D
[-A elt

Werk

Titel: An O(n log n) Algorithm for the Voronoi Diagram of a Set of Simple Curve Segments...
Autor: Yap, C.K.

Jahr: 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?362609810_0002 | log29

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

Discrete Comput Geom 2:365-393 (1987) Discrew & Comptation]

eomet

@© 1987 Springer-Verlag New York Inc.

An O(n log n) Algorithm for the Voronoi Diagram of a
Set of Simple Curve Segments™*

Chee K. Yap

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street,
New York, NY 10012, USA

Abstract. Let X be a given set of n circular and straight line segments in the plane
where two segments may interest only at their endpoints. We introduce a new
technique that computes the Voronoi diagram of X in O(n log n) time. This result
improves on several previous algorithms for special cases of the problem. The new
algorithm is relatively simple, an important factor for the numerous practical
applications of the Voronoi diagram.

1. Introduction

The ubiquitous Voronoi diagram has been studied in areas such as biology,
solid-state physics, pattern recognition, geography, stock-cutting, wire layout,
geometric optimization, facilities location, computer graphics, and robotics (see
[5], [9], [12] for extensive references). In some literature, the alternative ter-
minology of Thiessen or Dirichlet tesselation is used. This paper gives an algorithm
for computing the Voronoi diagram of a set of planar objects under the Euclidean
metric. When restricted to the interior of a simple polygon, this diagram is known
as the medial axis or internal skeleton of the polygon. Many variations of the
problem studied here have been investigated. The following illustrates the range
of possibilities:

(a) Using the general L,-metric instead of the usual Euclidean metric [11],
[14]. An unusual metric that arises in computational fluid dynamics [3]
is the problem of computing the Voronoi diagram for a set of points in
the plane under the following metric:

D(p, q) =min{d(p, q+r): re Z?},

* This work was supported by NSF Grants No. DCR-84-01898 and No. DCR-84-01633.



366 C. K. Yap

where Z are the integers, and d(p, q) is the Euclidean distance between
points p and g. We may interpret this as computing the Voronoi diagram
on the torus.' This problem can be linearly reduced to the standard Voronoi
diagram for a set of points.

(b) Power diagrams or Laguerre geometry [8]. Another direction is to assign
additive or multiplicative weights to points [1].

(c) Generalization to higher-dimensional spaces. An algorithm for the Voronoi
diagram of point sets in higher dimensions follows (by a certain transforma-
tion) from Seidel’s work on the convex hull [23]. An unusual space is
R*xS' where R is the real line and S’ the unit circle: the Voronoi diagram
here is used for planning the motion of a line segment [19]-[21].

(d) Voronoi diagrams arising from convex distance function [4], [6], [15].

We note here three recent applications of Voronoi diagrams for a set of straight
and circular segments, all arising in robotics:

(i) In [18] we show that planning the motion of a disk amidst polygonal
objects can be reduced to searching in the Voronoi diagram of these
objects. This result clearly extends to the case where the obstacles are
bounded by line segments or circular arcs. (As an example of the use of
circular arcs, the mobile robot in [ 17] approximates itself and the obstacles
by disks; an O(n*) time algorithm was implemented there.) The import-
ance of the case of a disk arises from the algorithm’s efficiency compared
with the best algorithm for even slightly more complicated shapes (e.g.,
[19]). Indeed, computing the Voronoi diagram can be regarded as a
preprocessing cost in which case the actual path planning for a disk
becomes a linear-time process. Thus an algorithm for moving a disk can
serve as an important initial heuristic in general motion-planning
algorithms. But until the availability of an easily implementable
O(n log n) algorithm for computing the Voronoi diagram, this importance
remains mostly theoretical.

(ii) Sharir [25] discusses the problem of detecting if any two differently
colored circles from a set of colored circles intersect each other. This
problem can be easily solved if we have the Voronoi diagram of these
circles.

(iii) Baker et al. [2] show how to find all stable three-fingered grasping
positions of a nonconvex polygon using the Voronoi diagram of a shape
composed of straight lines and circular arcs.

Previous Work. Before the advent of computational geometry, a number of
algorithms for various cases of the problem considered in this paper were proposed
(mostly running in time Q(n?)). Here we review recent results that are asymptoti-
cally efficient and which rely on the techniques of computational geometry.

! The points on the torus represent (moving) markers for solving Navier-Stokes equations.



An O(n log n) Algorithm for the Voronoi Diagram 367

(1) The first algorithm in this genre is due to Shamos and Hoey [24] who
gave an O(n log n) algorithm for the Voronoi diagram for a set of points.

(2) In the thesis of Drysdale [5], the problem of the Voronoi diagram for a
set of disjoint polygonal and circular objects was first studied. He described
and implemented an O(ncm) algorithm. This bound is subquadratic
but, since it is Q(n log* n) for any k, Drysdale also posed the problem
(solved in this paper) of an O(n log n) solution.

(3) Subsequently, Drysdale and Lee improved the bound in (2) to O(n log® n)
[13].

(4) Atthe 1979 Symposium on Foundations of Computer Science, Kirkpatrick
[9] outlined in O(nlog n) solution. But the technique is complicated
enough that the correctness of some of its details remains to be settled
[10]. However, Kirkpatrick’s ideas (“spokes” and the use of minimum
spanning tree) have independent interest.

(5) When restricted to the problem of computing the medial axis of a simple
polygon, Lee [12] presented an O(n log n) algorithm (improving an earlier
one in [22]).

(6) Sharir [25] describes an O(nlog® n) algorithm for n circles that may
intersec. Note that this improves (c) for the case of circles since the solution
in (c) assumes that the circles are disjoint.

We refer to a recent review [16] of most of the preceding results as well as
the techniques and generalizations known. Recently, Fortune [7] discovered a
very different O(n log n) algorithm for the problems considered in this paper.
His elegant method is based on plane-sweep in a transformed space; the fact
that an O(n log n) plane-sweep method exists is, in itself, a pleasant surprise.
(Our own results were obtained in the fall of 1984 [26]).

Discussion: Separability Condition. All the above algorithms (except for For-
tune’s) use the divide-and-conquer paradigm: let X be a set of line segments or
circular arcs. To compute the Voronoi diagram of X, divide X into equal subsets
X, and Xy, recursively compute their Voronoi diagrams, and then “merge” the
results. The merging is essentially defined by a certain “merge curve” C (intui-
tively, to one side of C, the Voronoi diagram of X comes from the Voronoi
diagram of X, while to the other side, it comes from Xy). To obtain an O(n log n)
algorithm, the goal is to compute C in linear time. In the Shamos-Hoey algorithm
for points, the merge curve is a simple connected infinite curve separating X
and Xy (we view this as a kind of “separability” property of the two sets X
and Xg). The work of Drysdale and Lee attempts to recover this separability
property when the input is a set of line segments. As they reported, finding a
computationally simple separability property remained elusive despite consider-
able effort. Accepting the fact that the separability property is not easily achieved,
C may have many connected components and the issue is now to find in linear
time at least one point (called a “starter’) in each component of C. From each
starter, we can trace out a component of C. The innovation of Kirkpatrick is to
show that, to compute the Voronoi diagram of a set of points, no notion of



368 C. K. Yap

separability is needed (i.e., X; and Xy can be arbitrary). His idea is to subdivide
each Voronoi cell (by introducing ‘“‘spokes’) into simpler subcells, and to use
the fact that a certain minimum spanning tree of X intersects the Voronoi edges
and spokes of X; and Xy in a fashion that allows one to find all the starters in
linear time. This idea appears again in Sharir’s work on intersecting circles. In
some sense, the new idea in this paper is to reintroduce the separability condition
in a radical way (“by simply imposing it”).

Underlying Technique of This Paper. We now give our basic idea. Recall from
the abstract of this paper that we solve the following:

Given a set X consisting of n straight or circular segments (possibly degener-
ated to points), where the segments do not intersect except at their endpoints,
compute their Voronoi diagram Vor(X).

It will be shown in the next section that Vor(X') is composed of straight, parabolic,
hyperbolic, or elliptic curves. Since all and only conics can appear in the diagram,
our problem is a very natural level of generalization of the original problem for
points. (In other words, if we do not wish to handle curves of degree more than
2, then our problem is the most general case to consider.) An O(n log n) solution
to this problem would subsume the above-mentioned works (1)-(5) since polygons
and circles can be decomposed into circular and straight segments. However, it
would not subsume (6) since, there, the n circles may intersect arbitrarily (giving
rise to Q(n?) circular arcs in the worst case).

