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AFFINE GELFAND-DICKEY BRACKETS
AND HOLOMORPHIC VECTOR BUNDLES

P.I. ETINGOF AND B.A. KHESIN

Abstract

We define the (second) Adler-Gelfand-Dickey Poisson structure on differen-
tial operators over an elliptic curve and classify symplectic leaves of this
structure. This problem leads to the problem of classification of coadjoint
orbits for double loop algebras, conjugacy classes in loop groups, and holo-
morphic vector bundles over the elliptic curve. We show that symplectic
leaves have a finite but (unlike the traditional case of operators on the cir-
cle) arbitrarily large codimension, and compute it explicitly.

Introduction

In the seventies M. Adler ([A]) and IL.M. Gelfand and L.A. Dickey
([GD]) discovered a natural Poisson structure on the space of n-th order
differential operators on the circle with highest coefficient 1 which is now
called the (second) Gelfand-Dickey bracket. This bracket arises in the the-
ory of nonlinear integrable equations under various names (nKdV-structure,
classical Wp,-algebra). B.L. Feigin proposed to consider and study symplec-
tic leaves for the Gelfand-Dickey bracket — a problem motivated by the fact
that for n = 2 these symplectic leaves are orbits of coadjoint representa-
tion of the Virasoro algebra. A classification of symplectic leaves for the
Gelfand-Dickey bracket and a description of their adjacency were given in
[OK]. It turned out that locally symplectic leaves are labeled by one of the
following;:

1) conjugacy classes in the group GL,;

2) orbits of the coadjoint representation of the affine Lie algebra EE,;

3) equivalence classes of flat vector bundles on the circle of rank n

(these three things are in one-to-one correspondence).
Furthermore, the codimension of a symplectic leaf is equal to any of the
following:
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1) the dimension of the centralizer of the corresponding conjugacy class;

2) the codimension of the corresponding coadjoint orbit;

3) the dimension of the space of flat global sections of the bundle of endo-
morphisms of the corresponding flat vector bundle.

In section 1 of this paper we define an “affine” analogue of the Gelfand-
Dickey bracket. It is realized on the space of n-th order differential operators
on an elliptic curve which are polynomials in 8 with smooth coefficients and
highest coefficient 1. The main goal of the paper is to classify and study
the symplectic leaves of the affine Gelfand-Dickey bracket.

In section 2 we show that locally symplectic leaves of this bracket are
labeled by
1) conjugacy classes for the action of the loop group LGL,(C) on the

semidirect product C* x LGL,(C)o (where LGL,(C)o denotes the con-

nected component of the identity in the group LGL,(C));

2) orbits of the coadjoint representation of the “double” affine Lie algebra
— a central extension of the Lie algebra of gl,-valued smooth functions
on the elliptic curve ([EF));

3) equivalence classes of holomorphic vector bundles of rank n and degree
zero on the elliptic curve

(as before, these three things are in one-to-one correspondence).

Since holomorphic vector bundles over an elliptic curve are completely
classified ([At]), this result gives a good description of symplectic leaves.

In section 3 we show that the codimension of a symplectic leaf is equal
to
1) the dimension of the centralizer of the corresponding conjugacy class;
2) the codimension of the corresponding coadjoint orbit;

3) the dimension of the space of holomorphic sections of the bundle of
endomorphisms of the corresponding holomorphic vector bundle.

In particular, this implies that in the affine case the codimension of a
symplectic leaf, though always finite, can be arbitrarily large, even for n = 2
(see Theorem 5B and Proposition 8B), unlike the finite dimensional case,
in which it is bounded from above by dim GL,, = n2.

These results constitute a two dimensional (or affine) counterpart of the
results of [OK] for Gelfand-Dickey brackets. Similarly to the non-affine case,
they can be generalized to other classical Lie groups — SL,, Span, SO2n+1
(see [OK]).

In section 4 of the paper we discuss the question whether the map assign-
ing an equivalence class of vector bundles to a symplectic leaf is surjective.
This question is equivalent to the question whether any monodromy (=vec-
tor bundle) can be realized by an n-th order differential operator. For the
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usual Gelfand-Dickey bracket the answer to this question is positive (it fol-
lows, for example, from the results of M. Shapiro ([Sha])). We prove that
the answer is positive in the affine case as well.

In section 5, we describe an explicit realization of all possible mon-
odromies for n = 2, using Atiyah’s classification of vector bundles over
an elliptic curve.

