D
[-A elt

Werk

Titel: Reconstructing Plane Sets from Projections.

Autor: Bianchi, G.; Longinetti, M.

Jahr: 1990

PURL: https://resolver.sub.uni-goettingen.de/purl?362609810_0005 | log18

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

Discrete Comput Geom 5:223-242 (1990) Distrete & Computatipnl

eomet

© 1990 Springer-Verlag New York Inc.

Reconstructing Plane Sets from Projections

G. Bianchi and M. Longinetti

Istituto di Analisi Globale ed Applicazioni, C.N.R., Via Santa Marta 13/A,
50139 Firenze, Italy

Abstract. We give some uniqueness results for the problem of determining a finite
set in the plane knowing its projections along m directions. We apply the results
to the problem of the reconstruction of a homogeneous convex body with a finite
set of spherical disjoint holes. If m X-ray pictures with directions in some plane
are given, then the problem is well posed provided the number of the holes is less
than or equal to m and the set of the directions satisfies a suitable condition.

1. Introduction

The problem of determining the structure of an object knowing its projections
along straight lines arises in a variety of optical contexts (see [1], [6], and [8]).
Here we consider the reconstruction of a homogeneous plane body K. We assume
that we know the projections of K along the complete set of straight lines parallel
to m given coplanar directions 6;,i =1, ..., m. In mathematical terms the problem
is to determine the characteristic function of K from the values of its integral
along each straight line in the directions 6;. Such integrals are the projections of
K along the corresponding straight lines. We assume that we know such integrals
without error. Under such assumptions the authors in [2], [3], [5], and [9] are
able to prove some uniqueness and stability results for reconstructing a
homogeneous plane convex body H. In particular, Gardner and McMullen [2]
proved that H is uniquely determined by its projections in m directions 6; if the
following condition holds:

(i) The set {6;} is not linearly equivalent to a subset of directions of diagonals
of a regular polygon.

Let us observe that the set of directions of diagonals of any regular polygon
is “equally spaced” and that any equally spaced set of directions arises this way.
More precisely a subset of directions of diagonals of a regular polygon is a set
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of directions given by angles at rational multiples of . Sets which are affinely
equivalent to such sets will be called affinely rational. Hence the set {6;} satisfies
the Gardner-McMullen condition (i) if and only if it is not affinely rational.

Let us now consider the reconstruction of a homogeneous convex body K
with holes. For reconstructing K we first have to determine the shape and the
position of each hole and then we reconstruct the boundary of K. The deter-
mination of the centers of gravity of each hole suggests the following problem
(Problem A):

Reconstruct a finite set C in the plane knowing its projections along the complete
set of straight lines parallel to m given directions 6;, i=1,...,m.

Here the projection of C along a line / in the direction 6; is the number of
points of C lying on L If the number |C| of the points in C is less than the
number m of the directions 6; the set C is uniquely determined (Proposition 1).
Further, when |C|= m we are able to prove that C is uniquely determined if the
set {6;} is not affinely rational or C is not the set of the vertices of an affinely
regular polygon (Proposition 2). Should |C|=m+ h while h is positive and m is
sufficiently large with respect to h, a similar result holds (Proposition 3). When
no conditions are placed on |C| we can construct an example in which the
uniqueness property does not hold for Problem A (Proposition 4).

In Section 3 we apply these results to the following continuous reconstruction
problem (Problem B):

Reconstruct a homogeneous plane body K obtained from a convex body by the
deletion of a finite number of disjoint circular disks from its interior, knowing its
projections in m directions 6;, i=1,..., m.

In Theorems 1 and 2 we prove that Problem B is well posed if the set {6;} is not
affinely rational and the following a priori assumption holds: the number of the
holes in K is at most m.

2. Reconstruction of Finite Sets

Proposition 1. Let 0,, 6,, ..., 6,, be m given directions in the plane, and let C be
a finite plane set consisting of n points. If n < m then the projections in the directions
0,,i=1,..., m, uniquely determine C.

We give two different proofs:

Proof 1. By contradiction, let A and B be two distinct sets with fewer than m
points and with the same projections in the directions 6;. Let x belong to A\B;
then for each direction 6; there exists a point y; in the set B such that y,—x is
parallel to 6, for each i, i=1,...,m.

Since the points y; must be distinct, the set B contains at least m points,
which contradicts the assumption n<m. O
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The following proof (see [7]) is constructive.