If there are m distinct endpoints among the segments of X, we introduce m + 1
vertical lines such that each endpoint lies between a unique pair of adjacent
vertical lines. The region between any pair of (not necessarily adjacent) vertical
lines is called a slab. In stage 0, for each slab between a pair of adjacent vertical
lines, we compute the Voronoi diagram of the restriction of the segments of X
to the slab. In stage 1 we “merge” pairs of Voronoi diagrams of adjacent slabs
computed in stage 0. In general, at stage i+1 we merge pairs of adjacent slabs
from stage i. In log m stages, we would have computed the Voronoi diagram of
X. Note that in stage i we compute the Voronoi diagram of slabs that contains
2' endpoints of X. The obvious implementation of this algorithm may take Q(n?)
time, simply because in the initial stages, merging each pair of slabs can take up
to linear time:

We overcome this problem by computing only the ‘“‘essential” part of the
Voronoi diagram of a slab, where, roughly speaking, this essential part has size
only O(k) if the slab contains k endpoints of X. Furthermore, merging two slabs
that collectively contain k endpoints takes only O(k) work. This implies that
each stage takes linear time and our stated time bound follows.

In the rest of this paper we present the basic definitions in Section 2. Section
3 describes some simple properties of the process of moving along the Voronoi
diagram of objects. Section 4 gives the merging process which is the heart of the
algorithm. Sections 5 and 6, respectively, prove the termination and the correctness



An O(n log n) Algorithm for the Voronoi Diagram 369

of the merge process. After the overall algorithm is given in Section 7, we analyze
its complexity in Section 8. Some concluding remarks are given in Section 9.

2. Preliminaries

Following [9] we take our primitive objects to be points, open line segments, and
open circular arcs. It is important to remark that this “‘expedient” of Kirkpatrick
is actually a crucial insight that solves several technical problems faced when
trying to generalize the original definition of Voronoi diagrams for points:
see [5] for a discussion of the issues. For simplicity we restrict the line segments
to be finite and the circular arcs to be less than a semicircle. Motivated by robotics
applications the open line segments and arcs will be called walls and the points
will be called corners. An object is either a wall or a corner. (Note: depending
on the context, a corner is treated as a point or a singleton set.) A set X of
objects is said to be proper if (a) they are pairwise disjoint and (b) for each wall
in X its endpoints are corners in X. Note that we allow isolated corners in a
proper set. Hereafter, let X denote a proper set of objects. Assumption (b) in
the definition of “properness” is a technical convenience ensuring that each
Voronoi edge is part of a unique conic (see below).

Some of the following definitions are fairly standard: the projection of a point
p onto an object s is the point g in the closure § of s such that the Euclidean
distance d(p, q) is minimized [13]. Note that this term is well defined except in
this case: suppose s is an open arc of a circle centered at O and the line L,
defined to be the bisector of the segment joining the two endpoints of s. Let
H < L be the closed half-line bounded by O and which does not intersect s.
Then the projection of p onto s is undefined precisely when p lies in H. In our
applications, whenever we project p onto s then p will in fact be as close to s
as to any other objects (including the endpoints of s). It will be shown in Lemmas
1 and 2 below that, under this condition, p does not lie in H. Henceforth, we
only use projections when they are well defined.

The distance d(p, s) between p and s is defined as inf{d(p, q): q € s}. Define
the clearance of an arbitrary point p with respect to X to be the minimum of
d(p, s) where s e X. Denote this by Clearancex(p) or simply Clearance(p). In
our proofs it is often convenient to refer to the circle centered at p with radius
equal to Clearancex(p): call it the clearance circle at p (with respect to X). The
closed region inside the clearance circle is called the clearance disk at p.

We consider two ways to define the Voronoi diagram. If we regard X as a set
of points obtained as the union of the objects in X then we have a very simple
“intrinsic” definition as in [18] or [20]. Precisely, if | X is the set of points in
objects of X, then the intrinsic Voronoi diagram of X is the set of points p with
positive clearance such that the intersection of the clearance circle at p with the
closure of | X is a disconnected set.”> The definition of the intrinsic diagram

2 This elegant definition of Voronoi diagrams is one simple way to overcome the previously
mentioned difficulties faced when defining Voronoi diagrams, as discussed in Drysdale’s thesis.



370 C. K. Yap

serves to motivate the next definition of the Voronoi diagram, which is similar
in spirit to [9]. Say a point p is *-close to an object s in X if for all £ >0 there
is a point q in the e-neighborhood of p such that (i) Clearance(q) =d(q, s) and
(ii) the projection of g onto s is actually in s (rather than in §—s). We can
characterize *-closeness in this more explicit form: p is *-close to s iff

(i) Clearance(p)=d(p, s) and
(ii) if the projection of p onto s is not in s then s is a wall with p on the
normal through an endpoint of s.

Definition 1. The Voronoi diagram Vor(X) of X is the set of points p such that
there exist at least two objects s, and s, that are *-close to p.

Example 1. Let X consist of the walls so, ¢, and the corners s;, #; (i=1,2), as
in Fig. 1. Vor(X) consists of all the points on the dashed curves. The intrinsic
diagram of X consists of all the points of Vor(X) minus those that lie on the
straight line segments perpendicularly through each of the corners. Thus it is the
curve pop; ... pg in Fig. 1.

By the above characterization of *-closeness, and from the example, it is
intuitively seen that Vor(X) is simply the intrinsic Voronoi diagram of X aug-
mented with additional line segments lying along the normals to the endpoints
of walls. If X is not proper then Vor(X) is not necessarily decomposable into a
collection of curves and this can be problematic. For computational purposes,
and for most of this paper, we prefer to use Vor(X); but we will have occasion
to consider the intrinsic Voronoi diagram.

For any pair of objects s, s', the (s, s')-bisector is the Voronoi diagram of the
set {s, s'}. If s and s’ are objects from X then the properness of X implies that
the bisector is a simple curve that divides the plane into two infinite regions. But,
in general, the bisector may contain branch points as illustrated by the following:
if s and s’ are two straight walls such that one endpoint g of s is in the relative
interior of s’ then the bisector consists of three branches emanating from g. (This
situation is excluded by the properness of X since g would have to be an object
in X but g and s’ are not disjoint.)

\
Py
N
N
1 \PR
1 o
N\, ~—
1 3 ~—~—
1 \ Rt
PN T 5
\ -
1 S, -
' N ] T L
| N i
' \ ~"h
! N S e
, s o
: ‘:“ ’ ‘ :
S
~ - 1
| ~E-Thy
[ . ! t
1
by T 11
' 1

Fig. 1. Voronoi diagram.



An O(n log n) Algorithm for the Voronoi Diagram 371

Let us briefly note the types of bisectors. In case the objects are corners and
straight walls, the bisector is familiar from previous work:

[CC] 1If s and s’ are both corners then the bisector is a line.
[CW] If s’ is a straight wall and s is its endpoint then the bisector is the

line through s and normal to s'.

[WW] If they are disjoint straight walls (except for a common endpoint)

then the bisector is a curve that may be composed of up to seven
sections of straight or parabolic lines. This is illustrated in Fig. 1: the
bisector of the walls s, and ¢, is identical to the intrinsic diagram of
the points in the figure.

Next we illustrate the basic types of interactions involving circular arcs. To
do this, we consider infinite lines and full circles instead of line segments and
arcs. We allow these circles and lines to intersect freely here, and we will use the
intrinsic Voronoi diagram. (It is shown later that edges of Vor(X), except for
those normal through an endpoint of a wall, are portions of such intrinsic
diagrams.) It is then easy to verify the following:

(1)

(2)

(3)

4)

Two nonintersecting circles, each external to the other: the bisector is one
branch of a hyperbola (unless the two radii are equal, in which we have
a straight line).

Two intersecting circles: the bisector is the union of an ellipse and one
branch of a hyperbola, both passing through the two intersecting points
of the circles (see Fig. 2). Degeneracy occurs when the two circles touch.
There are two cases: the circles touch externally to each other and the
circles touch with one contained in the other. In the first case, the ellipse
becomes a line segment joining the two centers. In the second case, the
hyperbola branch becomes a ray from the common point and directed
away from both centers.

Two nonintersecting circles, one contained in the other: the bisector is an
ellipse with foci the two centers of the circles. The ellipse separates the
two circles.

A circle of radius r and a nonintersecting line A: a parabola with focus the
center of the circle and directrix a line A’ parallel to A and at distance r
from A. The line A lies between A’ and the circle.

1
\
\
\
\
\

Fig. 2. Bisector of two intersecting circles.



372 C. K. Yap

(5) A circle of radius r and an intersecting line A: two parabolas both passing
through the two intersection points of A and the circle. The directrices of
the two parabolas are the two lines parallel to A and at a distance r from
A. In the degenerate case, where the line A is tangent to the circle, one
of the parabola becomes a ray emanating from the point where A touches
the circle.

(6) A circle and a point outside the circle: a branch of hyperbola.

(7) A circle and a point inside the circle: an ellipse inside the circle. (Note: in
the analysis, we can essentially treat cases (6) and (7) as degeneracies of
(1) and (3), respectively.)