In the Appendix we discuss the interesting problem of describing the
global structure of the fibration of the space of differential operators by
symplectic leaves. It turns out that two distinct symplectic leaves may corre-
spond to the same monodromy. In the finite-dimensional case, the problem
of counting symplectic leaves with a given monodromy is defined geometri-
cally by homotopy classification of quasiperiodic nonflattening curves on a
real projective space [O], [OK], [KSh]. The problem of counting symplectic
leaves of the affine G Lo-Gelfand-Dickey bracket corresponding to the trivial
rank 2 vector bundle reduces to the topological problem of classification of
nowhere holomorphic maps from an elliptic curve to the complex projective
line (i.e. maps f with nonvanishing 8f) up to homotopy. In the affine GL,,
case we encounter the problem of homotopy classification of maps f from an
elliptic curve to CP"~! such that the vectors 9f, ...,5"_1 f are everywhere
linearly independent. (These maps are the affine counterparts of nonflatten-
ing curves in RP"~1). At the moment a complete solution of this problem
(even in the GL,-case) is unknown to the authors.

Remarks: 1. The reason for considering affine Gelfand-Dickey brackets
is a search for an appropriate two-dimensional counterpart of the theory of
affine Lie algebras. One can show that the “affine” analogue of the Drinfeld-
Sokolov reduction ([DrSo]) sends the linear Poisson bracket on the double
loop algebra (cf. [EF]) into the quadratic Gelfand-Dickey bracket on the
space of differential operators on the elliptic curve.

2. In the case n = 2, the problem of classification of symplectic leaves
coincides with the problem of classification of orbits of the coadjoint rep-
resentation of the complex Virasoro algebra defined in [EF] — the Lie al-
gebra of pairs (f,a) where f is a smooth function on an elliptic curve
M and a is a complex number, with the commutation law [(f,a)(g,b)] =
(39 — 987, [, 13°9)-

3. The key tool in the study of Gelfand-Dickey brackets is the notion
of monodromy of a differential operator. For the case of the circle, mon-
odromy is a conjugacy class in the group GL,. For the case of an elliptic
curve, monodromy is a conjugacy class in the affine GL, (more precisely, a
conjugacy class of the action of LGL,(C) in the one-dimensional extension
C* x LGL,(C)g of the loop group of GL,). This justifies the name “affine



402 P.I. ETINGOF AND B.A. KHESIN GAFA

Gelfand-Dickey bracket”.

4. One can define versal deformations of symplectic leaves following
[LP],[OK]. They are equivalent to the deformations of the corresponding
monodromies. This implies that adjacency of symplectic leaves is the same
as that of orbits, conjugacy classes, and vector bundles. !

5. It would be interesting to find the counterpart of the affine GD
bracket for surfaces of higher genus. A good definition of this object should
lead to symplectic leaves of finite codimension, like in the case of an elliptic
curve. These symplectic leaves should be labeled by coadjoint orbits of
the central extension of the Lie algebra of matrix-valued functions on the
surface described in [EF], or by equivalence classes of holomorphic vector
bundles over the surface (it is shown in [EF] that these two things are in
one-to-one correspondence).
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1. Gelfand-Dickey Brackets

We start by recalling the definition of the Gelfand-Dickey structures (see
[A],[GD],[DrSo]).

Let M be a compact smooth orientable closed manifold, Xk = R or C,
C>™(M, k) be the algebra of smooth k-valued functions on M, w be a vol-
ume form on M. Let D be a differential operator on C*°(M, k) such that
Ju(Df)w = 0 and D(fg) = (Df)g + f(Dg) for any f,g € C=(M, k).

Define the vector space L as follows:

L= {P = nz—:l U1 D™ |um € C®(M, k)} : (1.1)

m=0

To realize the dual space to £, we need to introduce pseudodifferential
symbols. They are formal expressions of the form Y2 amD™™, my €

m=myo

! A symplectic leaf, coadjoint orbit, conjugacy class, vector bundle O, is called
adjacent to Oz if the closure of O contains (J;; for symplectic leaves, orbits, and
conjugacy classes, the closure is in the C*°-sense, and for vector bundles it is in the
sense of Zariski topology on the moduli space of bundles.
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Z, a, € C®°(M,k). It is known that such symbols form an associative
algebra: two symbols A, B can be multiplied with the help of the rules
Dof=foD+Df, D 'of=foD 1= f oD %2+ f"oD™3—.., for any
f € C=(M,k). _

We realize (the regular part of) the dual space to L as follows:

n
A= {A =Y amD™™|anm € C™(M, k)} , (1.2)
m=1
and the pairing £ ® A — k is given by the formula

(P, A) = /M Res(PA)w , (1.3)

where Res(X) is the coefficient to D~! in a pseudodifferential operator X.
It is clear that any regular linear functional on £ has this form.