Proof 2. For any direction 6; let us denote by 6,(C) the set of lines with direction
0, through the points of C. Let r; and s; be the two lines in 6,(C) that are
“extremal” in the sense that they bound a closed strip S; containing C. Each side
of the convex polygon

p=6 s, 1)

contains at least one point of C and P > C. Since C contains n points and n <m,
it follows that P has fewer than 2m sides. As the extremal lines r;, s5;,, i=1,..., m,
are 2m in number, it follows that three extremal lines intersect in a vertex z of
P. Moreover, one of these three lines intersects P only in z and, since P> C, it
follows that z belongs to C; thus z is explicitly determined by the projections
of C. By eliminating z and each line of the set 6;,(C) that contains it and then
repeating the above argument, we may explicitly reconstruct C. O

When n=m let us consider the following example: let V and W be two
congruent and concentric regular n-gons. The set of vertices of V and the set of
vertices of W have the same projections in the n directions determined by the
2n sides of the convex hull of Vu W (see Fig. 1(a) for n=4). Let us observe
that two convex polygons affinely equivalent to V and W also have the same
property (see Fig. 1(b)).

In fact, we now show that this is the only way that two configurations can
determine the same projections in the case n = m, that is:

Proposition 2. Let 0,, 0,,...,0,, be m given directions in a cyclic order and let
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C be a set consisting of m points. The projections in the directions 0;, i=1,..., m,
fail to determine uniquely C if and only if the following conditions hold:

(ii)(a) there exists an affine map T in the plane such that T(C) is a regular
polygon;

(ii)(b) the directions T(6;) are different from the directions of the sides of T(C);

(ii)(c) the directions T(6;) are equally spaced.

Let us observe that from condition (ii)(c) it follows that the set {6;} is affinely
rational.

In the sequel || will denote parallelism. To prove Proposition 2 we need the
following lemma:

Lemma 1. Let P be a convex polygon of 2m vertices z;, j=1,...,2m, in a cyclic
order. Let W and V be the convex polygons of vertices z,; and z5;_,, i=1,...,m,
respectively. If for all j, j=1,...,2m, the following condition holds:

2z || Zi-1Zj42 || 22243, (2.2)

then there exists an affine map T such that T(W) and T(V) are two congruent,
concentric regular m-gons.

Proof of Lemma 1. Since by the assumptions
Zi+2Zi+3 " Zi+1Zi+4s Zi+2Zi+s " Zi+1Zi+6> Zi+aZiss " Zi+3Zi+65

we have that the hexagon z;,5z;,42;+12i+6Zi+32i+2 1S @ Pascal hexagon for each i
Hence z,,..., 2z belong to a nondegenerate conic 8. Similarly z,, ..., z; belong
to a conic, which must coincide with § since z,,..., z, belong to 6. It follows
that z; belongs to & for each i If 8 is a parabola there exists j such that z,
Zit1s+ -5 Zams Z15- -+ » Zj—1 are ordered on 8. It is easy to see now that zz;_; is not
parallel to z;_,z;_,, which contradicts the assumptions. Similarly, if & is a hyper-
bola it follows from the convexity of P that the vertices of P belong to the same
branch of the hyperbola and the argument above can be repeated. So we have
that & is an ellipse. Thus there exists an affine map T such that T(8) is a circle
D. By the assumptions we get

T(Zj) T(zj+l) " T(Z:i—I)T(zj+2)

and since the points T(z;), i=1,...,2m, belong to the same circle D we derive
that
d(T(z;-1), T(2:))=d(T(zi+1), T(zi42)),

where d is the Euclidean distance. It follows that T(W) and T(V) are two
congruent concentric regular m-gons. O
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Proof of Proposition 2. Let P be the polygon defined by (2.1). The boundary of
P consists of at most 2m sides. If the number of sides of P is less than 2m, by
repeating the argument in proof 2 of Proposition 1, we derive that C is uniquely
determined. Therefore if C is not uniquely determined P has exactly 2m sides.
Let z;, j=1,...,2m, be the vertices of P in a cyclic order and let W and V be
the polygons of vertices z,; and z,;_,, i=1,..., m, respectively. Since |C|= m
and each side of P contains at least one point of C it follows that either C = W
or C = V. Since C is not uniquely determined W and V have the same projections
in the directions 6;. So for each direction 6; there exists a side z;z;,, such that
zZj+, || 6; and (2.2) holds.

Lemma 1 holds that there exists an affine map T in the plane such that T(W)
and T(V) are congruent and concentric regular m-gons. Since either C = W or
C =V we derive (ii)(a). Moreover, the directions of the sides of T(P), that is to
say the directions T'(6;), are equally spaced and different from the directions of
the sides of T(C). This proves (ii)(b) and (ii)(c). Conversely, it is easily seen
that if the conditions (ii)(a), (ii)(b), and (ii)(c) hold, C is not uniquely determined.
This completes the proof. O

Proposition 3. Let C be a set consisting of m+ h points, with m and h positive
integers. If

m>4h*+11h, (2.3)
then the projections of C in the directions 6,, i=1,...,m, fail to determine C
uniquely if and only if (ii)(a) and (ii)(b) hold and

(ii)(d) the set of directions {T(6;)} is a subset of a set of m+ h equally spaced
directions.