Remark. The reader familiar with [25] will note that our definition of Voronoi
diagrams (when restricted to full circles) differs from Sharir’s (which is the same
as in [13]). Sharir works with circles and defines the distance D(p, C) from a
point p to a circle C of radius r centered at g as d(p, q) —r. So distance could
be negative and the diagram for a set of circles defined by Sharir has no elliptic
curves. But it is easy to see that by removing all the elliptic curves in our diagram,
we obtain Sharir’s. Negative distances have the disadvantage that they do not
generalize easily to circular arcs. -

The Voronoi diagram can be decomposed into Voronoi edges where each edge
e is a maximal connected portion of the (s, s’)-bisector determined by some pair
of objects s, s'; e is called an (s, s')-edge.

Example 2. Because X is proper, each Voronoi edge is a segment of a unique
conic (rather than a union of such segments). To see this, consider the set X of
objects in Fig. 1. There are 15 Voronoi edges, of which eight are normals emanating
from corners. Consider the Voronoi diagram of X'={s, t,}, i.e., the improper
set of objects obtained by omitting the corners in X. Then Vor(X') consists of
the curve pop, * - - ps (thus, Vor(X') coincides with the intrinsic diagram of X).
The entire curve makes up one Voronoi edge, and is clearly not part of a unique
conic.

The endpoints of Voronoi edges are called Voronoi vertices. The set of points
in the plane that are neither on the Vor(X) nor in any object of X is partitioned
into connected components called Voronoi cells. For example, there are eight
cells in Fig. 1. Each cell is associated with an object s where for all points p in
the cell, p is *-close to s. Conversely, a corner (resp. wall) is associated with at
most one (resp. exactly two) cells. A cell associated with an object s is called an
s-cell.

We now show that the Voronoi diagram for a set of straight and/or circular
segments are portions of the curves (1)-(7) described above. To indicate why
this is not immediately obvious, suppose e is an (s, s')-edge where s is a circular
arc of a circle C,. Let p be a point in e and assume that ges such that
d(p, q)=d(p,s). It is conceivable that the line segment [ p, g] properly contains
a radius of the circle C,. If this were so, then none of the bisectors (1)-(7) fits
this description and e cannot be a portion of these curves. Another possibility



An O(n log n) Algorithm for the Voronoi Diagram 373

Fig. 3. Cone of Influence of s.

that does not fit (1)-(7) is when the line through p and q does not pass through
the center of C,. We will show that such possibilities do not arise. First, we state
a simple geometric lemma whose proof is left to the reader.

Lemma 1. Let s be a circular object and C; be the circle containing s. If the endpoints
of s are u and v, then let K be the cone bounded by the pair of rays H,, H, emanating
from the center of C; and passing through u and v, respectively. Then for any point
D, P is not in the interior of K if and only if the projection of p onto s is either u or
v (i.e, d(p, s)=min{d(p, u), d(p, v)}).

We call K the “cone of influence” of s (Fig.3). We generalize this to any
object s: if s is a corner then its cone of influence is the whole plane, and if s
is a straight line segment, its cone of influence is the strip bounded by the pair
of parallel lines normal through its endpoints. The line segment joining any point
p on the Voronoi diagram to its projection g on any *-close object s is inside
the cone of influence of s, and in fact these line segments must be normal to s.

Lemma 2. Ifeis an (s, s')-edge in Vor(X) then e lies in K, n K, where K and
K, are the respective cones of influence.

Proof. By symmetry, it is sufficient to show that e lies in K. If s is a circular
arc, then the above lemma shows that e lies in K (otherwise if p € e lies outside
K, then p would be closer to an endpoint of s, contradiction). There is
nothing to show if s is a point. The case where s is a straight line segment is
easy. O

From this lemma, it follows that the types of Voronoi edges have been
exhaustively enumerated by [CC], [CW], [WW], and (1)-(7) above. To see this,
if e is an (s, s')-edge then we just have to consider the types of cones of influence
for s and s’, and then observe that the corresponding Voronoi edge matches one
of the cases enumerated. When s is a circular wall then K, is divided into two
parts by s that must be treated differently. We omit the details. Now we prove
a basic result showing that the usual linear size of Voronoi diagrams remains
true in our setting.

Lemma 3. Given a proper collection X of n objects, the number of edges in Vor(X )
is at most 3n—6.



374 C.K. Yap

Proof. We construct an embedded graph G* in the plane with n vertices such
that embedded edges corresponds to Voronoi edges in Vor(X). For each object
s € X, we choose an arbitrary representative point r(s) € s; likewise for each edge
e in Vor(X), we choose a representative point r(e) € e (in the relative interior
of 5). (So if s is a corner, r(s)=s.) If e is an (s, s)-edge, let p(e, s) and p(e, s)
be the projections of r(e) onto s and s’, respectively. (Note that r(e) avoids the
singularities where the projections are not well defined.) Now the embedded
graph G* has vertex set V={r(s): s € X} and edge set E consisting of polygonal
paths of the form .

[r(s), p(e, 5), r(e), p(e, s), r(s")],

where e is an (s, s")-edge. The embedded edges to no intersect except for sharing
portions of objects (to see this, notice that the property holds in each Voronoi
cell). By a simple perturbation, we can ensure that these embedded edges do
not intersect except at their endpoints: simply replace each point p(e, s) by a
point between r(e) and p(e, s), sufficiently close to p(e, s). Hence G* has n
vertices and at most 3n — 6 edges. O

The remaining definitions in this section have been invented for the technique
in this paper. Let m <n be the number of corners in X. As in Section 1, let us
introduce m+1 vertical lines called separators such that each corner is between
a unique pair of adjacent separators. The region between any two (not necessarily
adjacent) separators is called a slab. We will assume that a circular wall has the
property that an arbitrary vertical line intersects it at most once, and that no two
corners are covertical.

Let S be a slab. A wall is long with respect to S if it intersects both of the
separators that bound S. The set of long walls of S partition the slab into closed
regions that we call quads that belong to S. Quads are so-called because these
have four sides when they are bounded regions. Thus if a slab has no long walls
then the whole slab is the quad; otherwise, all but two of the quads are bounded.
A quad is said to be active if there is at least one corner in it; otherwise it is
inactive. Let A be a separator. A crossing (or s-crossing) is the intersection of a
separator with a wall s. If A has k=0 crossings, then A is divded in k + 1 segments
called windows. A window is active with respect to S if it is part of the boundary
of an active quad belonging to S.

Example 3. In Fig.4 we have a slab with four (not five!) quads of which the
upper two quads are active. The second quad from the top has three windows
on the left boundary and two on the right.

Let Q be a quad. Roughly speaking, a Q-object s is obtained by restricting
some object s'€ X to Q. More precisely, s is one of the following:

(i) A corner corresponding to a crossing at a vertical boundary of Q. Note
that each long wall contributes exactly two corners of this type, and all
other walls contribute at most one.



An O(n log n) Algorithm for the Voronoi Diagram 375

I

N

[ —

Fig. 4. A slab between two separators (the dotted lines).

(ii) An object of the form s = s’ N int(Q) where s’ is an object of X and int(Q)
is the interior of Q.

(iii) An object of the form s=s'nint(S) where s’ is one of the long walls
that bound Q, and Q belongs to the slab S. There are at most two Q-objects
of this form.

Note that a Q-object s occurs in the original set X if and only if §< int(Q).
Note that the set of Q-objects is proper. We also refer to a Q-object as a Q-wall
or Q-corner as the case may be. For instance, if s’ is a long wall that defines the
upper or lower boundary of Q then s’ contributes three Q-objects corresponding
to the two s’-crossings and the wall s'nint(S). The Q-diagram, denoted Vor(Q)
(by abuse of notation), is the Voronoi diagram of the Q-objects. It is important
to realize that although the Q-objects are confined to Q, the Q-diagram is defined
in the whole plane. Clearly, the notion of Q-objects and Q-diagrams can be
extended to the case where Q is a union of several quads in a slab. If Q is quad
(or a union of quads), we again abuse notation by writing Clearancey(p) for the
clearance of p with respect to the Q-objects.

In our algorithm, a slab is said to be processed when the Q-diagram is computed
for each active quad Q belonging to the slab. We represent a Voronoi diagram
as an embedded planar graph, i.e., a graph such that at each vertex the cyclic
order of the incident edges are available and at each face of the embedding, the
cyclic order of the bounding edges are available. For unbounded faces, we
introduce fictitious edges at infinity.

3. Properties of Moving Along a Bisector

Let s and s’ be objects. In our merge algorithm, we need to identify one of the
two directions along the (s, s')-bisector e as being “‘clockwise” with respect to
s. This is rather natural and can be made precise as follows:

Let p be a point in e. For our purposes we may assume that it is not the case
that one of the objects s, s’ is a wall and the other an incident corner; we may
further assume that p is not at a transition between two segments of e correspond-
ing to different governing equations. Then there is a well-defined tangent to e at



376 C. K. Yap

Fig. 5. Moving along a bisector.

p. Let p; denote the projection of p onto s (so p, € 5). Let u be a tangent vector
at p. Let v be the vector from p, to p. It is easy to show that the tangent at p
cannot pass through p,, i.e., if we write u as u,i+ u,j+ 0k, then the k-component
of uXv is nonzero. We say u represents a clockwise (resp. anticlockwise) direction
about s iff the k-component of uxv is >0 (resp. <0).> By symmetry, it is easy to
see that a direction along e is clockwise about s iff it is anticlockwise about s’.

