that address this stability problem are proved. A
corresponding theorem for coverings by two-dimensional convex bodies is also
proved.

1. Introduction

Let E" denote euclidean n-dimensional space (n=2). By a convex body in E"
we mean a compact convex subset of E” with interior points. If K is a convex
body in E" and S< E" the collection ?(K, S)={K +s: s € S} is called a transla-
tive packing in E" if any two members of ?(K, S) have no interior points in
common. It is called a lattice packing in E" if there are n linearly independent
b; € E" such that S consists of all points of the form g,b,+ - - - + g, b, with integers
gi. We write v(K) for the volume and d(K) for the diameter of K, and let B,
denote the (closed) ball in E" with radius r and center at the origin o of E".
The (upper) density of a translative packing ?(K, S) is defined by

— 1
lim

lim By & VK ),

where the summation is extended over all s € S with (K +s) N B, # . Of course,
in the case of lattice packings a much simpler definition of the density can be
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given. We say that a convex body K permits a (translative or lattice) packing
of density & if there exists a (translative or lattice) packing (K, S) in E" of
density 8.

Already Minkowski [9] has shown that a convex body in E" that permits a
lattice packing of density 1 is a centrally symmetric polytope of at most 2(2" —1)
facets. It is therefore natural to ask how much does a convex body deviate from
a polytope of this kind if it permits a packing of density close to 1? More precisely,
assuming that K permits a packing of density § we can pose the problem of
finding an upper bound, possibly of the form c¢(1—8)“, on the Hausdorff distance
between K and such a special polytope. However, this formulation disregards a
serious problem since the density of a packing is invariant under affine transforma-
tions but Hausdorff distance is not. Obviously, we can obtain rather meaningless
estimates by permitting large affine distortions. To avoid such distortions we
require that at least one of the two bodies whose mutual distance is under
consideration be ‘‘normalized” in the following sense: a convex body K in E"
will be called normalized if v(K) =1 and d(K) is minimal among all affine copies
of K of volume 1.

It will be convenient to treat the questions of approximation by symmetric
bodies and by polytopes separately (in Sections 2 and 3, respectively). A combina-
tion of both results is presented in Section 3 as a corollary. Corresponding results
for coverings instead of packings appear to be much more difficult to prove. In
Section 4 a covering result for the special case n =2 is proved. Finally, in Section
5, some open problems are discussed.

If K and L are convex bodies, then h(K, L) denotes always the Hausdorff
distance between K and L.

2. Approximation by Centrally Symmetric Bodies

If a convex body K in E" permits a packing of density 1 the fact that K is
centrally symmetric is proved by applying the Brunn-Minkowski theorem to the
convex body obtained from K by central symmetrization, i.e., to the convex body

K*=4K +(-K)).

Consequently, the proof of our stability result depends on a recently established
stability version of the Brunn-Minkowski theorem. We formulate it here as a
lemma. Its proof is given in [6, Theorem 5].

Lemma 1. Let K be a convex body in E" and assume that for some ¢ =0
v(K*)=(1+¢€)v(K).

Then, the translate of K*, say K°, which has the same centroid as K has the property
that

h(K,K°<#6,d(K)e""*",

where 6, =4 -2'/("*V . 3(n=V/npn/nth) < 1o p,
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Using this lemma we can easily prove the following result which holds not
only for lattice packings but also for translative packings. k,, denotes the volume
of the unit ball in E".

Theorem 1. Let K be a convex body in E" that permits a translative packing of
density 8. Then there is a centrally symmetric convex body K° (which is the translate
of K* whose center coincides with the centroid of K) such that

h(K, K°)=<6,d(K)((1-8)/8)""*", (1)

where 6, =4 -2V/("*D . 3(n=V/npn/(ntD) < 15 Furthermore, there exist an affine
copy K of K and a normalized convex body Z such that Z is centrally symmetric
with respect to the centroid of K and

h(K, Z) = p,(1+8)" ", )
where P = (8/K:,/")41/("+” . 3(n-l)/nn(3n+l)/2(n+l)< 12"2-

Proof. Let (K, S) be a packing of density 8. It is easy to show (see p. 69 of
[10]) that #(K*, S) forms a packing of density (v(K*)/v(K))8. Since this density
is at most 1 we have v(K*) = v(K)(1+(1—8)/8). Obviously, (1) is a consequence
of this inequality and Lemma 1. To prove (2) we let o denote a linear transforma-
tion with the property that v(¢cK*)=1 and that the minimal circumscribed
ellipsoid of oK* is a ball. Then oK* is normalized and because of a theorem
of John [7] (or see [8]) oK* contains a ball of radius d(orK*)/Zs/—r;. Hence,
(d(eK*)/2vn)"k, < v(cK*) =1, and it follows that

d(oK*)=2Vn/ k", (3)