First we give a definition and three lemmas.
Definition. Let J be a set of consecutive integers, with [J|=6. Let Q={g;};c,
be an ordered set of points. Q is regular if the following conditions hold:

any five consecutive points of Q are the vertices ordered counterclockwise of
a convex pentagon (in the strict Euclidean sense: all vertex angles must be
less than );

qGie1 || GicaGivn fori,  TD{i—1,ii+1,i+2};
qGie1 || GicaGies fori,  Jo{i—=2,ii+1,i+3}. (24)
Lemma 2. Let Q=/{q;};c, be a regular set with g the first index in J. Then
qqin || g fori,jk,  j<k, 2i+1=j+k, J>{ij,k}. (2.5)

Moreover, there exists a unique point q,_, such that {q,_,}u Q is a regular set.

Remark. Let us observe that the set {q,,..., g,} of the vertices of a regular
n-gon is a regular set for n=6. In this case the point g,_, =g, in Lemma 2
coincides with gq,,.
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Proof of Lemma 2. As in the proof of Lemma 1 we have that the set Q
is inscribed in a conic 8. Moreover, let us observe that (2.4) implies (2.5)
when k —j <6. We argue by induction. Assume that (2.5) holds for k —j <[, with
=6, and consider the hexagon ¢;g;.qx-39x-29x-19x, With k—j=1 We have
Qx-19k-2 || gx—39x- Since (k—3)—(j+1)<I, (k—-2)—j<l by induction
4i-19; || 4j+19x-3 and gi_,g; || 4,9k Therefore g;gi > || g;+19—3. Since the hexagon
qi9i+19x-39k-29x-19k is inscribed in & by applying the Pascal theorem we derive
that g;qx || gj+19x-1; since by induction giqi+ || gj+19x—1 we have (2.5) for k—j =1

We now prove that g,_, is uniquely determined. In fact, let r be a line
through gq,,, parallel to g,g,., and let s be a line through g,., parallel to
Gg+19g+2- In order to satisfy (2.4) for i=g and i=g+1 we have g,_,e{rns}.
So g, is uniquely defined. Moreover, it is easily seen that g,_,¢,gg+195+29+3
is a convex pentagon and therefore {g,_,;} U Q is a regular set. This concludes
the proof. O

Notation. Let A and B be two disjoint sets, each with m+ h points and with
the same projections in the directions 6;, i=1,..., m. Let P be the convex hull
of Au B, P° the interior of P, and 4P the boundary of P. Let

a=|AnéP|, b=|BnaP, a=|AnP°, B=|BnPY,
(2.6)
c=a+b, y=a+p.
By the assumptions it follows that
ata=b+B=m+h

We denote by z,, ..., z. the points of (AU B) ndP in a cyclic order and by 6;(z;)
the line through z; in the direction 6;.

Lemma 3. Let 6; be a fixed direction. Let z,_,, z,, z,, z,, be vertices of P with
t+1<u<w, z,_,€B, z,€A. If 2z, || 6; and

Zyy Zis1s - - - 5 Z, Gre not collinear, 2.7)

{zus1, Zus2d NAE D and z,_, £ 6,(z,) foreach z,€ A with u<v<w, (2.8)

then one of the following conditions holds:

2, € 0i(z,.1); (2.9)
0:(z,))"AN P’ # T (2.10)
0.(z.)NBNP°# . (2.11)

Proof of Lemma 3. Let r be the line (parallel to 6;) containing the segment z,z,.
First we prove that if (2.9) does not hold then z,_, £ r and z,, £ r. By contradiction
let us assume that (2.9) does not hold and z,_, € . We distinguish two cases:

(@) z_ €22,
(b) z,_,# zz,.
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In each case P O z,z,. In the first case, since P is convex, z,,,, Z,+2 € z,Z, and,
since (2.9) does not hold, z,.,, z,.,# z,. This contradicts (2.8). In the second
case, since P is convex, the vertices z,, z,.,,..., 2z, belong to zz,, and this
contradicts (2.7). The proof that z, ¢ r follows similarly.

Now it is easily seen that exactly one of the following cases will occur:

(c) z.€6:(z,).

(d) Theendpointof 6;(z, ) N P different from z, belongs to the openside z,_, z,.

(e) The endpoint of 6,(z,_,)n P different from z,_, belongs to the relative
interior of the polygonal path z,,..., z,.

In the first case (2.9) holds. Let us consider the third case. As A and B have the
same projections in the direction 6, then 6,(z,_,) N A # . But, by (2.8), 6;,(z,—,) N
AN9JP = and then (2.10) follows. Similarly, in the second case (2.11) follows.
This concludes the proof. O

Lemmad. Letz,,...,z be the points of (AU B)N3P. Letd =y+3 and let e be
a positive integer with 2(d +e)<c+2. Let

J={-d-e...,0,...,d+e+1}, J={-d-e—-1}0J,
and

Z_gvic1Z_a+i || 6 for i, 1<=i<2d+1.
If Z ={z;};, is regular and
23 €A, z€B forij, 2i+1eJd, 2jelJ, (2.12)
then Z' ={z;};., is regular and (2.12) holds for i, j, 2i+1€J’, 2je J".

