

# Werk

**Titel:** Remarks on the structure of the multiplicative monoid of integers modulo m.

Autor: Konieczny, J.

**Jahr:** 1993

**PURL:** https://resolver.sub.uni-goettingen.de/purl?362162808\_0046 | log38

# **Kontakt/Contact**

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

#### **SHORT NOTE**

# Remarks on the Structure of the Multiplicative Monoid of Integers Modulo m

#### Janusz Konieczny

Communicated by Gerard Lallement

**Abstract.** This note presents some results concerning  $\mathcal{H}$ -classes, Schützenberger groups, and regular elements in the multiplicative monoid  $\mathbb{Z}_m$  of integers modulo m. It also shows that in  $\mathbb{Z}_m$ , the product of two  $\mathcal{H}$ -classes is an  $\mathcal{H}$ -class.

### 1. Introduction

Throughout the paper,  $\mathbb Z$  is the set of integers, and for  $x,y\in\mathbb Z$ , xy is the product of x and y in  $\mathbb Z$ . For an integer  $m\geq 1$ , let  $\mathbb Z_m$  be the multiplicative monoid of  $\mathbb Z/m\mathbb Z$ , the ring of congruence classes modulo m. For  $x\in\mathbb Z$ , the congruence class of x modulo m is denoted by  $\overline x$ ; that is,  $\overline x=\{y\in\mathbb Z:x\equiv y\pmod m\}=\{x+km:k\in\mathbb Z\}$ . Then,  $\mathbb Z_m=\{\overline x:x\in\mathbb Z\}=\{\overline 0,\overline 1,\ldots,\overline{m-1}\}$ , where  $\overline 0,\overline 1,\ldots,\overline{m-1}$  are distinct, and the multiplication in  $\mathbb Z_m$  is given by  $\overline x\,\overline y=\overline x\overline y$ . For example, in  $\mathbb Z_{12}$ ,  $\overline 4\cdot\overline 5=\overline {4\cdot 5}=\overline {20}=\overline 8$ .

Denote by  $U_m$  the group of units of  $\mathbb{Z}_m$ . The group  $U_m$  consists of all congruence classes  $\overline{u}$ , such that  $1 \leq u \leq m$  and  $\gcd(u,m) = 1$ , where  $\gcd(u,m)$  is the greatest common divisor of u and m [2, Proposition 3.3.2]. It follows that  $|U_m|$ , the cardinality of  $U_m$ , is  $\varphi(m)$ , where  $\varphi$  is the Euler  $\varphi$  function [2, p. 20]. Note that as a set,  $U_m$  can be identified with the set of integers  $\{u \in \mathbb{Z} : 1 \leq u \leq m \text{ and } \gcd(u,m) = 1\}$ . For example, with this identification,  $U_{12} = \{1,5,7,11\}$ .

We say that  $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}$  is the prime decomposition of a positive integer m if  $m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}$ ,  $p_1, p_2, \ldots, p_s$  are primes, such that  $p_1 < p_2 < \cdots < p_s$ , and  $\alpha_1, \alpha_2, \ldots, \alpha_s$  are positive integers.

Recall that in a commutative semigroup S, all Green's relations [3, p. 25] coincide. Denoting this common relation by  $\mathcal{H}$ , for  $x,y \in S$ ,  $x\mathcal{H}y$  iff x=yu and y=xv for some  $u,v \in S^1$ , where  $S^1$  is the semigroup S with an identity adjoined. The semigroup S is partitioned into  $\mathcal{H}$ -classes  $H_x$ ,  $x \in S$ .

The  $\mathcal{H}$  relation in  $\mathbb{Z}_m$  is characterized by an elementary result in number theory stating that for all  $x, y \in \mathbb{Z}$ :

$$(1.1) x \equiv yk \pmod{m} \text{for some } k \in \mathbb{Z} \iff \gcd(y, m) \mid x,$$

where for  $a, b \in \mathbb{Z}$ ,  $a \mid b$  means that a divides b in  $\mathbb{Z}$ .