Note that Res(PA — AP) = Df, where f is some function on M, which
implies that [, Res(PA)w = [,, Res(AP)w.

Let £ be the affine space of all operators of the form L = D"+ P, P € [}
Clearly, the tangent space to £ at any point is naturally identified with L.

Following Adler, Gelfand and Dickey, let us assign a vector field V4 on
L to every regular linear functional A on £. Its value at a point L € L is:

Va(L) = L(AL)4 — (LA)4+ L, (1.4)

where X denotes the differential part of X.

Let C denote the algebra of smooth functions on £ for ¥ = R, and the
algebra of holomorphic functions on £ for k = C. Then assignment (1.4)
allows one to define a Poisson bracket on C:

{f,9}(L) = (dg |, V4| (L)) . (1.5)

Let us call this bracket the Gelfand-Dickey (GD) bracket. It equips £ with
a structure of a Poisson manifold (over k).

Let us now define symplectic leaves of the GD bracket and their codi-
mensions (cf. [Ki2],[W]).

Let L € L. A vector v € TrL = L is called a Hamiltonian vector if there
exists A € A such that v = V4(L).

Define the symplectic leaf O, to be the set of all points L’ € £ such that
zhere exists a smooth curve v : [0,1] — £ such that y(0) = L, y(1) = L’, and

S} is a Hamiltonian vector for any ¢ € [0, 1]. It is clear that two symplectic
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leaves are either disjoint or identical. Therefore, the space £ becomes a
disjoint union of symplectic leaves.

The tangent space T O, C L to the symplectic leaf Oy at L is obviously
the space of all Hamiltonian vectors at L. Define the codimension of O
to be the codimension (over k) of this tangent space in £. This definition
makes sense because the codimension is the same at all points of Q.

We will be concerned with the following two special cases of GD brackets.

MAIN DEFINITION. CASE 1: M =S, k=RorC, D = ——, w = dz.
The GD bracket corresponding to this situation is called the GL »(k)-GD
bracket ([GD]).

CASE 2: M is a nondegenerate elliptic curve over C : M = C/T,
where ' is a lattice generated by 1 and 7, where Im7 > 0, k = C,
D=9 = az = 2(3z + zay), where z = x + iy is the standard complex
coordinate on C, w = 'dz A dz. The space L consists of differential oper-

ators 9 + E?_—Tol uj+1(z,2)5j, where u; € C®°(C/T',C). We call the GD
bracket corresponding to this case the affine GL,-GD bracket.

Symplectic leaves of the GL,-GD bracket are described in [OK]. In this
paper, a similar description is given for symplectic leaves of the affine GL,-
GD bracket. To emphasize the parallel between the non-affine and affine
theories, we give an exposition of both of them, marking definitions and
statements from the non-affine theory by the letter A and from the affine
theory by the letter B.

2. Local Classification of Symplectic Leaves

DEFINITION 1AB. Let f = (fi,..., fn) be a smooth k™-valued function on
some covering of M (k = R or C). The matrix-valued function W(f) =
(wi;), wi; = D71 f; is called the Wronski matrix of f.

We start by recalling a standard statement from the theory of ordinary
differential equations.

PROPOSITION 1A. Let L be a differential operator of the form L = dz,. +
E;‘_ol ujp155;, uj € C=(S', k). Then:

(i) there exists a set of n solutions f = (f1, ..., fn) of the equation L$ = 0
belonging to C°°(R, k) whose Wronski matrix is everywhere nonde-
generate (here R is regarded as a cover of S');

(i) if £ = (f1,..., fa) is another set of solutions satisfying (i) then there
exists a unique matrix R € GL,(k) such that f = fR;
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(iii) if £ = (f1,..., fa) is any set of smooth k-valued functions on the
real line such that its Wronski matrix is everywhere nondegenerate,
and if f(z + 1) = f(z)R for some R € GL,(k), then there exists a

unique differential operator L = EdE":T + }:;'__fol uj4145; with periodic

J
coefficients such that Lf; = 0 for all 1. :

Let ¥ = C/Z be a cylinder. It has a natural structure of an abelian
group, is equivalent to C* as a complex manifold, and naturally covers the
elliptic curve M = C/(Z & 7Z). From now on we do not make a distinction
between ¥ and C*.