We recall that |(A U B) ndP| = c. Therefore, if 2(d +e)+2> ¢ the points of Z
are not all distinct; for instance, if c=2(d +e))) then z_,_.=2z,4...

Proof of Lemma 4. By repeatedly applying Lemma 2 there exist 27y + 1 points
G-d-e—(2y+1)s - - - » §—d-e—1 SUch that the set
{0 d—eatipiiys s+ v s Godime—tn Tovimes Bodmeiiin s « v o Bdbesl) (2.13)
is regular.
Let f=—d+e—1. Since by assumption z_y,;_1z_44; || 6; for i, 1 <i=<2d +1, then
(2.13) implies
Z_4-0 € 0,(2r42:) for i, i=1, fH2isd+e+1; (2.14)
G-d-e-1€ 0,(2Z742i+,) for i, i=1, fH2i+1=sd+e+1; (2.15)
G-d-e—2€ 0,(2r42i42) for i, i=1, fH2i+2=<d+e+1; (2.16)
G-d-e-3€ 0;(242i+3) for i, i=1, fH2i+3=<d+e+1. (2.17)
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We assume that z_,_.€ A; that is, d +e is odd. In the other case the proof
follows similarly.
To prove Lemma 4 we prove four statements.

(I) Let us assume thatz_,_,_, € B and Z' is not regular. Thenq_,_._, € B P°.

If Z' is not regular then
Z_d—e-1 # q-d—e-1- (2'18)

Let i be such that i=2, f+2i=<d+e. Since d=y+3=(a+B)+3 and f=
—d+e—1, then i can take a+f +2 different values. Let us consider the four
points z_y4_._y, Z_4—es Zr+2i, and 2, 5;4,. Lemma 3 and (2.14) imply that one of
the following cases will occur:

(ai)) z_g—e-1€ 0i(2Zp42i+1);

(b)) oi(zf+2i+l) NBNP°# a;

(¢) 6i(z_g—eci)NAN P~

If there exist i, j, i #j, such that (a;) and (a;) hold, then
Z_g4-e-1€ 9i(2f+2.'+1) (! ej(zf+2j+l)

and, by (2.15), we derive z_,_._, = q_4-.-;, contradicting (2.18).
Therefore,

(a;) holds at most for one index. (2.19)
Furthermore, as a =|An PY), then
(c;) holds at most for a indices. (2.20)

Form (2.19) and (2.20) it follows that (b;) must hold at least for B8 +1 indices.
We now prove that there exist i, j, i # j, such that (b;) and (b;) hold and

0:(zp42i41) O oj(Z/+zj+|)f"BﬁP0¢ . (2.21)

Otherwise, for each i, j, i # j, such that (b;) and (b;) hold 6,(z/,2+1) " BN P° and
0;(27+2j+1) N B P° are disjoint sets. Therefore B +1=|B n P°| contradicting the
definition of B.

By (2.15), 0i(Zs2i41) M 6;(Zr42j+1) ={g-a-e—1}, therefore (2.21) implies that
g-d-e-1 € BN P°. This concludes the proof of statement (I).

(I1) Letusassumethatz_,_,_,€ Band Z' is not regular. Thenq_,_._3€ B P°.

Let i be such that i=2, f+2i+2=<d+e. Since d=y+3=(a+B)+3 and
f=-d+e—1, then i can take a + 8 +1 different values. First we prove that one
of the following cases will occur:

(di) z_g—e-1€ 0i(2f12i43);
(ei). oi(zf+2i+3) NBNP°# g
(fi) 6i(z_4-e)NAN P°#Q.
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We fix an index i and distinguish two cases: (a;) does not hold and (a;) holds.

If (a;) does not hold, let us consider the four points z_,_._;, Z_4_, Z2i+s, and
Zyi+s+3. In this case z_,_._, £ 0,(z,) for each z,€ A with 2i+f<v<2i+f+3.
Therefore by Lemma 3 and (2.14) it follows that either (d;), (e;) or (f;) holds.

If (a;) holds, by (2.15), z3i+f+1, Z-4—e—1, and g_4_._, are on the same straight
line parallel to 6;; therefore |6,(z_4_._,) » B|=2 and, since A and B have the
same projections in the direction 6;, (f;) follows. In any case either (d;), (e;) or
(f;) holds.

