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SHORT NOTE

Remarks on the Structure of the Multiplicative Monoid
of Integers Modulo m

Janusz Konieczny

Communicated by Gerard Lallement

Abstract. This note presents some results concerning H-classes, Schii-
tzenberger groups, and regular elements in the multiplicative monoid Z,, of
integers modulo m. It also shows that in Z,,, the product of two H-classes is
an H-class.

1. Introduction

Throughout the paper, Z is the set of integers, and for z,y € Z, zy is the
product of z and y in Z. For an integer m > 1, let Z,, be the multiplicative
monoid of Z/mZ, the ring of congruence classes modulo m. For z € Z, the
congruence class of £ modulo m is denoted by T; thatis, T={y€Z:z=y
(modm)}={z+km:k€Z}. Then, Z,,={T:2€Z}={0,1,...,m — 1},
where 0,1,...,m —1 are distinct, and the multiplication in Z,, is given by
Ty = Ty. For example, in Zj3, 4-5=4-5=20=38.

Denote by U, the group of units of Z,,. The group U,, consists of all
congruence classes %, such that 1 <« < m and ged(u,m) = 1, where ged(u,m)
is the greatest common divisor of u and m [2, Proposition 3.3.2]. It follows
that |Up|, the cardinality of U, is ¢(m), where ¢ is the Euler ¢ function
[2, p. 20]. Note that as a set, U, can be identified with the set of integers
{u€Z:1<u<m and ged(u,m) =1}. For example, with this identification,
Uz = {1,5,7,11}.

We say that pI'p3?---p$* is the prime decomposition of a positive
integer m if m = pJ*p5? .- p%e, p1,p2,...,Ps are primes, such that p; < ps <
-+ < ps, and oq,09,...,0, are positive integers.

Recall that in a commutative semigroup S, all Green’s relations [3, p. 25]
coincide. Denoting this common relation by H, for z,y € S, zHy iff ¢ = yu
and y = zv for some u,v € S!, where S! is the semigroup S with an identity
adjoined. The semigroup S is partitioned into H-classes H,, z € S.

The H relation in Z,, is characterized by an elementary result in number
theory stating that for all z,y € Z:

(1.1) z=yk (modm) forsomek €Z <= gecd(y,m) |z,

where for a,b € Z, a | b means that a divides b in Z.
By (1.1), we have immediately that for Z,7 € Zn,:

(1.2) Hz = Hy <= gcd(z,m) = ged(y,m).

The condition (1.2) gives a natural 1-1 correspondence between the set
of H-classes of Z,, and the set Div,, of all positive divisors of m. Each H-class
contains the congruence class d of exactly one divisor d from Divy,. It follows
that for m = p{'p3? - - - pT+ , the number of H-classes in Z, is (t1+1)--- (t,+1).
This is, of course, exactly the same as the number of ideals in the ring Z/mZ.



KONIECZNY

2. Computation of H-classes and Schiitzenberger Groups

Any H-class of Z,, can be computed from a suitable group of units by a
simple multiplication in Z. For z € Z and AC Z,let zA={za:a € A} and
A={a:a€ A}. In the next theorem, Uz is identified with the set of integers
{ueZ:1<u<% and ged(u, %) =1}.

Theorem 2.1.  For any T € Z,, Hz = dUg , where d = ged(z,m).
Proof. Follows from (1.2) and the observation that dUm consists of all
elements y € Z, such that 1 <y <m and ged(y,m) =d. ]

For example, for m = 10 and T = 6, d = ged(z,m) = 2 and Ug =

Us = {1,2,3,4}. Thus, in Zyo, Hz = 2Us = {2,4,6,8} = {2,4,6,8}.

Corollary 2.2. For any T € Zy,, |Hz| = ¢(3), where d = ged(z,m).

Proof. By Theorem 2.1, |Hz| = |[dUz | = |[dUg | = |Ug| = ¢(%). The second
equality follows from the fact that for each element u € Ug, 1<du<m. =

For example, in Z150, |Hgg| = ¢(75) = ¢(3-5%) =2-5-4 = 40.

Given a semigroup S, we can associate with any H-class H of S a
permutation group on the set H in the following way. Let T(H) = {z € 8! :
Hr=H},andlet I'(H) ={p,:z € T(H) }, wherefor z € T(H), p, : H - H
is the function defined by hp, = hz. The function p, is called the inner right
translation by z. Then, I'(H) is a permutation group on H [3, Theorem 3.3,
p. 32] called the Schiitzenberger group of H.

In the next theorem, Uz is the group of units of Z g ; that is, elements
of Uz are congruence classes modulo 7. For z € Z, the congruence class of z
modulo % is denoted by Z (to distinguish it from %, the congruence class of =

modulo m).

Theorem 2.3.  For any T € Z,,, the Schiitzenberger group I'(Hz) is isomor-
phic to the group of units U= , where d = ged(x,m).

Proof. Define the function f: Uz — I'(Hz) by:

f@) =pw, forTeUsg,

where py is the inner right translation by 7.

Let T € Uz. Then, thereis v,1 < v < 2, such that %=17u. By
Theorem 2.1, dv = dv € Hy, and so, since d € Hz, H;v N Hy # @. This
implies Hz7 = Hz [3, Lemma 3.2, p. 32], which shows p3 € I'(Hz). Now, since
u=wv (mod %), du=dv (mod m), and so dpyz = dpy. Since d € Hy, it follows
that hpg = hpy for every h € Hz, which proves that f is well-defined.