Before we formulate the affine analogue of Proposition 1A, we need to
define loop groups. We will need three versions of a loop group for GL,(C):

NoTATION. LGL,(C) is the group of holomorphic GL,(C)-valued func-
tions on ¥. LGL,(C)y is the connected component of identity in LGL,(C).
GL,(C) is the semidirect product Xx LGL,(C)o, where ¥ acts on LGL,(C)o

by (z 0 g)(w) = g(w + 2).

The group GL,(C) should be regarded as the group of pairs (g(-), 7),
g € LGL,(C)o, T € X, with the multiplication law (g(z),7)(h(z),0) =
(9(2)h(z + 7),7 + 6). It is clear that LGL,(C)o is embedded into GL,(C)
by the map g(-) — (9(-),0). -

Consider the action of LGL,(C) on GL,(C) by conjugacy. We will call
the orbits of this action restricted conjugacy classes.

PropPoOSITION 1B. Let L be a differential operator of the form L = 3" +
E;';ol w419, uj € C°(M,C), where M is an elliptic curve. Then:

(i) there exists a set of n solutions f = (f1, ..., fa) of the equation L¢ =0
belonging to C*° (X, C) whose Wronski matrix is everywhere nonde-
generate (here ¥ is regarded as a cover of M);

(i) if f = (f1, ..., fn) is another set of solutions satisfying (i) then there
exists a unique matrix R(z) € LGL,(C) such that f = fR.

(iii) if £ = (f1,..., fn) is any set of smooth complex-valued functions on
¥ such that its Wronski matrix is everywhere nondegenerate, and if
f(z + 7) = f(2)R(z) for some R(z) € LGL,(C), then there exists a
unique differential operator L = 5"4—2;-':_01 uj+15‘7 such that Lf; =0
for all i.

Proof: First of all, statements (i) and (ii) are true in a small enough neigh-
borhood U, of every point p € £ [AtB]. Let g? = (g?,....,9%) be the cor-
responding sets of solutions. By the local version of statement (ii), when-

ever U, and U, intersect, g§ = 371, g7Q%, where QP9(z) are holomorphic
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GL,(C)-valued functions on U, N Uy. These functions satisfy the condi-
tions: QPIQY? = 1, QPIQI"Q™ = 1, which imply that they are clutching
transformations of some holomorphic vector bundle E of rank n on X.

Since ¥ is equivalent to C* as a complex manifold, any holomorphic
vector bundle over ¥ has to be trivial. This, of course, applies to Ep,
which implies that E; has n global holomorphic sections s, ..., 8, which
are everywhere linearly independent. That is to say, for every p € ¥ there
exists a holomorphic function S?(z) on U, with values in GL,(C) such that
SP = QP15 on U,NU, for any p, q € T (s; are the columns of S). Therefore,
the functions f} = 3=, g7 S?; satisfy the condition f} = f/ on U, NU,. This
means, we have a globally defined vector-function f = (fi, ..., fn), such that
filv, = f}. Since the functions Sf;(z) are holomorphic, the functions f;
satisfy the equation Lf; = 0. Also, W(f) = W(gP)S? in every U, which
implies W (f) is everywhere nondegenerate. This settles (i).

Now let ¢ be any smooth complex function on ¥. Consider the column
vector ® = (¢, 9, ...,??ﬂ_ldb)‘. It is obvious that ¢ is a solution of L¢ = 0
if and only if ® satisfies the first order n x n-matrix equation & = Ap®,
where Ay is the Frobenius matrix corresponding to L:

0 1 vee ... 0
0 0 1 ... 0 1 j—i=1
A = cin  sws wiw wss |5 1€ (AL),'J'={—U,J- i=n
0 0 ..o w1 0 otherwise
—-UuU; —Ug ... ... —Up
(2.1)

This implies that if f = (fi, ..., f») is a set of solutions to Ly = 0 then the
Wronski matrix W (f) satisfies the equation

oW =AW . (2.2)

To prove (ii), define the matrix function R on £ by W(f) = W(f)R.
This matrix is obviously always in GL,(C), and it is holomorphic on £
because both W(f) and W(f) satisfy the equation OW = A W. Thus,
R € LGL,(C).