By (1.1), we have immediately that for  $\overline{x}, \overline{y} \in \mathbb{Z}_m$ :

$$(1.2) H_{\overline{x}} = H_{\overline{y}} \iff \gcd(x, m) = \gcd(y, m).$$

The condition (1.2) gives a natural 1-1 correspondence between the set of  $\mathcal{H}$ -classes of  $\mathbb{Z}_m$  and the set  $\mathrm{Div}_m$  of all positive divisors of m. Each  $\mathcal{H}$ -class contains the congruence class  $\overline{d}$  of exactly one divisor d from  $\mathrm{Div}_m$ . It follows that for  $m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}$ , the number of  $\mathcal{H}$ -classes in  $\mathbb{Z}_m$  is  $(t_1+1)\cdots(t_s+1)$ . This is, of course, exactly the same as the number of ideals in the ring  $\mathbb{Z}/m\mathbb{Z}$ .

#### KONIECZNY

### 2. Computation of $\mathcal{H}$ -classes and Schützenberger Groups

Any  $\mathcal{H}$ -class of  $\mathbb{Z}_m$  can be computed from a suitable group of units by a simple multiplication in  $\mathbb{Z}$ . For  $x \in \mathbb{Z}$  and  $A \subseteq \mathbb{Z}$ , let  $xA = \{xa : a \in A\}$  and  $\overline{A} = \{ \overline{a} : a \in A \}$ . In the next theorem,  $U_{\overline{T}}$  is identified with the set of integers  $\{u \in \mathbb{Z} : 1 \le u \le \frac{m}{d} \text{ and } \gcd(u, \frac{m}{d}) = 1\}.$ 

For any  $\overline{x} \in \mathbb{Z}_m$ ,  $H_{\overline{x}} = \overline{dU_{\overline{m}}}$ , where  $d = \gcd(x, m)$ . Theorem 2.1.

Follows from (1.2) and the observation that  $dU_{\frac{m}{2}}$  consists of all elements  $y \in \mathbb{Z}$ , such that  $1 \le y \le m$  and gcd(y, m) = d.

For example, for m = 10 and  $\overline{x} = \overline{6}$ ,  $d = \gcd(x, m) = 2$  and  $U_{\overline{x}} =$  $U_5 = \{1, 2, 3, 4\}$ . Thus, in  $\mathbb{Z}_{10}$ ,  $H_{\overline{6}} = \overline{2U_5} = \overline{\{2, 4, 6, 8\}} = \{\overline{2}, \overline{4}, \overline{6}, \overline{8}\}$ .

For any  $\overline{x} \in \mathbb{Z}_m$ ,  $|H_{\overline{x}}| = \varphi(\frac{m}{d})$ , where  $d = \gcd(x, m)$ . Corollary 2.2.

**Proof.** By Theorem 2.1,  $|H_{\overline{x}}| = |\overline{dU_{\frac{m}{d}}}| = |dU_{\frac{m}{d}}| = |U_{\frac{m}{d}}| = \varphi(\frac{m}{d})$ . The second equality follows from the fact that for each element  $u \in U_{\frac{m}{d}}$ ,  $1 \le du \le m$ .

For example, in  $\mathbb{Z}_{150}$ ,  $|H_{\overline{28}}| = \varphi(75) = \varphi(3 \cdot 5^2) = 2 \cdot 5 \cdot 4 = 40$ .

Given a semigroup S, we can associate with any  $\mathcal{H}$ -class H of S a permutation group on the set H in the following way. Let  $T(H) = \{x \in S^1 : Hx = H\}$ , and let  $\Gamma(H) = \{\rho_x : x \in T(H)\}$ , where for  $x \in T(H)$ ,  $\rho_x : H \to H$  is the function defined by  $h\rho_x = hx$ . The function  $\rho_x$  is called the inner right translation by  $\sigma_x = T(H)$  in a parameterization  $\sigma_x = T(H)$ . translation by x. Then,  $\Gamma(H)$  is a permutation group on H [3, Theorem 3.3, p. 32] called the Schützenberger group of H.

In the next theorem,  $U_{\frac{m}{d}}$  is the group of units of  $\mathbb{Z}_{\frac{m}{d}}$ ; that is, elements of  $U_{\frac{m}{d}}$  are congruence classes modulo  $\frac{m}{d}$ . For  $x \in \mathbb{Z}$ , the congruence class of xmodulo  $\frac{m}{d}$  is denoted by  $\overline{\overline{x}}$  (to distinguish it from  $\overline{x}$ , the congruence class of x modulo m).

For any  $\overline{x} \in \mathbb{Z}_m$ , the Schützenberger group  $\Gamma(H_{\overline{x}})$  is isomor-Theorem 2.3. phic to the group of units  $U_{\frac{m}{d}}$ , where  $d = \gcd(x, m)$ .