Assume that for @,7 € U, pg = py. Then, in particular, du=du =
dpg = dpy = dv = dv, which implies m | d(u — v). Thus, 2 | (u — v), and so
%="7". Hence f is 1-1.

Let z € T(Hz); that is, Z € Z,, and HzZ = Hz. Then, dz
and so, by Theorem 2.1, dZ = d@ for some u, such that 1 < u <
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ged(u, Z) = 1. This implies that T € Uy and hZ = h% for every h € Hz.
Consequently, pz = pg, which proves that f is onto.
Assume %,% € Uz, h € Hz. Then, hpz = huv = (h7)v = (hpz)ps =
h(pups). Thus, f is an isomorphism. ]

Theorem 2.3 implies that any regular H-class Hz of Z,, is isomorphic
to Ug , where d = ged(z,m). A direct proof of this corollary is contained in

[1, Theorem 2.5).

For example, in Z3g, Hy = 4Uy = 4{1,2,4,5,7,8} = {4,8,16,20, 28, 32}.
Since 28 is an idempotent in Z;,s, Hy is a group and Hy = Uy = Cs, where Cq
is a cyclic group of order 6 (for the structure of U, see [2, Theorem 3, p. 44]).

3. Regular Elements

Recall that an element = of a commutatlve semlgroup S is regular iff
z = z?k for some k € S, or equivalently zHz2. For a prime number p, denote
by ord,(m) the nonnegative integer a, such that p® divides m and p>*! does
not divide m. For example, for m = 12 = 223, ordz(m) = 2 and ords(m) = 0.
Theorem 3.1. Let m = py'py?---pS* be the prime decomposition of m. An
element T € Z,, 1s regular if and only f for every prime number p:

(3.1) ord,(z) > 0 = ordy(z) > ordy(m).

Proof. By (1.2), T is regular in Z,, if and only if ged(z,m) = ged(z?, m),
which happens if and only if (3.1) holds for every prime p.

For example, in the monoid Z;,, 8 is regular, while 10 is nonregular,
since ordz(10) =1 < 2 = ord3(12).

Corollary 3.2.
(1) Z,, has 2° idempotents, where s is the number of primes dividing m.
(2) Z,, is regular if and only if m is a product of distinct primes.
Proof. To prove (1), assume m = p{'p3?---p%. By Theorem 3.1, the
congruence class d of a divisor d of m is regular in Z,, iff d = pz'lp:'ﬁ . p:f""o ,
where ¢ > 0 and 1 <4; <43 <+ <4y < 8. Thus, the number of divisors d,
such that d is regular in Z,, is 2°, which proves (1), since each H-class of Z,,
contains the congruence class of exactly one divisor of m.

(2) is immediate by Theorem 3.1. ]

For example, 140 = 2%2.5.7, and so, Z49 contains 23 = 8 idempotents.
The monoid Z,4¢ is not regular, while Zq is regular, since 70 =2-5-7.

The formula for the number of idempotents in Z,, is contained in
(1, Theorem 2.2]. Corollary 3.2 can also be deduced from the fact that for
m= p'l" p3? ---p%+, the ring Z/mZ is isomorphic to the direct sum of Z/p*Z
i=1,...,8 [2, p. 36] and consequently:

(3.2) Zm & Zpul X Zpﬁz XX ZP°"
This implies Corollary 3.2, since each Z,s; has 2 idempotents, and Zyo: is
regular iff o; = 1.
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4. Multiplication of H-classes

The multiplication in any semigroup S induces a multiplication in the
set P(S) of all subsets of S:

AB = {ab:a€ Abe B}.

If S is commutative, then H is a congruence in S, which implies that for
any z,y € S, H;H, C H;,. In the monoid Z,,, the reverse inclusion also
holds. Actually, even more is true: an H-class Hzy of Z,, can be obtained by
multiplying Hy by any element from Hz. The proo¥ of this fact will be based on
the following lemma, which states that any two elements from the same H-class
of Z,, differ by a unit.

Lemma 4.1. For any elements T,§ € Zy,, such that THY, there is a unit
T € Uy,, such that T =77u.

Proof. By (3.2), we may assume that m = p®, where p is a prime and a > 0.
Since ZH7F, ged(z,m) = ged(y,m) = pP for some B,0 < B < a.

If B=ca,then Z=7=0, and so T=71.

Assume o — 8 > 0 and consider z; = ;’, and y; = ;}{;. Then,
ged(z1,p*P) = ged(y1,p*?) = 1, which implies z; = y;u (mod p*~*) for
some u € Z, such that ged(u,p*#) = 1. Since o — 8 > 0, ged(u,p*P) =1
implies ged(u,p®) = 1, which shows that @ € Uy,. Finally, since z; = y,u

(mod p*~#), pPz; = PPy1u (mod p*), and so T = pPz; = pPyu = PPy T =
va. .

Theorem 4.2. For any T,§ € Z,,, HzHy = THy = Hzy = Hzy.
Proof.  Since the inclusions Z Hy, Hzy C HzHy C Hzy are obvious, it suffices
to prove Hzy C THy (Hzy C Hzy will follow by symmetry).

Assume Z € Hzy. By Lemma 4.1, there is a unit @ € U,,, such that

Z=TZyu. Since U is a unit, % € Hy, and so Z=Tyu € T Hy. [
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