To establish (iii), for any f satisfying the conditions of (iii) define the
vector-function u = (uy,...,u,) on ¥ by the formula

u=-@" W)™ . (2.3)

This vector function exists and is unique because of the nondegeneracy of
W. Moreover, it is 7-periodic since both @ f and W (f) multiply by R from
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the right when z is replaced by z + 7. Now set L =8 + E;:ol U410 . It

is obvious that (2.3) is equivalent to the condition that Lf; = 0 for all ¢,

which implies (iii). o
Propositions 1A and 1B have a simple geometric reformulation:

PROPOSITION 1AB. For every vector-function f with a nondegenerate Wron-
ski matrix there exists a unique differential operator Ly € L such that
L¢f; =0, and the assignment f — Lg¢ is a principal fibration over L whose
fiber is GL,(k) in Case 1 and LGL,(C) in Case 2.

COROLLARY 2AB. Let L(t) be any smooth curve in L. Then there exists a
smooth family of vector-functions f' with a nondegenerate Wronski matrix
such that L(t)f! = 0 for all i and for all t.

Proof: This is just the statement that any path on the base of a fiber bundle
can be covered by a path on the total space. o

Let us now define the notion of monodromy of a differential operator.

DEFINITION 2A. Let L be a differential operator of the form L = Ji—n,. +
Z;:OI Ujp1 di:,—, uj € C*°(R/Z,k). Let f = (f1,..., fn) be a set of solutions of
the equation L¢ = 0 belonging to C*°(R, k) whose Wronski matrix is every-
where nondegenerate. Let R € GL,(k) be the matrix such that f(z + 1) =
f(z)R (it exists because of Proposition 1A (ii)). Then the conjugacy class
of R in GL,(k) is called the monodromy of L.

Note that the matrix R itself (unlike the conjugacy class of R, cf. Propo-
sition 1A (ii)) is not well defined since it relies on the choice of the set of
solutions f.

DEFINITION 2B. Let L be a differential operator of the form L = " +
Z;';(]l w410, uj € C°(M,C) (M is an elliptic curve). Let f = (fi,..., fa)
be a set of solutions of the equation L$ = 0 belonging to C*°(X, C) whose
Wronski matrix is everywhere nondegenerate. Let R € LGL,(C) be the
matrix such that f(z + 7) = f(z)R(z) (it exists because of Proposition 1B
(ii)). Then the restricted conjugacy class of the element (R, 7) in GL,(C)
is called the monodromy of L.

Remarks: 1. The reason for Definition 2B is the following: if g(z) =
f(2)Q(z) is another set of solutions (i.e. Q(z) € LGL,(C)), then
g(z + 7) = g(z)R(z), where R(z) = Q@ !(2)R(z)Q(z + 7), which corre-
sponds to conjugation of the element (R,7) € GL,(C) by (Q~1,0). Since
any set of solutions has the form f(z)Q(z), where Q is a holomorphic matrix
(Proposition 1B, part (ii)), monodromy is well defined, i.e. does not depend
on the choice of f.
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2. Note that for differential equations on the line there is a canonical
choice of a set of solutions f — the set whose Wronski matrix is the identity
matrix at a fixed point z¢ of the line (the fundamental system of solutions).
The notion of a fundamental system of solutions does not have a natural
analogue in two dimensions.

3. Observe that in Case 2 the monodromy matrix R(z) is always in
LGL,(C)o. Indeed, det R(z) = %ﬁ—)’), which means that the map
z — det R(z) is homotopic to the identity: the homotopy is ¢,(z) =
d—%‘;ﬂv‘%%l, s € [0,1]. For a similar reason, in Case 1 if ¥ = R then
the determinant of R is always positive.

Now we are ready to formulate the main theorem about the local struc-
ture of the fibration of £ into symplectic leaves.

THEOREM 3AB. Let L(t), a <t < b be a smooth curve in L. Then L(t)
lies inside a single symplectic leaf if and only if the monodromy of L(t) is
the same for all t.

The proof of this theorem for Case 1 was given in [OK]. Before proving
Case 2, let us give a reformulation of the isomonodromic condition in terms
of vector bundles and in terms of coadjoint orbits of double loop algebras.

Define the rank n vector bundle £ on M corresponding to a differential
operator L € L. It will be a flat k-bundle in Case 1 and a holomorphic
bundle in Case 2.

For every p € M let U, be the neighborhood of p such that there exists a
set £ = (f7, ..., f£) of n solutions of the equation L¢ = 0 defined in U, whose
Wronski matrix is nondegenerate in U,. Let the matrices QP? (belonging
to GL,(k) in Case 1 and LGL,(C) in Case 2) be defined by the condition
f7 = fPQP9. Then QP7 satisfy the conditions QPIQ¥” = 1, QPIQI"Q™ = 1.