Define the function  $f: U_{\underline{m}} \to \Gamma(H_{\overline{x}})$  by:

$$f(\overline{\overline{u}}) = \rho_{\overline{u}}, \quad \text{for } \overline{\overline{u}} \in U_{\underline{m}},$$

where  $\rho_{\overline{u}}$  is the inner right translation by  $\overline{u}$ . Let  $\overline{\overline{u}} \in U_{\frac{m}{d}}$ . Then, there is  $v, 1 \leq \underline{v} \leq \frac{m}{d}$ , such that  $\overline{\overline{u}} = \overline{\overline{v}}$ . By Theorem 2.1,  $\overline{d}\overline{v} = \overline{dv} \in H_{\overline{x}}$ , and so, since  $\overline{d} \in H_{\overline{x}}$ ,  $H_{\overline{x}}\overline{v} \cap H_{\overline{x}} \neq \emptyset$ . This implies  $H_{\overline{x}}\overline{v} = H_{\overline{x}}$  [3, Lemma 3.2, p. 32], which shows  $\rho_{\overline{v}} \in \Gamma(H_{\overline{x}})$ . Now, since  $u \equiv v \pmod{\frac{m}{d}}$ ,  $du \equiv dv \pmod{m}$ , and so  $\overline{d}\rho_{\overline{u}} = \overline{d}\rho_{\overline{v}}$ . Since  $\overline{d} \in H_{\overline{x}}$ , it follows that  $\overline{h}\rho_{\overline{u}} = \overline{h}\rho_{\overline{v}}$  for every  $\overline{h} \in H_{\overline{x}}$ , which proves that f is well-defined.

Assume that for  $\overline{\overline{u}}, \overline{\overline{v}} \in U_{\overline{u}}$ ,  $\rho_{\overline{u}} = \rho_{\overline{v}}$ . Then, in particular,  $\overline{du} = \overline{d}\overline{u} = \overline{d}$  $\overline{d}\rho_{\overline{u}} = \overline{d}\rho_{\overline{v}} = \overline{d}\overline{v} = \overline{dv}$ , which implies  $m \mid d(u-v)$ . Thus,  $\frac{m}{d} \mid (u-v)$ , and so  $\overline{\overline{u}} = \overline{\overline{v}}$ . Hence f is 1–1.

Let  $\overline{z} \in T(H_{\overline{x}})$ ; that is,  $\overline{z} \in \mathbb{Z}_m$  and  $H_{\overline{x}}\overline{z} = H_{\overline{x}}$ . Then,  $\overline{d}\overline{z} \in H_{\overline{x}}$ , and so, by Theorem 2.1,  $d\overline{z} = d\overline{u}$  for some u, such that  $1 \le u \le \frac{m}{d}$  and

## KONIECZNY

 $\gcd(u, \frac{m}{d}) = 1$ . This implies that  $\overline{\overline{u}} \in U_{\frac{m}{d}}$  and  $\overline{h}\overline{z} = \overline{h}\overline{u}$  for every  $\overline{h} \in H_{\overline{x}}$ . Consequently,  $\rho_{\overline{z}} = \rho_{\overline{u}}$ , which proves that f is onto.

Assume  $\overline{\overline{u}}, \overline{\overline{v}} \in U_{\overline{u}}$ ,  $\overline{h} \in H_{\overline{x}}$ . Then,  $\overline{h}\rho_{\overline{u}\overline{v}} = \overline{h}\,\overline{u}\overline{v} = (\overline{h}\,\overline{u})\,\overline{v} = (\overline{h}\rho_{\overline{u}})\rho_{\overline{v}} = \overline{h}(\rho_{\overline{u}}\rho_{\overline{v}})$ . Thus, f is an isomorphism.

Theorem 2.3 implies that any regular  $\mathcal{H}$ -class  $H_{\overline{x}}$  of  $\mathbb{Z}_m$  is isomorphic to  $U_{\overline{x}}$ , where  $d = \gcd(x, m)$ . A direct proof of this corollary is contained in [1, Theorem 2.5].

For example, in  $\mathbb{Z}_{36}$ ,  $H_{\overline{4}} = \overline{4U_9} = \overline{4\{1,2,4,5,7,8\}} = \{\overline{4},\overline{8},\overline{16},\overline{20},\overline{28},\overline{32}\}$ . Since  $\overline{28}$  is an idempotent in  $\mathbb{Z}_{36}$ ,  $H_{\overline{4}}$  is a group and  $H_{\overline{4}} \cong U_9 \cong \mathbb{C}_6$ , where  $\mathbb{C}_6$  is a cyclic group of order 6 (for the structure of  $U_n$  see [2, Theorem 3, p. 44]).