We observe that

q—d—e—B;é Z_d-e-1- (222)
Otherwise (2.13) implies that the polygon z_, . 1q-g—c-1Z_d—eZ—d-e+1Z_d—e+2 IS
convex. Since z_;_ o1, Z_4_e, Z_g_e+1,and z_,4_,,, are consecutivg points in the
boundary of the convex polygon P, by the definition of P it follows that

g-a—e—1 £ P°, contradicting statement (I).
If there exist i, j, i # j, such that (d;) and (d;) hold then

Z_d—e—1€ 0i(Z12i43) N 0(Zp12543)
and, by (2.17), we derive z_4_,_, =q_4_.-3, contradicting (2.22). Therefore
(d;) holds at most for one index. (2.23)
Furthermore, as @ =|A n P°|, then
(f;) holds at most for a indices. (2.24)

From (2.23) and (2.24) it follows that (e;) has to hold at least for 8 indices.
We now prove that there exist i, j, i # j, such that (e;) and (e;) hold and

0,(2p+2i+3) N 0(2p42543) D BN P°# (. (2.25)

Otherwise, for each i, j, i # j, such that (e;) and (e;) hold 6;(zr+2i+3) " BN P%and
6;(27+2j+3) " B A P° are disjoint sets.

Furthermore, if (¢;) holds and q_,_._; € 6; (Zr42i+3) » B P° then, by (2.15),
Zitf+15 Z2ivs+3, and g_y4_._, are on the same straight line parallel to 6;. Since
Z2its+15 Z2i4f+3€ANIP, q_4_c_ € BN P°, and A and B have the same projections
in the direction 6;, then

|9i(zf+2i+3) NBNP°|=2.
In conclusion, if (2.25) does not hold then the set

U {oi(Z/'+2i+3) NnBn Po} U{g-g-e-1}

i: (¢;) holds
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contains at least 8 +1 points. Therefore B+ 1=<|B P°|, which contradicts the
definition of B.
By (2.25) and (2.17) it follows that g_,_._y€ B P°.

(I1I) Letz_4_.€B. Thenz_y_ . \=q_4_._;; that is, Z' is regular.
Let us assume that Z' is not regular. By induction, the same argument as in
the proof of statement (I) and (II) shows that

G-d-e-1,9-d-e-3>-+-39-d-e-2p+1n € BN P,

This contradicts the assumption that 8 =|B P°|.

(IV) Z_g=e=1€ B.

We argue by contradiction. Let us assume that z_,_,_, € A. The same argument
as in the proof of statement (III) shows that

Zd-e-1=9q-d—e-2- (2.26)
We observe that (2.26), (2.14), and (2.16) imply that
Z_g-e € 0,(zp42:), Z_g—e-1€ 0i(Zr42i42),

for i, i=1, f+2i+2=d+e+1. Since the line 6;(z;,+,) lies between the lines
0:(z42;) and 6;(zr+2i+2) then 6i(zpi2i41) MIP ={23i+p4+1, 2} with z in the open
segment z_,_,_,Z_4_.. Since the open segment does not contain points of Au B
and A and B have the same projections in the direction 6;, then

0:(zp42i) "NBAP°# D (2.27)
We now prove that there exist i, j, i #j, 1 <i=<d, 1 <j=d, such that
oi(zf+2i+l) N ej(zf+2j+l) NBNP°#Q. (2.28)

Otherwise 6,(zr12i+1) N BN P° and 6;(zp45+1) N BN P are disjoint sets for each
i, j, i#j, and this implies that |[Bn P°|=d = y+3 contradicting the definition
of y.

Inequalities (2.28) and (2.15) imply that

G-d-e-1€ BN P°. (2.29)

Equations (2.26) and (2.13) imply that the polygon
Z_d-e-19-d-e-1Z2-d—eZ—d—e+1Z—d—e+2

is convex. Therefore, since z_4_._;, Z_4_e, Z_4_e+1, and z_,_., are consecutive
points in the boundary of the convex polygon P, by the definition of P it follows
that ¢_4_.— € P°. This contradicts (2.29). This contradiction concludes the proof
of statement (IV) and of Lemma 4. O
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Proof of Proposition 3. First let us observe that each line [ in the direction 6;
that supports P must contain at least one point of A and one point of B. Therefore

m=a, m=<bh, 2m=a+b, (2.30)
and since a+a=m+h, b+ =m+h we have
a=<h, B=h, v=2h. (2.31)

In particular, P has at least 2m sides and, since h>0, (2.3) implies that P
has at least 30 sides.
We now prove that there exists an affine map T such that

T(ANdP) and T(BNaP) are two congruent and concentric
regular polygons. (2.32)

In the sequel we denote by R, the interior of the convex hull of the six points
Zi_a, Zi_yy Ziy Ziv1, Ziv2, Ziv3- Since P has more than ten sides, any five consecutive
such hexagons intersect and any five nonconsecutive hexagons have empty
intersection.