DEFINITION 3AB. The vector bundle £y is the bundle on M defined by
the set of transition functions QP9.

There is another, more explicit construction of the vector bundle £f.
Let R be a monodromy matrix for L. Let M be the interval [0,1] in Case
1 and the annulus {z + 7y € £ | 0 < y < 1} in Case 2. Define the vector
bundle £7, on M as follows. Take a trivial rank n bundle over M and glue
the two boundaries of M together: 0 ~ 1 in Case 1, £ ~ z + 7 in Case 2
(this will transform M into M), identifying the fibers over corresponding
points by means of the monodromy matrix R. It is easy to check that the
flat (holomorphic) vector bundle over M obtained in this way is isomorphic
to &r.
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Thus, global smooth sections of £; can be realized as quasiperiodic
vector-functions on R (respectively on ¥), i.e. as such functions f that
f(z + 1) = f(z)R (respectively f(z + 7) = f(z)R(2)).

Let us now define affine and double affine Lie algebras. Let g(M) =
C>(M, gl,,(k))®C be the one dimensional central extension of C*°(M, g, (k))
by means of the cocycle Q(f,9) = [,,tr(fDg)w. In the one-dimensional
case it is the usual affine Lie algebra. In the two-dimensional case it is the
double affine algebra considered in [EF].

It is known that the Lie algebra g(M) integrates to a Lie group G(M)
(see, [PrS] for Case 1, [EF] for Case 2). The coadjoint representation of this
group can be realized as the space of differential operators AD + f () € k),
where f is a smooth function on M with values in g[,, (k), in which the action
of the group G(M) reduces to the action of C*° (M, GL,(k)) by conjugaticn
(the so called gauge action): go (AD+ f) = AD — Dg-g~! + gfg~!. The
coadjoint orbit containing the operator A = AD + f will be denoted by Oa.

The notion of monodromy for operators of the form AD + f (A # 0),
where f is matrix-valued, is analogous to that for higher order scalar oper-
ators. For D = d/dz this notion is standard; for D = 8, monodromy is the
restricted conjugacy class in GL,(C) of an element (g(z), 7) such that there
exists a nondegenerate matrix solution B(z) of the equation A\B + fB =0
defined on the cylinder ¥ and such that B(z + 7) = B(z)g(z) ([EF)).

Consider now the affine linear map A : £ — g(M)* given by the formula
L — D — A, where A is defined by (2.1) (for both Case 1 and Case 2).
This map takes values in the hyperplane A = 1.

PRroPOSITION 4AB. The following three conditions on two differential op-
erators L1, L, € L are equivalent:
(1) L1 and Ly have the same monodromy;
(ii) The flat (respectively holomorphic) vector bundles £y, and £y, are
isomorphic.
(iii) The points A(L;) and A(L2) are in the same orbit of coadjoint rep-
resentation of G(M).

Proof: 1t is clear that the monodromy of the operator L is the same as the
monodromy of A(L).

Case 1. The equivalence of (i) and (ii) is obvious; the equivalence of (ii)
and (iii) was observed in [F],[RSe],[S].

Case 2. The equivalence of (i) and (ii) is an observation of E. Loojienga
(cf. [EF]) (he observed that conjugacy classes in the extended loop group
correspond to holomorphic bundles over an elliptic curve). The equivalence
of (ii) and (iii) follows from [EF]. o
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Remark: In Case 2 the vector bundle £, is always of degree zero since it is
obtained from the trivial bundle on the annulus by gluing with the help of
a transition matrix R(z) € LGL,(C)o which is homotopic to the identity.

Proof of Theorem 3AB for Case 2: The proof given below follows the
method of [OK].

Let L(t) be a smooth curve on £. Pick a smooth family of vector-
functions f* with a nondegenerate Wronski matrix such that L(t)f}! = 0 for
all ¢, . This is possible because of Corollary 2AB. Let R*(z) € LGL,(C)o be
the monodromy matrix of this set of solutions: it is defined by the formula
fi(z + 7) = f'(2)R'(2).

If. We must show that L’(t) is a Hamiltonian vector for any t.