If we set oK = K and make use of the linearity of & we have oK * = (dK)* = K*.
Hence, assuming that the centroid of K is 0, we obtain from (1) and (3) that

h(K, K*) <

2\/;0n<1___8)l/(n+”_ (4)

kl/m )

If we now define Z by Z = K* and assume & =1, then (2) follows immediately
from (4). If 8 <3, then, because of (3), the right-hand side of (2) is at least
(d(oK*)/2vn)8 - 2/("+1) . 3(n=D/npGn+D2n+D 5, J(gK*) = d(K*) = d(K), and
(2) is therefore trivially true. The estimate w,<12n’ is a consequence of
k¥ "=2/v/n which is easily obtained by inscribing a cube into the unit ball
of E", ' O

In the case n=2 one can use stronger stability versions of the Brunn-
Minkowski theorem and a result of Behrend [1] to derive improvements of (1)
and (2).
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3. Approximation by Polytopes

The following theorem contains our results concerning the Hausdorff distance
between centrally symmetric convex bodies that permit lattice packings of high
density and polytopes of the kind mentioned before.

Theorem 2. Let K be a centrally symmetric convex body that permits a lattice
packing of density 8. Then K is contained in a polytope P that is symmetric with
respect to the center of K, has at most 2(2" —1) facets, and has the property that

h(K, P)<a,d(P)(1-8)"", (5)

where a,, = n'/"/2. Furthermore, there exist an affine copy K of K and a normalized
polytope Q of at most 2(2" —1) facets so that Q is centrally symmetric with respect
to the center of K and

h(R, Q)=B.(1-8)"", ©
where B, = (n/x,)""n=in"*V/".

Remark. The proof of this theorem will show that in the case n=2 it is not
necessary to assume that K permits a lattice packing; it suffices to assume that
K permits a translative packing or only a packing by congruent copies. Moreover,
we may take B,=1.

Our proof of Theorem 2 is based on the following lemma which is of some
independent interest.

Lemma 2. If K and L are concentric centrally symmetric convex bodies in E" and
Kc L, then

1/n
h(L, K)si(zi)(v—('i—)> o(L\K)"".

Proof. Let Hx and H, be parallel support planes of K and L, respectively, such
that their mutual distance is h(K, L) and K is not between Hx and H,. If
E"={(x,,...,x,): x; real} we may assume that H, and H, are orthogonal to
the x,-axis of E" and that 0 =(0, ..., 0) is the center of both K and L. Let H(z)
denote the hyperplane defined by x, =2z We set D=L~ H(0), and if p is an
arbitrary but fixed point of L~ H, we consider the cone C =conv(D u {p}). Let
C' denote the subcone of C that has also p as apex but C n H, as base. Because
of C'c L\K and the symmetry of K and L we have

20(C") = v(L\K). (7
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Letting v,_, denote volume in E "1 we find
v(L)= J. vo_(LNH(z))dz=d(L)max v,_,(Ln H(z)).

If v,_,(Ln H(z)) attains its maximum at some value z, it attains it also at —z,
and therefore (by the Brunn-Minkowski theorem) also at z=0. Hence,

v(L)=d(L)v,-(D).
Consequently, if we let g denote the height of C we obtain

_gvl)
We)= Jiy

Since the height of C'is h(K, L) and g=d(L)/2 it follows that

g v(L) h(K, L)">2"—] v(L)
nd(L) g" — n d(L)

v(C") = h(K, L)".

The lemma is now an immediate consequence of this inequality and (7). O

Proof of Theorem 2. 1t has been shown by van der Corput and Davenport [2]
that if a centrally symmetric convex body K in E" permits a lattice packing of
density & then K is contained in a polytope P that has at most 2(2" — 1) facets,
is centrally symmetric with respect to the center of K, and has the further property
that

v(K)
—==34. 8
o(P) (8)
Hence, v(P\K)/v(P)=<1-34, and, setting L= P we can deduce from Lemma 2
that

(l_a)l/n

h(K, P)s—d(z—P)n”"

which is obviously the same as (5).
Let now o be an affine transformation such that oP is normalized. Then,
analogously to (3) we have

d(aP)=<2vn/«)". 9)

Hence, if we set oK =K and oP = Q, then (6) is an immediate consequence of
(5) and (9).
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The remark concerning the case n =2 follows from the fact that for packings
by congruent copies of K there is a centrally symmetric polygon P of at most
six sides that contains K and satisfies (8) (see [5, p. 339]) and that according to
Behrend [1] (9) can be replaced by d(aoP)<v2. O

We now consider the approximation by polytopes if K is not necessarily
symmetric. If such a K permits a packing of density 8 with 8 =3, then Theorem
1 shows that there is a centrally symmetric K° such that

h(K, KO)S gnzl/(n+l) d(K)(l —5)1/("+|),

Furthermore, because of Theorem 2, there is a centrally symmetric polytope P
of at most 2(2" —1) facets with K°< P and

h(K°, P)<a,d(P)(1-8)""
If we note that d(K )= d(P) we obtain, from these two inequalities,
h(K, P)=<(6,2"""*V+a,) d(P)(1-8)""*D, (10)

If o is now an affine transformation that normalizes P, then this inequality
(applied to oK and oP) together with (9) yields the following result.