#### 3. Regular Elements

Recall that an element x of a commutative semigroup S is regular iff  $x=x^2k$  for some  $k\in S$ , or equivalently  $x\mathcal{H}x^2$ . For a prime number p, denote by  $\operatorname{ord}_p(m)$  the nonnegative integer  $\alpha$ , such that  $p^{\alpha}$  divides m and  $p^{\alpha+1}$  does not divide m. For example, for  $m=12=2^23$ ,  $\operatorname{ord}_2(m)=2$  and  $\operatorname{ord}_5(m)=0$ .

**Theorem 3.1.** Let  $m=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_s^{\alpha_s}$  be the prime decomposition of m. An element  $\overline{x}\in\mathbb{Z}_m$  is regular if and only if for every prime number p:

(3.1) 
$$\operatorname{ord}_{p}(x) > 0 \implies \operatorname{ord}_{p}(x) \ge \operatorname{ord}_{p}(m).$$

**Proof.** By (1.2),  $\overline{x}$  is regular in  $\mathbb{Z}_m$  if and only if  $gcd(x,m) = gcd(x^2,m)$ , which happens if and only if (3.1) holds for every prime p.

For example, in the monoid  $\mathbb{Z}_{12}$ ,  $\overline{8}$  is regular, while  $\overline{10}$  is nonregular, since  $\operatorname{ord}_2(10) = 1 < 2 = \operatorname{ord}_2(12)$ .

#### Corollary 3.2.

- (1)  $\mathbb{Z}_m$  has  $2^s$  idempotents, where s is the number of primes dividing m.
- (2)  $\mathbb{Z}_m$  is regular if and only if m is a product of distinct primes.

**Proof.** To prove (1), assume  $m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}$ . By Theorem 3.1, the congruence class  $\overline{d}$  of a divisor d of m is regular in  $\mathbb{Z}_m$  iff  $d = p_{i_1}^{\alpha_{i_1}} p_{i_2}^{\alpha_{i_2}} \cdots p_{i_q}^{\alpha_{i_q}}$ , where  $q \geq 0$  and  $1 \leq i_1 < i_2 < \cdots < i_q \leq s$ . Thus, the number of divisors d, such that  $\overline{d}$  is regular in  $\mathbb{Z}_m$  is  $2^s$ , which proves (1), since each  $\mathcal{H}$ -class of  $\mathbb{Z}_m$  contains the congruence class of exactly one divisor of m.

For example,  $140 = 2^2 \cdot 5 \cdot 7$ , and so,  $\mathbb{Z}_{140}$  contains  $2^3 = 8$  idempotents. The monoid  $\mathbb{Z}_{140}$  is not regular, while  $\mathbb{Z}_{70}$  is regular, since  $70 = 2 \cdot 5 \cdot 7$ .

The formula for the number of idempotents in  $\mathbb{Z}_m$  is contained in [1, Theorem 2.2]. Corollary 3.2 can also be deduced from the fact that for  $m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}$ , the ring  $\mathbb{Z}/m\mathbb{Z}$  is isomorphic to the direct sum of  $\mathbb{Z}/p^{\alpha_i}\mathbb{Z}$ ,  $i = 1, \ldots, s$  [2, p. 36], and consequently:

$$\mathbb{Z}_m \cong \mathbb{Z}_{p^{\alpha_1}} \times \mathbb{Z}_{p^{\alpha_2}} \times \cdots \times \mathbb{Z}_{p^{\alpha_s}}.$$

This implies Corollary 3.2, since each  $\mathbb{Z}_{p^{\alpha_i}}$  has 2 idempotents, and  $\mathbb{Z}_{p^{\alpha_i}}$  is regular iff  $\alpha_i = 1$ .