For each x € (Au B) N P° let us define

F,.= U {zizit1}.

i: xeR;

Let us observe that F, consists of consecutive segments z;z;,, and it consists of
at most five such segments. Let

F= U F;

xe(AuB)nP°

we have that F consists of at most y connected components and of 5y segments
ZiZiyy-

Let s; and r; be the lines parallel to 6, that support P. On 5;"dP we choose
a segment z;z;,, with one end in A and the other in B. Similarly, we choose on
r;ndP another such segment. Let E be the union of the segments above for
j=1,...,m,let G=9P\E, and let

D =3P\(GUF). (2.33)

Since G contains a+b—2m segments z;z;,, then Gu F consists of at most
a+b—2m+y connected components and of at most a+ b—2m+ 5y segments
ZZi4y. Since a+a=b+B=m+h, a+B =17, then Gu F consists of at most 2h
connected components. Therefore, by (2.33), D too consists of at most 2h
connected components.
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Since D = E\F and by definition E contains at least 2m segments z;z;,,, we
derive that D contains at least 2m —5+y segments z;z;,,. Therefore there exists a
connected component Z of D which contains a number of consecutive segments
z;z;,, greater than or equal to (2m—5vy)/2h. From (2.3) and (2.31) Z contains
at least 2y +7 consecutive segments z;z;,, of P.

We can assume that the set of vertices of Z havetheorderz_;, z_441,..., Zg+1,
with d = y+ 3. Furthermore, since the segments in Z belong to E, we can assume
that

Z_gvi-1Z-a+i || 6 for i=1,...,2y+7,
22i+|€A for i, _ds2l+lsd+l,
z,;€ B for i —d=2i=<d+1.

Let us consider the four points z;_,, z;, zj;1, and z;,, for j, —d+1=j=d -1.
Since zzj,y || 6_a+;+1, since by (2.33) R,n (AU B)n P°=(J and since A and B
have the same projections in the direction 6_;.;.,, it follows that
Zj1Zj+2 || 0-4+j+1- Similarly,

zj—22j+3 ” 0—d+j+l for j, _d +2S_]S d "‘2.

Therefore {z_4, Z2_441,- .., Z4+1} is a regular set.

We now apply Lemma 4 to show that {z_,;_,,z_g4,..., 244} is a regular set
and z_,_, € A. Similarly, {z_4_y,2z_4,..., Z4+1, Z4+2} is a regular set and z,,,€ B.

By repeating the argument above we get that z,,,,€ A, z,; € B for each i, that
c=a+biseven,and that {z_(./2)-2, Z_(c/2)-15 - - - » Z(c/2)+3} is regular. This implies
that P satisfies the assumptions of Lemma 1. Therefore there exists an affine map
T satisfying (2.32). We conclude that AN 9 P and B n 3P have the same projections
in the directions 6;,, i=1,...,m. Then An P° and B P° also have the same
projections in the directions 6;, i=1,..., m. Since

|An P°|=|Bn P%<m,
from Proposition 1 it follows that
AnP°=BnP’=0.

This proves (ii)(a), (ii)(b), and (ii)(d). Conversely, it is easily seen that if
conditions (ii)(a), (ii)(b), and (ii)(d) hold, C is not uniquely determined. This
completes the proof. O

We conjecture that Proposition 3 holds even if in (2.3) the lower bound for
m is decreased. However, this bound cannot be too low. For instance, for h =1
and m =4 Proposition 3 does not hold. In fact, for any set of four direction 6,,
. 8,, 65, 0,4 there exist two sets A and B consisting of five points, with the same
projections in the directions 6;. In Fig. 2 A consists of black points, B consists
of white points, c=sin(a+B)/cosa-sinB, d=—(ccota+tanp), a,B€
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(0, 7/2), and the directions 6,, 6,, 65 and 6, are, respectively, given by the vectors
(0, 1), (cos a, sin a), (1, 0), and (cos B, —sin B).

The following proposition shows that when there is no a priori bound on |C|,
then for any finite set of directions {6;} the uniqueness property for Problem B
does not hold.

Proposition 4. Let {6,, 6,,..., 0,} be an arbitrary finite set of directions in the
plane. Then there exist two distinct finite sets A and B with the same projections in
the directions 0;.

Proof. First let us observe that if m =1 Proposition 4 is trivial. For m>1 we
argue by induction. Let A and B be two finite sets with the same projections in
the directions 6;, i=1,...,m—1, and let r be a fixed vector with direction 6,,,.
It is easy to see that the sets

A=AU{B+r}, B=BU{A+r}

have the same projections in the directions 6;, i=1,...,m (see Fig. 3(a)
and (b)). O
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2
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A={®}, B=(O} 6 A-{e)5

(a) 0,

‘Fig. 3

Let us observe that the cardinality of the sets A and B in the proof of Proposition
4 is equal to 2™

The following result is related to the classic nonuniqueness theorem for
Radon transforms; it was observed by Lorentz [4].

Corollary. Let {6,,6,,..., 0,} be an arbitrary finite set of directions in the plane.
Then there exist two distinct sets with nonempty interior and with the same projections
in the directions 6;.