We now state without proof some elementary properties. Let s; and sz be
objects; e and e’ be the (s, sg)- and (si, sg)-bisectors, respectively. Let p*(¢),
for t=0, be a parametrized curve, regarded as a moving point p*. Initially, p*
is moving along e. Let pg(t) (B =L, R) be the projection of p*(t) onto sz, and
again we regard it as a moving point pg.

(1) See Fig. 5. Suppose that p* moves along e in the direction that is clockwise
about s;. If sg is a wall then the motion of pg (reflecting the motion of
p¥) either is stationary at an endpoint of sg or is continuous and unidirec-
tional along sg. If py is stationary then the vector from pg (=sg) to p* is
turning continuously anticlockwise about pg.

(2) Let g be a point in en e’ such that the moving point p* meets g and
subsequently moves along e’ in the direction that is clockwise about sj.
We claim p* made a left turn at q. More precisely, if u (resp. v) is the
tangent to e (resp. e’) at g in the direction of motion of p* then the
k-component of uxv is =0.

(3) Let A be a separator such that s, lies in the open half-plane to the left of
A, and sg lies in the closed half-plane to the right of A. Then there is a
point on the (5., sg)-bisector e beyond which the clockwise motion of p*
about s; has a positive component in the downward (vertical) direction.

(4) The front arc of p* is defined to be the arc of the clearance circle at p*
obtained by traversing the circle anticlockwise from p, to pg. The back
arc of p* is defined analogously, as the complement of the front arc with
respect to the clearance circle. As p* moves along e, this front arc is
sweeping monotonically forward in a sense made precise in the following
lemma:

* Assuming a right-hand coordinate system.



An O(n log n) Algorithm for the Voronoi Diagram 377

Lemma 4. Let s, sg€ X and e be an (s, sg)-edge in Vor(X). If q, and q, are
the Voronoi vertices bounding e such that moving along e from q, and q, corresponds
to clockwise about s, then the clearance circle at q, (with respect to X) can only
touch objects of X on the back arc. Similarly, the clearance circle at q, can only
touch objects of X in the front arc. In all intermediate positions between q, and q,,
the clearance circle touches no other objects except s, and sg.

The proof of this lemma uses a technique taken from [20]. We sketch the
method here. It is now convenient to regard e as a parametrized curve p*(t), for
real values f, with increasing t corresponding to the direction clockwise about
s.. We will define two closed planar sets I',, =, of points with the following
properties:

(i) T,nZ, equals the clearance disk at p*(t),
(ii) thesetsT, and =, are continuously parametrized (in the Hausdorff metric*
on sets) by ¢, and
(iii) the I' (resp. X) sets are monotonically growing (resp. shrinking). More
precisely, for t<u we have I', =T, and £,  X,. In fact, the growth and
shrinkage have the following stronger property: the front (resp. back) arc
at p*(t) (resp. p*(u)) lies in the interior of I, (resp. X,).

The preceding growth properties of I', and X, immediately imply the lemma. (In
[20], one of the cases also has a third family of sets A,, but this can be avoided.)
We now describe the I and X sets. We describe these sets according to the type
of conic that e conforms to. To avoid repetition, we only treat the cases of
hyperbolas and ellipses: the cases where e is parabolic or straight are essentially
treated in [20].

(a) Hyperbolas. If the bisector e is hyperbolic then both objects sz (8 =L, R)
must be circular walls (possibly one of the sz degenerated to a point). Let
sg be part of a circle Cg centered at gg. So the hyperbola containing e is
(part of) the (C,, Cr)-bisector. We assume the centers are on the x-axis,
with g, left of gqg. There are two cases, depending on whether the two
circles intersect. First suppose they do not intersect (see Fig. 6). Then they
must lie external to each other. Consider the polygonal path P(t) composed
of the ray from g, extending away from gg, the ray from gqg extending in
the other direction, the segments [q, , p*(¢)] and [ p*(¢), gr]. Clearly, P(t)
divides the plane into an upper and a lower part. Define I', (resp. Z,) to
be the union of the region above (resp. below) P(t) with the clearance
disk at p*(t). It is elementary to verify properties (i)-(iii) above. Now
consider the case where C, and Cy intersect at a pair of points r, r'. So
the hyperbola passes through r and r’. Since s, and sy are assumed not
to intersect, e must lie in one of the three sections of the hyperbola. If e

*The Hausdorff metric on closed subsets of a metric space Y is as follows: for any set Sc Y,
€>0, let S, be the union of the e-balls about the points of S. Then the distance between two closed
subsets S, S'c Y is given by d(S, S")=inf{¢ =0: Sc S, and §'< S,}.



378 ) C. K. Yap

Fig. 6. The case of hyperbolas with nonintersecting circles.

were in the two infinite sections then the treatment is identical to the
previous case. So assume e lies between r and r’ inside the “lune” formed
by intersecting the circles C; and Cg. The front arc of p*(t) divides the
lune into two parts: define I', to be the upper part. Similarly, define X, to
be the lower part in the division of the lune by the back arc of p*(¢). The
reader can verify properties (i)-(iii).

(b) Ellipses. Again, e is elliptic implies that both objects s (8 =L, R) are arcs
of some circles Cg. Let K denote the strip bounded by the two horizontal
lines through the centers of C; and Cy. We allow the degenerate case
when the two horizontal lines defining K coincide. Again we consider two
cases depending on whether the circles intersect. First suppose they do
not. Then one (say Cg) must lie inside the other and let J' be the interior
of C, minus the interior of Cg. So e lies inside J'. Note that, because of
our assumption that a vertical line intersects an object at most once, the
edge e must lie inside the strip K or entirely outside. Suppose e lies above
K, since the cases where e lies below K or inside K are similarly treated.
Let J be the part of J' above K. Roughly, J has a crescent shape. If D,
is the clearance circle at p*(¢) then J — D, is divided into a left and a right
part (one of them possibly empty). Define I', to be the union of D, and
the right part. Similarly, define X, to be the union of D, and the left part.
It is again easy to verify (i)-(iii) for the sets I', and X,. The final case,
where the two circles intersect, also presents nothing new.

4. Merging

We now show how to process a slab S where S is the union of two slabs S; and
Sgr separated by a separator A. By definition, this means we compute the Q-
diagram of each active quad Q belonging to S. Note that Qs = QN S (B=L,R)
is a union of one or more quads belonging to Sz, none of which are necessarily
active. The diagram of each quad Q' in Qg is either already recursively computed
(if Q'is active) or else the Q’-diagram is trivial and can be computed in constant
time. Thus with O(m) additional work, where m is the number of walls and



An O(n log n) Algorithm for the Voronoi Diagram 379

corners in QN Sg, we can assume all Q’-diagrams are available. Similar to the
previous well-known algorithms for Voronoi diagrams of curve segments, the
Q-diagram is obtained by “merging” the set of Q’-diagrams for all Q' in Q_ and
Qr. We do this in two steps:

(1) (Vertical merge.) For B =L, R, form the Qg-diagram by ““merging” all the
Q'-diagrams, for Q' in Q.

(2) (Horizontal merge.) Merge the Q.- and Qg-diagrams. This is the most
important part of the algorithm.

The vertical merge is rather easy and depends on next lemma whose easy
proof is omitted. Let Q,, Q, be two adjacent quads belonging to the slab S,
and let s, be the long wall that separates Q; from Q.. So the intersection of s,
with S, gives rise to three objects s,, s,, s; that are simultaneously Q,- and
Q,-objects. Without loss of generality let s, (resp. s;) be the left (resp. right)
endpoint of s,.

Lemma 5. If Ci(s,) (i=1,2) denotes the s,-cell in the Q-diagram then the
horizontal ray extending leftward from s, is contained in C,(s,) N Cy(s,).

Informally, this ray forms a natural boundary preventing interaction of the
Q- and Q,-objects. Using this lemma, it is easy to justify the following method
for computing the Q,-diagram where Q,= Q;uU Q,. For each Q,-object s, the
s-cells Cy(s) in the Q,-diagram is obtained as follows:

(1) Suppose s=s,. The above lemma implies that Ci(s,) (i=1,2) is
unbounded. Assume Q, lies above Q,. The boundary of Cy(s) is obtained
partly from the boundary of C,(s,) starting from s, counterclockwise to
its infinite edge, and partly from the boundary of Cy(s,) starting from s,
clockwise to its infinite edge. Similarly for s =s;.

(2) If s=s, then there are two s-cells: the Cy(s) below (resp. above) s, is
equal to the corresponding cell in the Q,-diagram (resp. Q,-diagram).

(3) If s is not one of the s,, s,, or s3, then it is a Q;-object for a unique i =1, 2
and Cy(s) is equal to the corresponding cell in the Q;-diagram.

By repeated application of these observations, the Q -diagram can be obtained
in O(m) time. We can compute the Qg-diagram similarly. This completes the
vertical merge step.