Corollary. Let K be a convex body in E" that permits a lattice packing of density
8. Then there is a centrally symmetric polytope of at most 2(2" — 1) facets such that
(10) holds. Moreover, there exist a normalized polytope of this kind, say T, and an
affine copy K' of K such that

h(K', T)=y,(1-8)"""",

where vy, = (6,2"""" + a,)2Vn/kY"<15n? and 6,, a, are as in Theorems 1 and
2, respectively.

(The condition & =2 has been omitted since in the case § <3 both inequalities
are trivially true.)

4. Coverings

If C is a convex body in E" and S a discrete subset of E" and if the collection
P(C, S)={C+s: se S} has the property that E"<|J,_¢ (C+s5s), then 2(C, S)
is called a translative covering of E". Analogously as in the case of packings the
(lower) density of a covering #(C, S) is defined by

1
lim

lim v(B,)Z v(C +5)
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with the summation extending over all s € S with C + s < B,. Although it is known
that a convex body in E" that permits a translative covering of density 1 is again
a centrally symmetric polytope of at most 2(2" — 1) facets it is much more difficult
to prove stability theorems for coverings. This is due to the fact that for coverings
of E™ with n> 2 there is neither an analogue of the van der Corput-Davenport
theorem nor an analogue of the relationship between packings of a convex body
and the corresponding body obtained by central symmetrization (or by any other
symmetrization procedure, see [4]). Here we restrict ourselves to the case n =2
and prove a covering version of Theorem 2. The term “hexagon” means a plane
(convex) polytope of at most six sides.

Theorem 3. Let C be a centrally symmetric convex body in E* that permits a
translative covering of density 8. Then C contains a hexagon T that is symmetric
with respect to the center of C and has the property that

1\ /2
h(C, T)s—l—d(C)(is—l-) . (11)
2 é

Furthermore, there exists an affine transformation o such that the set C'=oC is
normalized and

h(C',aT)<(6-1)"2 (12)

Remark. This result could be generalized to coverings by congruent copies of
C provided that they do not ““cross” (see [3] for the appropriate definitions).

Proof. It has been shown by L. Fejes T6th (see the exposition [3, p. 339]) that
under the assumptions of the theorem the convex set C contains a hexagon T
that is symmetric with respect to the center of C and such that v(C)/v(T)=<6é.
Setting L= C and K =T we deduce from Lemma 2 that

h(C, T)s—d(c)(%

1/2
1/2
> ) v(C\T)""“.

Because of v(C\T)=v(C)(6—-1)/8 we obtain (11). To prove (12) let o be an
affine transformation such that oC is normalized. Then, because of an inequality
of Behrend [1], d(o-C)s\/E and applying (11) to oC and oT we find

5-1\"?
h(oC,oT)= (—-5—) =(6-1)"2 O

5. Related Problems

We list here several additional problems that are suggested by our theorems and
appear to be of interest. In view of the fact that the theorem of Minkowski
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mentioned in the Introduction is also true for nonlattice translative packings and
coverings of density 1 we may ask whether there is an analogue of Theorem 1
for coverings, or an analogue of Theorem 2 for nonlattice packings and coverings?
It is known (see [5]) that a convex body that permits a translative packing or
covering of density 1 is a polytope with centrally symmetric facets. We may
therefore ask if a convex body that permits a packing or covering of density close
to 1 is close to a polytope with centrally symmetric facets? Even more significant
is the problem of estimating the deviation of a convex body in E" from a
translative tile under the assumption that the convex body permits a translative
packing or covering of density close to 1. We remark that translative tiles can be
characterized as centrally symmetric polytopes with centrally symmetric facets
that form “belts™ consisting of four or six such facets (see [11, p. 299]) for a
more detailed description of this result and references).

Since the Hausdorff distance is not affine invariant it is of some interest to
investigate whether there are analogues of our theorems for the symmetric
difference topology. Concerning Theorem 2 we have noted (in the proof of this
theorem) that v(K)/v(P)= 8. Hence, v(P/K)=((1-8)/8)v(K); which shows
that the distance between K and P, measured by the symmetric difference metric,
is at most ((1—98)/8)v(K). A similar version of Theorem 1 for the symmetric
difference metric can apparently not be obtained by such a straightforward
argument.
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