#### KONIECZNY

### 4. Multiplication of H-classes

The multiplication in any semigroup S induces a multiplication in the set  $\mathcal{P}(S)$  of all subsets of S:

$$AB = \{ab : a \in A, b \in B\}.$$

If S is commutative, then  $\mathcal H$  is a congruence in S, which implies that for any  $x,y \in S$ ,  $H_xH_y \subseteq H_{xy}$ . In the monoid  $\mathbb{Z}_m$ , the reverse inclusion also holds. Actually, even more is true: an  $\mathcal{H}$ -class  $H_{\overline{x}\overline{y}}$  of  $\mathbb{Z}_m$  can be obtained by multiplying  $H_{\overline{y}}$  by any element from  $H_{\overline{x}}$ . The proof of this fact will be based on the following lemma, which states that any two elements from the same H-class of  $\mathbb{Z}_m$  differ by a unit.

**Lemma 4.1.** For any elements  $\overline{x}, \overline{y} \in \mathbb{Z}_m$ , such that  $\overline{x} \mathcal{H} \overline{y}$ , there is a unit  $\overline{u} \in U_m$ , such that  $\overline{x} = \overline{y} \overline{u}$ .

**Proof.** By (3.2), we may assume that  $m = p^{\alpha}$ , where p is a prime and  $\alpha \ge 0$ . Since  $\overline{x}\mathcal{H}\overline{y}$ ,  $\gcd(x,m)=\gcd(y,m)=p^{\beta}$  for some  $\beta,0\leq\beta\leq\alpha$ .

If  $\beta = \alpha$ , then  $\overline{x} = \overline{y} = \overline{0}$ , and so  $\overline{x} = \overline{y}\overline{1}$ . Assume  $\alpha - \beta > 0$  and consider  $x_1 = \frac{x}{p^{\beta}}$  and  $y_1 = \frac{y}{p^{\beta}}$ . Then,  $\gcd(x_1, p^{\alpha - \beta}) = \gcd(y_1, p^{\alpha - \beta}) = 1$ , which implies  $x_1 \equiv y_1 u \pmod{p^{\alpha - \beta}}$  for some  $u \in \mathbb{Z}$ , such that  $\gcd(u, p^{\alpha - \beta}) = 1$ . Since  $\alpha - \beta > 0$ ,  $\gcd(u, p^{\alpha - \beta}) = 1$  implies  $\gcd(u, p^{\alpha}) = 1$ , which shows that  $\overline{u} \in U_m$ . Finally, since  $x_1 \equiv y_1 u \pmod{p^{\alpha - \beta}}$ ,  $p^{\beta}x_1 \equiv p^{\beta}y_1 u \pmod{p^{\alpha}}$ , and so  $\overline{x} = \overline{p^{\beta}x_1} = p^{\beta}y_1 u = \overline{p^{\beta}y_1} \overline{u} =$ 

Theorem 4.2. For any  $\overline{x}, \overline{y} \in \mathbb{Z}_m$ ,  $H_{\overline{x}}H_{\overline{y}} = \overline{x}H_{\overline{y}} = H_{\overline{x}}\overline{y} = H_{\overline{x}}\overline{y}$ .

**Proof.** Since the inclusions  $\overline{x} H_{\overline{y}}$ ,  $H_{\overline{x}} \overline{y} \subseteq H_{\overline{x}} H_{\overline{y}} \subseteq H_{\overline{x} \overline{y}}$  are obvious, it suffices to prove  $H_{\overline{x} \overline{y}} \subseteq \overline{x} H_{\overline{y}}$  ( $H_{\overline{x} \overline{y}} \subseteq H_{\overline{x}} \overline{y}$  will follow by symmetry).

Assume  $\overline{z} \in H_{\overline{x}\overline{y}}$ . By Lemma 4.1, there is a unit  $\overline{u} \in U_m$ , such that  $\overline{z} = \overline{x} \, \overline{y} \, \overline{u}$ . Since  $\overline{u}$  is a unit,  $\overline{y} \, \overline{u} \in H_{\overline{y}}$ , and so  $\overline{z} = \overline{x} \, \overline{y} \, \overline{u} \in \overline{x} \, H_{\overline{y}}$ .

#### References

- Hewitt, E., and H. S. Zuckerman, The Multiplicative Semigroup of Inte-[1] gers Modulo m, Pacific J. Math. 10 (1960), 1291-1308.
- Ireland, K., and M. Rosen, "A Classical Introduction to Modern Number [2] Theory," Springer-Verlag, New York, 1982.
- Lallement, G., "Semigroups and Combinatorial Applications," John Wi-[3] ley & Sons, New York, 1979.

Department of Mathematics Pennsylvania State University University Park, PA 16802

Received April 8, 1992 and in final form May 5, 1992