The main part in constructing the Q-diagram is the merging of the Q.- and
Qg-diagrams. This merging is defined by a certain “‘merge curve” which generally
consists of several connected components. Indeed, there is a one-to-one corre-
spondence between these components and the windows in A n Q. Therefore, we
will call the component corresponding to window W the W-contour, and the
procedure for computing the W-contour is called the W-merge. We mainly focus
on the mechanism of the procedure at present, leaving the correctness proof to
the next two sections.

Let W be fixed window in Qn A. Refer to Fig. 7. We will assume that W is
finite; at the end we will handle the other cases. Let s, and s, be the Q-objects



380 C.K. Yap

8
.//

\
\
\

\

\
S\ -
\

¥
Ry

Fig. 7. Illustrating the start (s, is a wall).

whose crossings at A determine the lower and upper endpoints of W, respectively.
Let r; (i =0, 1) be the s;-crossing. Consider the ray R, emanating from r, downward
and normal to s,. The initial part of R, is part of the boundary of the r,-cell in
the Q,-diagram as well as the Qr-diagram. Let r{ (8 =L, R) be the first vertex
of the Qg-diagram lying in R,. Then define p, to be the closer of ry or rf to r,.
We call p, the starter for W. Note that the starter is well defined for a finite
window because the ray R, has a downward component and must eventually get
closer to r, than to r,. Similarly, let R, be the ray emanating upward from r,
and normal to s,, and define the ender p, to be the first point along R, that is a
vertex of the Q.- or Qg-diagram. The W-contour will begin at p, at the top and
terminate at p,.

Without loss of generality, let p, represent the intersection of the ray R; with
the (s,, s,)-bisector where s, is a Q_-object. It is possible that s, is the s,-crossing
ro. In this degenerate case, the starter coincides with the ender and the W-contour
is defined to be empty (we do nothing). Hence we may assume that this is not
the case.

The procedure we now describe is a conceptual simplification of the Lee-
Drysdale scan [13], which in turn is a modification of the Shamos-Hoey scan.
To do this we follow Kirkpatrick’s idea [9] of dividing each Voronoi cell into
subcells by the systematic introduction of *“spokes”: for each Voronoi vertex v
and for each point q in some object of X where d(v, q) = Clearancex (v), we call
the line segment [v, q] a spoke of X. The augmented Voronoi diagram of X is
Vor(X) together with all such spokes. (Henceforth, Vor(X), Q-diagram, etc.,
refer to the augmented version.) Note that some spokes are already in Vor(X)—
these are precisely the Voronoi edges emanating normally from the endpoints of
walls. The augmented Voronoi diagram is still a planar graph with at most 9n — 18
edges. This is because each Voronoi vertex v with degree k=3 in Vor(X)
contributes at most k spokes. Let the connected planar regions that form the
complement of the augmented Voronoi diagram be called subcells. Clearly, each
Voronoi cell is now divided into a finite number of subcells. The most important
computational property is that each subcell has at most four sides:

(a) If a bounded subcell has three sides then the subcell is incident to a corner
¢ of X. The three sides consist of two spokes emanating radially from c
and a portion of a conic connecting the free ends of the spokes. We call
this a c-subcell.



An O(n log n) Algorithm for the Voronoi Diagram 381

(b) If the subcell has four sides then one side s of the subcell is a portion of
a wall w, and the side s’ opposite to s is a portion of a conic. Two spokes
then connect s and s’. We call this is a w-subcell.

We describe the construction of the W-contour. The contour will be obtained as
a sequence of conic segments

01,02, 00.30550.0,

where each o; is bounded between two endpoints p; and p,_,. We call the p;’s
the breakpoints of the W-contour. The segment g; is contained in the intersection
of two subcells:

where C¥f is a subcell of the augmented Qg-diagram. Furthermore, if C? is an
s?-subcell then o; is a portion of the (st s¥)-bisector e;. Here we observe the
convention that moving “forward” along e; from p; to p;,_, corresponds to
clockwise direction about sF.

To initilize, o, begins at the point p, which is the starter, and the construction
halts when we reach the ender (we will prove later that this is inevitable). The
subcells C} and C? are defined naturally. For example, if the starter p, is the
intersection of the ray emanating from the s,-crossing with the (s,, s,)-bisector
where s, is a Q,-object, then sy =5, and st is s, Nint(Sg). Although s}, s¥ each
has several subcells, it is easy to decide locally which should be used as Ct, CR.

Inductively, suppose that o;, p;, CF, and CR have been defined. We extend
this to i+ 1. Now o; is a portion of the (sF, s¥)-bisector ¢;,. Moving along e; from
breakpoint p; in the forward direction, suppose ¢ is the first point on the boundary
of C#? for B =L, R. We define the breakpoint p;., to be the first of rj or r} as
we move from p; forward along e;. By symmetry, we may assume that p;., is ry.
There are two possibilities: (i) If p;,, represents an intersection of e; with a spoke
(but not a segment emanating normally from endpoints of walls) then s}, =s"
and s}, = s} (both unchanged), and the equation of the curve does not change.’
We have simply moved from one subcell of s; to an adjacent one. (ii) If p;.,
represents an intersection with a Voronoi edge of the Q,-diagram, then p,, is a
Voronoi vertex of the Q-diagram. If we assume “general position,” then there is
a unique g, -object s such that the clearance circle at p,,, intersects sy, s}, and
s. We then define s, to be s and s&, to be s¥. The subcells C#,, are naturally
obtained. But, in general, the clearance circle at p,., (with respect to Q-objects)
may touch more than three objects. By property (4) in the previous section, these
objects only touch the clearance circle along the front arc (recall this is the arc
from the contact point with s} clockwise to the contact point with si). If we
order these objects in the order of their contact with the front arc, starting with
s} and moving clockwise around the arc, we will encounter all the Qg-objects
before the Q,-objects. Then sy, (resp. si,) is defined to be the last (resp. first)
of these Qg-objects (resp. Q_-objects). For later reference, we call this the front-arc
scan,



382 C. K. Yap

This completes our description of the W-merge for the case of a finite window
W. Note that as a consequence of going to subcells, we have removed (or
trivialized) any need for analogues of the Hoey-Shamos or Lee-Drysdale scan
in the literature. It remains to consider the two cases when W is infinite:

(a) Suppose W is a half-line. Without loss of generality, assume W extends
infinitely upward from the s,-crossing for some Q-object s,. The ender p, for
the W-contour can be defined exactly as above, except that it may not always
be well defined (this happens if the ray from the sy-crossing meets no Voronoi
edges of Vor(Q.) and Vor(Qg)). If the ender is undefined, then we say the
W-contour is empty and we do nothing. Otherwise, we must now define the
starter. Let H (resp. H;, Hy) be the convex hull of the set of Q-objects (resp.
QL-, Qgr-objects): the hull is composed of line segments and circular arcs. There
are at most two choices for a pair p;, pr of points in H where the straight line
segment [ p., pr] is an edge of H that intersects A; this is because H as the
boundary of a convex region intersects A at most twice. We let [p., pr] be the
higher of the two (if any) choices, where “higher” is relative to where each
segment intersects A.

Lemma 6. Let [p,,pr] be as above, and let psc sz where sz (B=L,R) is a
Qg-object. Consider the infinite strip S of region bounded by [ p, , pr] and the two
parallel rays emanating upward from p,, pr and normal to [p., pr]. Let YS X
consist of s; and sg together with those wall objects incident on s, or sg. Choose
D, >0 so that for each s € Y and any point p € S at distance greater than D, from
[ pL, Pr], the point q in § nearest to p is at p; or pg. Define € >0 to be the minimum
distance of any object s € X — Y from the line through p, , pr. Choose Dy> D, such
that

Dye >d(py, pr)

Then Vor(X) confined to the strip S is equal to the (sL, sr)-bisector at all points
further than distance D, from [ p., pr].

Proof. We see that any point p in the strip S at distance D> D, from [ p;, pr]
satisfies

d(p,sg)—D<e.

But for all object se X —Y, d(p, s)— D=¢e. In particular, p is in the (s, sg)-
bisector if and only if p is in Vor(X). O

We define the starter to be the point on the (s, sg)-bisector at distance D,
from [p,, prl-

The W-merge is done as follows: inductively assume the availability of the
convex hulls H; and Hg. We can compute H in time linear in the number of
corners in Q: this is a simple modification of the standard algorithm of Hong
and Preparata for the case of the convex hull of points. Indeed, this amounts to
computing the points p; and pg from H, and Hg. After checking that the ender
is defined we can do the usual merge.



An O(n log n) Algorithm for the Voronoi Diagram 383

(b) Suppose W is the entire separator A. The W-contour is always defined
in this case. We use the previous lemma to define a starter and ender. Note that
this case is analogous to the ‘‘separable” situation that arises in the original
algorithm of Hoey and Shamos.

This completes the description of the W-merge. In Section 6 we will describe
how to use the W-contours obtained here to piece together the Q-diagram from
the Q.- and Qg-diagrams.