We know that all elements (R!(z), 7) are in the same restricted conjugacy
class in GL,(C), i.e. are conjugate to the same element (R(z), 7). Therefore,
(R'(z),7) is a smooth curve on the restricted conjugacy class of (R(z), 7).
Since the group LGL,(C) is the total space of a principal fibration over
this restricted conjugacy class whose fiber is the centralizer of (R(z),7)
in LGL,(C) (this is a finite-dimensional complex Lie group), the curve
(R'(z),7) can be lifted to a smooth curve C*(z) on LGL,(C). In other
words, there exists a function C!(z) taking values in LGL,(C) which is
smooth in t and satisfies the relation

R'(2) = C'(2)R(2)(C)) Mz + 1) . (2.4)

Define a new vector function g* = f!C*. Obviously, its components are
still solutions of L(t)¢ = 0, and its Wronski matrix is nondegenerate. But
now we have an additional property — the monodromy matrix of g! does
not depend on t: gi(z + 7) = g'(z) R(z).

Let tg € (a,b). Let g' = g+ (t — to)g’ + O((t — t0)?) as t — to. Also
let L(t) = L+ (t — to)L' + O((t — t)?) as t — to. Let us differentiate the
relation L(t)g! = 0 by t at t = to. We get

Lg'+L'g=0. (2.5)

In order to show that L’ is a Hamiltonian vector, we must find a pseu-
dodifferential symbol A such that L' = V4(L) = L(AL)y — (LA)4+L. This
is the same as finding an A such that

Lg'+ (L(AL); — (LA)+L)g=0. (2.6)

Indeed, the equation Lg' + Fg = 0 with respect to an (n — 1)-th order
differential operator F' has a unique solution: F = E;-;l ngj-l, where
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c = (c1,...,¢n) is equal to —(Lg')W(g)~! (note that to apply a differential

operator of order n — 1 to a set of n functions h is the same as to multiply

the row vector of coefficients of this operator by the Wronski matrix W(h)).
Since Lg = 0, equation (2.6) is equivalent to

L(g'+(AL)+g) =0. (2.7)
This means that it is enough to find an A such that
g +(AL)4+g=0. (2.8)

That is, to find an A such that

(Am+=55¢?”g (2.9)

i=1
where b = (b4, ..., b,) is defined as follows:
b=-g'W(g)™?. (2.10)

Since g and g’ have the same monodromy matrix, it follows from (2.10)
that b is doubly periodic: b; € C*°(M,C).

In order to prove the existence of A satisfying (2.9), it suffices to show
that the linear map x : A — £ given by x(A) = (AL), is an isomorphism.
But this is obvious: the coefficients of the operator (AL)4, have the trian-
gular form a; + P;, where P; is a differential polynomial in ay,...,a;—;, and
hence the coefficients a; of the solution of the equation (AL)y = A, A € L,
can be uniquely determined recursively starting from a;.

Only if. Differentiating the equation L(¢)f! = 0, we get
LE +L'f=0. (2.11)

(we use the shortened notation f for f!). We know that L’ = V4(L) for
some A. This implies:
L(f'+ (AL)4f) =0. (2.12)

This means that
f' + (AL);f=h, (2.13)

where h satisfies the equation Lh = 0.
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Let us show that we could have chosen f! in such a way that h = 0.
Indeed, let g' be another set of solutions of L¢ = 0 given by

g'=f(C)7", (2.14)
where C* € LGL,(C). Substituting (2.14) in (2.13), we get
g'C+gC' +(AL)4gC =h (2.15)

(here we used the shortened notation g for g, and C for C*). We want to
have the relation g’ + (AL)+g = 0. This is equivalent to the relation gC’ =
h, or, in terms of f, fC~1C’ = h. This happens if and only if C~1C’ =
W(£)"'W(h), or C' = CW(f)"'W(h). This is a first order differential
equation on LGL,(C) (since W(f)~'W(h) is a holomorphic matrix-valued
function), and it has a unique solution with the initial condition C(to) = Id.
Therefore, we may assume that h in (2.13) is equal to 0.
We have
f'(z) = —(AL)+f(2) . (2.16)

Changing 2 to z + 7 and using the monodromy relation f(z + 7) = f(z)R(z)
(R = R'), we get

F(IR(:) +1(2) 90(2) = ~(AL)4£()R(:) (2.17)

which, together with (2.16), implies f(z)%}%(z) = 0. Therefore, W(f)3E =

0, which means &% = 0, or R'(z) is independent of ¢. Thus, the monodromy

of L(t) is independent of ¢t. Q.E.D. o

3. Codimension of Symplectic Leaves

THEOREM 5AB. Let L € L be a differential operator. Then the following
four numbers coincide:
(i) the codimension of the symplectic leaf Of;
(ii) the dimension of the centralizer of the monodromy matrix of L;
(iii) the codimension of the orbit Op(ry in the hyperplane A = 1 in the
coadjoint representation of the group G(M) (see Section 2);
(iv) the dimension of the space of global sections of the vector bundle
End(€r) = €L @ £ (flat sections for Case 1, holomorphic sections
for Case 2).
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Remarks: 1. By the codimension of an orbit of the coadjoint representation
we mean the codimension (in the hyperplane A = 1) of the tangent space
to the orbit at any point.