Proof. Let A and B be as in Proposition 4. Let us consider two families I'; and
I', of disjoint homogeneous and congruent disks C; with center the points of A
and B, respectively. Let

F=UC,~, G'—'UC,-;

Ciel’ Ciel’,

then F and G have the same projections. O

The results in this section are also connected with projections of a finite
number of mass points, that is, points in which positive masses are concen-
trated [7]. i
3. Reconstruction of Convex Bodies with Holes
In this section we prove two theorems which provide conditions for the reconstruc-
tion of a homogeneous convex body K with a finite number of disjoint holes

(Problem B).

Definition. Let n be a positive integer and let K, be the class of plane convex
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bodies with at most n disjoint circular holes. More precisely, let
1
K,= {M\ U Qu: M is a plane convex body, t=<n, Q, is a disk and
h=1

M > Q, forh=1,...,t,Q,,ka=®forh#k}.

Similarly we define

K, = {H\U C;: H is a plane convex body, s<n, C; is a disk and H°> C,

i=1
fori=1,...,5,CGNnC;=Q fori#j}.

Recall that knowing the projection of K in the direction 6; is equivalent to
knowing the values of the integral of the characteristic function of K along each
straight line in the direction 6;.

First we prove the following lemma.

Lemma 5. Let K belong to K, and let W belong to K,,. Let us assume that K and
W have the same projections in the directions 6;, i=1, ..., m. Then the holes of W
coincide with those of K if one of the following conditions holds:

m>n; (3.1)
m=n and the set {0,,6,,...,0,} is not affinely rational. (3.2)
Proof. We have
K =H\ L_Jl G (33)
and
W= M\ hL;J] Q. (3.4)

with M and H plane convex bodies, C; and Q, disks, t=n, and s=<n. Let 6, be
a fixed direction. We assume that 6; is orthogonal to the x-axis. The projection
of H in the direction 6; is a concave function h;(x), defined on a compact interval
[m;, d;]. Moreover, the projection of a disk C; in the direction 6, is given by the
function g; ;(x) where

(x)= Wri-(x—a)? if a,—ri=x=<a,+r,
B\ X)= 0 otherwise,

where a; and r; denote, respectively, the abscissa of the center and the radius of
C;. Therefore the projection f;(x) of K in the direction 6; is

S =hx)- L gy, xelm,d) (3.5)
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Similarly, if we consider the projection of W, from (3.4) we have
1
f_;'(x)=vj(x)—hz uh,j(x)’ xe[mj, dj]a (3'6)
=1

where v;(x) is the projection of M in the direction 6; and

Wpi—(x—br)’ if by—py<x=<by+py,
0 otherwise,

“h.j(x) = {

where b, denotes the abscissa of the centre of Q, and p, its radius.

Since h;(x) and v;(x) are concave functions in (m;, d;), from (3.5) and (3.6)
we infer that f; has an unbounded one-sided derivative in (m;, d;) at the points
a;xr, i=1,...,s, and at the points b, £p,, h=1,...,t In other words, from
the projection of K in the direction 6; we determine the sets L; and R; of the
lines parallel to 6; which are tangent from the left and from the right (resp.) to
some disk C; and to some disk Q, (see Fig. 4).

Fig. 4
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But we have more. Let / belong to L;, let E(I) be the family of disks C; tangent
from the right to /, and let F(I) be the corresponding family of disks Q. Since
K e K,,, I intersects the x-axis in a point with abscissa x in (m;, d;). By differentiat-
ing (3.5) we get

D*f(x+e)=D"h(x+e \/_,alz‘ Vr+0We), £>0, (3.7)

where O(Ve) goes to zero when & tends to zero, and D* denotes right differen-
tiation. Similarly, by differentiating (3.6) we get

D*f(x+e)=D'yx+e)——= T VH+OWE), >0. (38)

\/E h: b,—pp=x
From (3.7) and (3.8) we obtain
T vn= Y Vp (3.9)
i: G;eE(l) h: QueF(l)

Let us observe that if there exists a circle D such that
De{C}n{Qu},

then K U D and W u D satisfy the assumptions of Lemma 5 and (3.1).
We argue by contradiction and we assume that {C;} # {Q,}; from the remark
above it follows that we may assume

{C}n{Qu}=2. (3.10)
Let C be a fixed circle of {C;}, with radius r. Let

L(C)={l€ U L;, | tangent to C},
j=1

R(C)={Ie U R;, I tangent to C}.
j=1

We have
|L(C)|=|R(C)|=m. (3.11)

Let us assume now that (3.1) holds. From (3.11), by the pigeonhole principle,
we derive

There exists at least one circle Q in {Q,} such that Q has three tangent
lines in common with C, and each of the tangent lines supports Q and
C from the same side. (3.12)