5. Termination

The notations relative to a window W from the previous section are retained.
We first consider the case where W is finite. It is now convenient to regard the
W-contour as a parametrized curve p*(t), and p* as a moving point. Let q*(t)
be the horizontal projection of p*(¢) to the separator A. We first prove the g*(¢)
is monotonic in t:

Lemma 7. Forall t#t', q*(t) # q*(t).

Proof. For the sake of contradiction, suppose g*(t) = q*(¢’). Without loss of
generality, assume that p*(t)=p, is strictly to the left of p*(#')=pgr. Let Cg
(B=L,R) be the clearance circle at p; (with respect to Q-objects). Since Cg
must touch both a Q.- and a Qg-object, it follows that A intersects Cg. It is
impossible for any clearance disk centered at a point in the W-contour to be
fully contained in another clearance disk. This implies C; and Cg must intersect.
Let A’ be the vertical line through the two intersection points u, v of Cp N Cg.
If A is strictly right of A’ then note that C; must touch some Qg-object at a point
in the interior of Cg, a contradiction. By another contradiction in the symmetrical
case, we conclude A coincides with A'. But then since C; must touch a Qg-object,
C. must touch the Qg-object at one of the two intersection points, say u. Since
u lies in A, u must be either r, or r,. If u=r; (i=0, 1) then we see that the wall
s; must intersect the interior of C, or Cg, contradiction. O

Corollary. The horizontal projection q*(t) of the W-contour p*(t) into A is
monotonic along A. In particular, the W-contour does not self-intersect.

Proof. If the projection g*(t) is not monotonic then we contradict the previous
lemma. O

Lemma 8. Let the horizontal projections of the starter p, and ender p, on A be q,
and q,, respectively. Then q, lies above q.

Proof. There is nothing to prove if p,= p,. Otherwise, we show a contradiction
by assuming that g, lies above g,. By the corollary, g, lies strictly above q,. By
symmetry, let us assume d(qo, o) =d(q,, r;). Then the clearance circle at p,
contains r, in its interior, contradiction. O



384 C. K. Yap

The preceding lemmas imply that, in tracing out the W-contour p*(t), the
projection g*(t) is monotonically moving downward, from g*(t) = q, until event-
ually g*(t) = go.

Lemma9. When the horizontal projection of the W-contour reaches q*(t) = q, then
the W-contour reaches the ender, p*(t) = p,.

Proof. Let C, be the clearance circle at p, and C* be the clearance circle at
p*(t) when g*(t) = q,. If Co = C* then the desired result holds. Otherwise, neither
circle can be contained in the other and they must intersect in exactly two points.
As in the proof of Lemma 7, let A’ be the vertical line through the intersection
points of C* and C,. A similar argument shows a contradiction (there are three
cases depending on the relative positions of A’ and A). O

The preceding three lemmas are not quite sufficient for concluding that our
algorithm terminates: although it is true that the projection of the W-contour is
monotonically descending, it logically possible to take infinitely many steps,
hence not reaching the ender in finite time.

Recall that the W-contour is divided into curve segments o, 0, ... by break-
points p,, p,, .... The next two lemmas bound the number of breakpoints.

Lemma 10. Let W be a window in An Q and let o be any spoke in the Q.- or
Qr-diagram.

(a) The W-contour is a portion of the Q-diagram.

(b) Each W-contour meets o at most once.

(c) If W and W' are two windows in QN A then the W-contour and the
W'-contour do not both intersect o.

Proof. (a) By construction, the clearance circle at points p of the W-contour
touches at least two Q-objects, and thus p is in the Q-diagram.

(b) A spoke o is a straight line segment emanating from a point p in some
object s. Suppose the W-contour intersects o at distinct points x and y. Then
the clearance circles at x and y must both touch p. This implies that the clearance
disk at y contains or is contained in the clearance disk at x. This is impossible
for points x and y in the Q-diagram. The same argument applies in (c). O

Lemma 11. If the number of Voronoi edges in the Q-diagrams (resp. Q.- and
Qg-diagrams) is mg (resp. my. and mg) then the number of distinct breakpoints
made by all the W-contours is mg+ m_+ mg where W ranges over the windows in
QnA.

Proof. The breakpoints corresponding to vertices of the Q-diagram is at most
mq. The remaining breakpoints correspond to intersections with spokes in Q’'-
diagrams (Q' in Q. or Qg), and these number at most m + mg. (This is because
each Voronoi vertex of degree k has k spokes emanating from it, and the number



An O(n log n) Algorithm for the Voronoi Diagram 385

of spokes in the Q.- or Qg-diagram is at most the sum of the number of spokes
in the Q'-diagrams, Q' in Q. or Qg.) By the previous lemma, the number of
such breakpoints is bounded by m, + my. (]

Theorem 12 (Termination)

(a) The W-merge algorithm terminates.

(b) Ifmis the number of Q-objects then the total number of steps for the W-merges
is O(m) when summed over all W in Q.n A. Here a “step™ corresponds to
advancing from one breakpoint to the next.

(c) The total work done summed over all W-merges, W in QN A, is O(m).

Proof. (a) Consider the case of a finite window W. The case of infinite windows
is similar. By the previous lemma, the number of distinct breakpoints in a
W-contour is bounded. Since the W-contour does not self-intersect, this number
is also the number of steps in a W-merge. So the algorithm terminates.

(b) The O(m) bound follows immediately from the preceding lemma, since
mo+my+ mg = O(m).

(c) There is only one subtle point here: it is not true that a single “step” takes
constant time since, without assumptions of nondegeneracy, the clearance circle
at a breakpoint may have an arbitrary number k of objects suddenly appearing
on its front arc. In doing the “front-arc scan” we take O(k) time. However,
whenever the breakpoint has this property, we have “met” k Voronoi edges e of
the Q.- or Qg-diagram. We can meet each Voronoi edge e at most twice this
way. If the W-contour meet e more than twice, then the intersections are in the
relative interior of e, and new Voronoi vertices are generated in the Q-diagram.
We can thus charge the work done by the front-arc scan to either Voronoi vertices
of the Q-diagram or to the Voronoi edges of the Q.- and Qg-diagram. The charge
to each Voronoi vertex and to each Voronoi edge is constant. Therefore the O(m)
bound holds for both types of charges. O

6. Correctness

We will show how to construct the Q-diagram from the Q,- and Qg-diagrams,
and the different W-contours. We first show that there is no interference between
the W-contours for different windows W.

Lemma 13. Let W and W' be two windows of QN A. Assume W lies above W'
and r, is the lower endpoint of W. The W- and W'-contours are disjoint. In fact, if
A is the horizontal line through ry then the two contours lie on opposite sides of A.

Proof. The W-contour projects horizontally onto A in a monotonic fashion. The
desired result now follows since the ender for W is above A while the starter for
W' is below A. =



386 C. K. Yap

If W is finite, define the extended W-contour to be the union of the W-contour
with the two segments [ro, po] and [r,, p,], where p; are the starter and ender
and r; are the two crossings bounding W. Suppose W is infinite. If the W-contour
is nonempty, the extended W-contour can be defined analogously. If the W-
contour is empty, then W corresponds to a half-line determined by an s-crossing
(for some Q-wall s). In this case, define the extended W-contour to be the
half-line originating from the s-crossing in a direction normal to s and away
from the Q-objects. Define € to be the union of all the extended W-contours
where W ranges over those windows in A that intersect Q. Observe that € divides
the plane into two infinite regions that can be naturally distinguished as the left
and right sides of €. This follows from the fact that the horizontal projection of
% onto A is a bijection.

Lemma 14. All the Qg-objects lie to the right of € and, similarly, all the Q_-objects
lie to the left of €. Only the objects corresponding to crossings at A lie on € itself.

Proof. Let s be a Qg-object to the left of 6, and assume that s does not lie in
A. We will derive a contradiction. Pick any point g in s and let p be the (unique)
point on € horizontally on to the right of g. Note that s and hence p is to the
right of A.

(a) Suppose p is in the W-contour for some W. The clearance circle C at p
(with respect to Q-objects) must touch a point g’ in some Q_-object. Hence
the radius of C is at least the distance from p to A. Since the shortest line
segment from p to A is the horizontal one, it follows that g lies on this
shortest segment. So g is in the interior of C, contradiction.

(b) Suppose for some W, p is in the extended W-contour but not in the
W-contour. The clearance circle at p touches a crossing r in A. This means
the starter (similarly if it were the ender) for W lies beyond p in the ray
R, emanating from r. But it is easy to see that the presence of g implies
that the first vertex of Vor(Qg) lies between r and p, contradiction. [

We come to the main result of this section:

Theorem 15 (Correctness). The Q-diagram Vor(Q) is the union of all the W-
contours (where W bounds Q) together with the portion of Vor(Q,) to the left of
€ and the portion of Vor(Qg) to the right of €.

Proof. For each point p in €, it is easy to see that p is in some W-contour iff
p is in Vor(Q). So assume p is strictly left of 6. The lemma then follows from
the following claim:

Clearanceg, (p) < Clearancey,(p).

Suppose the claim is false and for some Qg-object s, Clearanceg (p)=d(p, s)=
Clearancey,(p). Let ges such that d(p,s)=d(p,q). Then € intersects the
half-open segment (p, g]. Let r be any point in the intersection of € with (p, q].



An O(n log n) Algorithm for the Voronoi Diagram 387

Let C, be the circle centered at p with radius d(p, q) and let C, be the clearance
circle at r (with respect to Q-objects). By assumption, the interior of C, does
not intersect any Q.- or Qg-object. Clearly, C, is contained in C, (otherwise ¢q
would be in the interior of C,) and also C, is a clearance circle of Q. Consider
two cases:

(a) q is not a corner (i.e., crossing) in A. Then s is not a Q,-object. Since C,
must touch some Q, -object s’, it follows that the interior of C, intersects
s', contradiction.

(b) g is a corner in A. Let g be the s'-crossing where s’ is a Q-wall. But s’
would have to be tangent to C, (and hence to C,) at q. Thus s’ is vertical,
contradicting our assumption that no two vertices are covertical. 0O

Determination of Subcells. As a corollary, we see that the subcells of the Q-
diagram can be obtained as follows. Fix any window W< Qn A:

(i) The new subcells created by the W-merge have the following form: if
Pis- -+, p; (i<j) form a contiguous sequence of breakpoints such that p;
and p; are Voronoi vertices in the Q-diagram and p;.,, ..., p;—, represent
intersection with spokes, then the W-contour between p; and p; is a
portion of the (s}, s¥)-bisector. (Of course, s® =s; for k=i+1,...,}J,
B =L, R.) If the projection of p; onto s? (8 =L, R) is q¥ then we obtain
the new subcell D? bounded by o, the line segments [ p;, ¢¥]and [ p;, g1,
and the portion of s¥ between g? and ¢f. Note that if i <j—1 then the
formation of D? is the result of merging two or more subcells in the
Qp-diagram. It is not hard to see how to create these new subcells
on-the-fly during the W-merge.

(ii) For each crossing r at QN A, discard the r-subcells in Vor(Q,) and
Vor(Qg).

(iii) For each Q-wall s that intersects A, we form two new s-subcells. Note
that there may be many s-subcells but we are interested in the two (one
on each side of the wall) adjacent to the s-crossing s A. Each new
subcell is obtained by merging an appropriate subcell from Vor(Q,) with
a subcell from Vor(Qg).

(iv) All other subcells of Q.- and Qg-diagrams unaffected by the preceding
steps remain intact in the Q-diagram.

This procedure is correct because there is no interaction objects on different
sides of the W-contour. For instance, DI in step (i) is an sj-subcell of the
Q-diagram because of two properties: (a) since D} is left of the curve €, Dy is
closer to Q,-objects than to any Qg-objects and (b) by construction, D is a
subset of an s--cell in the Q,-diagram.

7. Putting It Together

The main procedure consists of two preprocessing steps followed by a call to a
recursive procedure:



388

(1)

(2)

(3)

C. K. Yap

Main Procedure

Input: a proper set X of objects (points, open line segments, open circular
arcs).

Output: a representation of the augmented Voronoi diagram Vor(X).
Presort: Sort the set of corners according to their vertical projection onto
the x-axis. We introduce the set of separators in this step. Let left(s) and
right(s) indicate the two separators adjacent to a corner s. (Note: to handle
the case of more than one corner in any vertical line, only trivial
modifications are necessary in our entire development.)

Prescan: Do a scan-line sweep of the line segments to determine for each
corner s the walls that are immediately (vertically) above and below s.
This is essentially the algorithm of Hoey and Shamos for detecting line
segment intersections. Use above(s) and below(s) to represent these walls.
If s has no walls above or below it then this is given a special indicator.
This step uses the information gathered in the presorting. Also at this step
we determine at corner s the circular list of walls incident on s.
Recursion: Call a recursive procedure to process the slab S bounded by
the leftmost and rightmost separators. Note that the entire slab S constitutes
an active quad, so the diagram of this quad is the desired Vor(X).

End Main Procedure.

We now present the recursive procedure for processing an arbitrary slab S
(represented by a pair of separators). We assume that X, as well as the other
information from the presort and prescan steps, is available to the procedure via
global variables. The recursive procedure returns (i) a list of the active quads of
S and two lists of windows for each quad where these lists are sorted in the
natural top-to-bottom order; (ii) a-list of the Voronoi diagrams of these quads;
and (iii) the convex hull of the entire set of S-objects (i.e., the union of the
Q-objects for all Q< S).

(1)

(2)

(3)

Recursive Procedure

Input: (m, S) where S is a slab and m the number of corners in S.
Output: The active quads, window lists, and convex hulls as described
above.

Basis: If m =1, then use the prescanning information to determine the
unique corner p in S and also the quad Q containing p. Compute the
Q-diagram and return. Observe that if p has k=0 incident walls then
the Q-diagram takes time O(k). (Note: the subdivision of walls into
subobjects at their crossings is done at this point. This ensures that we
do not introduce Q(n?) crossings.)

Divide: Divide the slab S into two two slabs S; and Sg with [m/2] and
|m/2] vertices, respectively. (This is easy to do assuming that the
separators for S are just indices into an array.) Recurse on ([m/2], S,)
and (|m/2], Sg). Let A denote the separator between S; and Sg.
Conquer:

(3.1) Determination of active quads. On return from recursion, we have the

two lists of active quads belonging to S; and Sg, respectively. It is



An O(n log.n) Algorithm for the Voronoi Diagram 389

actually quite interesting to determine the list of active quads Q belonging
to S. In order to preserve the continuity of the main description, we
defer this to the end of the section. We just note here that for each active
Q belonging to S we also determine (a) two lists Tz(Q) (»=L,R)
consisting of the quads (both active and inactive) belonging Sz whose
union constitutes Qg = Q N Sz, and (b) two lists of the windows on each
side of Q. Recursively we have the diagrams of active quads in Tj, so
here we only need to compute the diagrams of the inactive quads.
Furthermore, if S has a total of m corners and has k edges incident on
these corners then this substep takes time O(k+ m).

(3.2) Vertical Merge. For each list T;(Q) of quads, we do the “vertical” merge
of their diagrams, resulting in the Qg-diagram. The method is described
in Section 4.

(3.3) Horizontal Merge. For each active Q belonging to S, we apply the
W-merge to each window W< An Q. Here, before doing the W-merge
for the topmost and bottommost quads, we first compute the convex
hull of the set of all Q-objects, using the recursively computed convex
hulls of the Qg-objects.

(3.4) Determination of the subcells. Finally, we construct the Q-diagram for
each active Q. This is basically the computing of all the subcells of the
Q-diagram described at the end of the previous section. Most of the
work here may be done as part of the horizontal merge.

End of Recursive Procedure.

We are now done except for the details (step (3.1)) for determining the active
quads of S. Let us introduce some terminology relative to any slab S and separator
A: an S-interval I in A has the form I =An Q for some quad Q in S. If Q is
active, then we call I an active S-interval. So an S-interval is a union of windows.
(We will use this definition in the case where A is part of the boundary of S as
well as when A is in the interior of S.) Two intervals in A overlap if their interiors
intersect. Given a set $ of intervals in A, the $-equivalence relation on ¥ is
defined as the reflexive, symmetric, and transitive closure of the overlap relation
on 4.

Lemma 16. Let the slab S be divided into slabs S, and Sg by the separator A. Let
I be the'set of active Sg-intervals in A. There is a bijective correspondence between
the set of active S-intervals in A and the set of (¥, L $r)-equivalence classes such
that if I is an active S-interval corresponding to an equivalence class then I is equal
to the union of the intervals in that equivalence class.

Proof. Suppose (1 is an active S-interval. The set
G, ={.’€jLU1R:J§I}

of S,- and active Sg-intervals inside I must be nonempty. Note that an interval
not in G, cannot be ($, U $r)-equivalent to any interval G,. Hence G is a union



390 C. K. Yap

of equivalent classes. We must show that there is only one equivalent class in
G,. Let E; be the set of endpoints of intervals in G,. Sort E; as x;, X5, ..., X
(k =2) according to their height. If k =2 then the claim is immediate, so let k> 2.
Note that if x; is not one of the endpoints of I (i.e., 1 <i< k) then x; cannot be
the endpoint of both an S,- and an Sk-interval. Suppose x, is the endpoint of
some S| -interval. Then we see that x, is in the interior of some active Sg-interval
I,: this is because x, represents an s-crossing for some Q-object s and one of
the endpoints of s is in Sg, making the Sg-interval containing x, active. So let
x; (i>2) be the lower endpoint of I, (the upper endpoint is seen to be x;). If
i<k then a similar argument shows that x; is in the interior of some active
S\-interval I,. Furthermore, I, and I, overlap. Continuing this way, we eventually
get to an interval I,, (m=2) whose lower endpoint is x;. Let I,, I,,..., I, be
the sequence of intervals so obtained. Since members of this list are equivalent
and I is covered by these intervals, every J € G, is ($_ U Ix)-equivalent, as we
wanted to show. O

Using this lemma, we can compute the list of the active S-intervals at each of
the two separators bounding S: assume that inductively we have a list of the
active Sg-intervals at each of the separators bounding S;. We can now “merge”
the list of S, -intervals at A and the list of Sg-intervals at A. This is done in linear
time in the standard way, only making sure that we record certain additional
information. For instance, the crossing of a long Q-wall is detected as the
coincidence of endpoints of intervals in both lists.