From (3.12) we get that Q = C, which contradicts (3.10). This concludes the proof
when (3.1) holds.
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Let us assume now that (3.2) holds. Statement (3.12) cannot occur, otherwise
Q = C which contradicts (3.10). By the pigeonhole principle and (3.11) we derive
that s = t = m and the following situation occurs:

Each circle Q, has exactly two tangent lines in common with C, for
each circle C in {C;}; conversely, each circle C; has exactly two tangent
lines in common with Q, for each circle Q in {Q,}. (3.13)

From (3.13) it follows that each line I in L; is tangent from the left just to one
circle Q of {Q,} and just to one circle C of {C;}. From (3.9) we deduce that the
radius of Q is equal to the radius of C and therefore we get that all the circles
C; and Q, have the same radius.

Let A be the set of the centers of {C;} and B of {Q,}. We know that for each
line ! in L; there is exactly one point in A and one point in B on the same side
of I and at the same distance from I Therefore we conclude that A and B have
the same projections in the directions 6;, j=1,..., m. So the problem has been
reduced to Problem A. Since the set {6,, 0,, ..., 6,,} is not affinely rational we
conclude that A = B. This concludes the proof. O

From Lemma 5 and the Gardner-McMullen result [2] quoted in the Intro-
duction, Theorem 1 follows.

Theorem 1. AnysetK e K, is uniquely determined by its projections in m directions
6,,0,,...,0, if m=n and if the set {6,,0,,...,86,} is not affinely rational.

Notation. Given K eIZ,, and a direction 6, we denote by S;(K) the Steiner
symmetral of K in the direction 6,.

S:(K) is a symmetric set with respect to the line through the origin perpen-
dicular to the direction 6, ; furthermore,

S:(K)nris a connected set, possibly empty, for any line r in the direction 6;,
S:(K) has the same projection as K in the direction ;.

Let us observe that S;(K) provides the same data for problem B in a different
form. We denote by A the class of the sets which are the Steiner symmetrals of
some K in K, with respect to some direction in the plane. Given m directions
6,,0,,...,0, we introduce the mapping S:

S(K)=(S8,(K), Sy(K),...,S.(K)), KeKk,,

from K, to (A)™. We put both on K, and on A the topology induced by the
Hausdorff distance

d(H, K)=max(sup inf ||x — y||, sup infllx—yl[).
xeH YK xekK YEH
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\ ~

Fig. §
Now we prove the well posedness for Problem B.

Theorem 2. If m=n and the set {0,, 6,, ..., 0,,} is not affinely rational then the

-~

mapping S is continuous and continuously invertible on S(K,,).

Proof. Volii¢ [9] has proved Theorem 2 when n =0, that is for homogeneous
convex bodies without holes. The general proof follows by a similar argument.
Therefore we outline only the principal differences.

Let K = H\Uf=| C;, with H a convex body and C; disjoint disks. Let I; be a
strip parallel to 6;, containing K in its interior (see Fig. 5). Let us assume that
there exists a sequence {A,}, A, € K,, such that {S(A,)} converges to S(K) and
{A,} does not converge to K.

For t large enough I, > S;(A,), j=1,..., m; therefore ﬂj'.';, I;> A,. Since
ﬂ;’;, I; is a compact set there exists a subsequence {A, } of {A,} converging to
aset We K,,, W# K. Since S is a continuous mapping, W has the same projections
of K in the directions 6;, and Lemma 3 implies that the holes of W coincide
with those of K. Therefore We K, and by Theorem 1, W = K, contrary to the
assumptions. This concludes the proof. O

In addition we point out a nonuniqueness result for Problem B when we have
no a priori bound on the number of holes.

Proposition 5. Let {6,,0,,...,6,} be an arbitrary finite set of directions in the
plane. Then there exist two distinct sets K, and K, in K,, n large enough, with the
same projections in the directions 6.
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Proof. Let F and G be as in the proof of Proposition 4. For this proof it is
sufficient to consider the set K, and K, defined by

K,=H\F, K,=H\G,
where H is a convex body containing in its interior F and G. O

Finally, we mention the problem of reconstructing the spatial trajectories of
elementary particles. This arises in bubble chamber experiments, where trajec-
tories are photographed from several viewpoints (see [6]). The reconstruction
for any planar section, when the optic axes are coplanar, suggests studying the
following analogue of Problem A:

Given a set of m directions {6,, 6,,..., 6,}, let |, be a straight line orthogonal
to 0;, passing through the origin of the axis. The problem consists in reconstructing
a finite set C in the plane knowing the orthogonal projection m;(C) of C on
each line /. 7;(C) is the union of the orthogonal projections of each point in C
on the line /. Unlike Problem A it happens that for each point x € 7;(C) we do
not know the number of the points in C with the same orthogonal projection x.

We are able to prove that Propositions 1 and 2 of Section 2 hold for this
problem too.
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