Once the list of active S-intervals is compiled, we can easily construct the list
of active quads belonging to S. Similarly, we can obtain the corresponding list
of active S-intervals at each of the two separators bounding S (we need to do
this when we next merge S with an adjacent slab S’).

The inactive quads belonging to Sz which will now be incorporated into the
active quads of S can be determined at this point. These quads together with
their diagrams are created at this point. If S has m corners and incident edges,
then it is not hard to see that the overall work done is still O(m). We conclude:

Lemma 17 The work done in step (3.1) is linear in the number of active objects
in the slab and the number of walls incident on these slabs.

8. Complexity
We first analyze the complexity of the Recursive Procedure of the last section.
Lemma 18. If a slab S contains m corners of the original input set X and the total

number of edges incident on these m corners is k, then the nonrecursive part of the
Recursive Procedure (steps (3.1)-(3.4)) takes O(m+ k) time.

Proof. Step (3.1). We have already determined that this step takes O(m + k) time.



An O(n log n) Algorithm for the Voronoi Diagram 391

Step (3.2). This is bounded by the number of subcells in the Q-diagrams over
all active Q. This number is O(m + k).

Step (3.3). In our termination proof, we showed that the work for tracing all
the W-contours is bounded by the number of breakpoints encountered, and there
is a linear number of these breakpoints. The other work done in this step is
computing the convex hull of all the S-objects, assuming the convex hulls in S
and Sg, respectively. This work is also linear by standard techniques.

Step (3.4) This is bounded by the number of cells that eventually appear in
all the active Q-diagrams.

Theorem 19. The Voronoi diagram of a set X of n pairwise disjoint straight and
circular arcs can be computed in time O(n log n).

Proof. The presort and prescan steps of the Main Procedure takes O(n log n)
time by standard methods. The Recursive Procedure also takes O(n log n) time
because of the preceding lemma. O

9. Conclusion

This paper solves the open problem of an O(n log n) algorithm for computing
the Voronoi diagram of a set of points, line segments, and circular arcs. The
algorithm is simple enough that we think it can have an impact on practical
applications such as in robotics.

The following simple observation is useful for implementing Voronoi diagram
algorithms when the input has line segments only: although the Voronoi edges
here consist of straight and parabolic segments, there is never a need to compute
Voronoi vertices by intersecting pairs of parabolas. This is because every Voronoi
vertex arises as the intersection of the pairwise bisectors among three (and possibly
more) objects s, s’, s”. Now note that either two objects are corners or two are
walls. The bisector of two corners or two walls is a straight line.

The technique introduced in this paper seems to extend to more general
algebraic curves, provided we take care to break up each curve into a number
of suitably small sections. The technique may also be extendible (with additional
ideas) to computing the Voronoi diagram of a set of polyhedral objects. This is
a subject of further research. .

Another direction which we have undertaken (jointly with O’Dinlaing and
Goodrich) is to parallelize our algorithm to run in O(log® n) steps using a linear
number of processors. In contrast, it is not known at present whether the plane-
sweep algorithm of Fortune can be parallelized to run in poly-logarithmic parallel
time.

Acknowledgments

It is a pleasure to thank Sally Howe of the National Bureau of Standards for
rekindling my interest in the problem. The clarity of this work has benefited



39

2 C. K. Yap

greatly from the comments of Micha Sharir, Denis Fortin, Neil Stewart, Colm

0

’Dunlaing, and Boris Aronov. Denis and Neil at the University of Montreal

have implemented a version of this algorithm.

References

10.
11.

12.

13.

14.

15.

16.

17.
18.

20.

21.

22

23.

. F. Aurenhammer and H. Edelsbrunner, An optimal algorithm for constructing the weighted
Voronoi diagram in the plane, Pattern Recognition 17 (1984), 251-257.

. B. S. Baker, S. J. Fortune, and E. H. Grosse, Stable prehension with three fingers, Proceedings
of the 17th ACM Symposium on Theory of Computing, 1984.

. C. Borgers, C. Peskin, and O. Widlund, Private communication, 1984.

. L. P. Chew and R. L. Drysdale, Voronoi diagrams based on convex distance functions, Proceedings
of the ACM Symposium on Computational Geometry, 235-244, 1985.

. R. L. Drysdale III, Generalized Voronoi Diagrams and Geometric Searching, Computer Science
Technical Report STAN-CS-79-705, Stanford University, Stanford, California, 1979.

. S. Fortune, A fast algorithm for polygon containment by translation, Proceedings of the 12th
International Colloquium on Aut ta, Language, and Programming, 189-198, 1985.

. S. Fortune, A sweepline algorithm for Voronoi diagrams, Proceedings of the Second ACM
Symposium on Computational Geometry, 313-322, 1986.

. H. Imai, M. Iri, and K. Murota, Voronoi diagram in the Laguerre geometry and its applications,
SIAM J. Comput. 14 (1985), 93-105.

. D. G. Kirkpatrick, Efficient computation of continuous skeletons, Proceedings of the 14th IEEE

Symposium on Foundations of Computer Science 18-27, 1979.

D. G. Kirkpatrick, Private communication, 1984.

D.T. Lee, Two-dimensional Voronoi diagram in the L ,-metric, J. Assoc. Comput. Mach. 27 (1980),

604-618.

D. T. Lee, Medial axis transformation of a planar shape, IEEE Trans. Pattern Anal. Mach. Intel.

4 (1982), 363-369.

D. T. Lee and R. L. Drysdale I1I, Generalization of Voronoi diagrams in the plane, SIAM J.

Comput. 10 (1981), 73-87.

D. T. Lee and C. K. Wong, Voronoi diagrams in L,(L,) metrics with two-dimensional storagé

applications, SIAM J. Comput. 9 (1980), 200-211.

D. Leven and M. Sharir, Planning a purely translational motion for a convex object in two-

dimensional space using generalized Voronoi diagrams, J. Discrete Comput. Geom. 2 (1987), 9-31.

D. Leven and M. Sharir, Intersection problems and applications of Voronoi diagrams, in Advances

in Robotics, Vol. 1 (J. Schwartz and C. K. Yap, eds.), Erlbaum, 1987.

H. P. Moravec, Robot Rover Visual Navigation, UMI Research Press, 1981. (Ph.D. thesis, Stanford.)

C.O’Diinlaing and C. K. Yap, A retraction method for planning the motion of a disc, J. Algorithms

6 (1985) 104-111. Also in Planning, Geometry, and Complexity (J. Hopcroft, J. Schwartz and M.

Sharir, eds.), Ablex, Norwood, NJ, 1987).

. C. O’Diinlaing, M. Sharir, and C. K. Yap, Retraction: a new approach to motion planning,

Proceedings of the 15th IEEE Symposium on Foundations of Computer Science, 207-220, 1983.

Also in Planning, Geometry, and Complexity (J. Hopcroft, J. Schwartz and M. Sharir, eds.), Ablex,

Norwood, NJ, 1987).

C. O’Diinlaing, M. Sharir, and C. K. Yap, Generalized Voronoi diagrams for moving a ladder:

1. Topological analysis, Comm. Pure Appl. Math. XXXIX (1986), 423-483.

C. O’Diinlaing, M. Sharir, and C. K. Yap, Generalized Voronoi diagrams for moving a ladder:

I1. Efficient construction of the diagram, Algorithmica 2 (1987), 27-59.

F. P. Preparata, The medial axis of a simple polygon, Proceedings of the Sixth Symposiums on

Mathematical Foundations of Computer Science, 443-450, 1977.

R. Seidel, A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions, M. Sc. thesis,

University of British Columbia, 1981.




An O(n log n) Algorithm for the Voronoi Diagram 393

24. M. 1. Shamos and D. Hoey, Closest point problems, Proceedings of the 16th IEEE Symposium on
Foundations of Computer Science, 151-162, 1975.

25. M. Sharir, Intersection and closest-pair problems for a set of circular discs, SIAM J. Comput. 14
(1985), 448-468.

26. C. K. Yap, An O(n log n) Algorithm for the Voronoi Diagram of a Set of Simple Curve Segments,
Robotics Laboratory Report No. 43, Courant Institute, New York University, New York, 1985.

Received December 29, 1986, and in revised form May 10, 1987.






	
	An O(n log n) Algorithm for the Voronoi Diagram of a Set of Simple Curve Segments.