2. We call the dimension of the centralizer of a (restricted) conjugacy
class the codimension of this conjugacy class.

3. For Case 1, it is easy to show that the number (i)-(iv) is finite. In
Case 2, it follows from algebraic geometry that (iv) is finite, and Theorem
5AB implies that so are (i),(ii),(iii).

4. We have seen that symplectic leaves of the classical (respectively,
affine) GD bracket are labeled by conjugacy classes in GL,(k) (respec-
tively, GL,(C)). It turns out, however, that in the affine case conjugacy
classes close enough to the “identity” (Id,7) in GL,(C) can be labeled by
conjugacy classes of the finite-dimensional group GL,(C). Indeed, near the
“identity” the group GL,(C) is identified with a region in its Lie algebra
by the exponential map. The Lie algebra of GL,(C) can be thought of as
the coadjoint representation of the affine Lie algebra g/[; (i.e. the space of
differential operators /\E‘i; — A(2)). Therefore, the conjugacy classes become
coadjoint orbits for the affine Lie algebra EE,, and those are enumerated
by A and the monodromy of the corresponding operators /\d{- — A(z) (see
[F],[RSe]).

Proof of Theorem 5AB:

(i)=(i). Let L € L.

Let f be a set of solutions of L¢ = 0 with a nondegenerate Wronski
matrix. Let R be the monodromy matrix of f: f(z+1) = f(z)R, R € GL,(k)
(Case 1), f(z + 7) = f(2)R(z), R € LGL,(C)o (Case 2).

We will describe the tangent space Ty O as the image of a certain
operator.

Consider the linear operator L(g) = (Lg)W (f)~! sending the space of
vector-functions g = (g1, ..., gn) such that

g(z +7) =g(2)R(2) , (3-1)

to the space of doubly periodic vector-functions.

LEMMA. The tangent space Ty Oy is the set of all differential operators of
the form 2;:01 pi+1D*, such that the vector p = (p1,...,pn) belongs to the
image of L.

Proof of the Lemma: Applying equation (1.4) to f, we get

Va(L)f = L(AL)4f . (3.2)
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Let V4(L) = E:.:Ol pis1 D', and let p = (p1,...,pn). Then (3.2) can be
rewritten in the form
pW(f) = L(AL),f . (3.3)

We know that (AL); can be any differential operator of the form
Sr ) big1 D, by € C®(M, k). Therefore, the set of possible values of the
expression (AL)4f is the set of all vector-functions g on the cylinder sat-
isfying (3.1). Indeed, (3.1) clearly must be satisfied, and whenever g does
satisfy (3.1), one can set b = gW(f)~! and get a doubly periodic vector-
function.

This consideration implies that the set of possible values of p is the
image of the operator L. Q.E.D. o

The Lemma shows that the set of possible values of pW (f) is the image
of the operator L regarded as an operator on the space of vector-functions
g satisfying (3.1), i.e. on the space of smooth sections of the vector bundle
€r. The codimension of Ty Oy is therefore equal to the codimension of this
image, since W (f) is just an automorphism of L.

The operator L : I'(£;) — I'(£) is an elliptic operator on the circle
(torus), so its index is equal to zero. Therefore, the dimension of its kernel
is equal to the codimension of its image. Thus, it remains to compute the
dimension of the kernel of L.

An element that undoubtedly belongs to Ker L is f. Furthermore, any
other element g of this kernel, according to Proposition 1AB, can be rep-
resented in the form g = fC, where C is an n X n-matrix in Case 1 and a
holomorphic n X n-matrix valued function on ¥ in Case 2. The matrix C
has to satisfy the relation

C = R'CR (Case 1)
C(z+ 1) = R™'(2)C(2)R(z) (Case 2) , (3.4)

which is equivalent to C being in the Lie algebra of the centralizer of the
monodromy of L. This shows that Ker L is isomorphic to the Lie algebra
of the centralizer, i.e. their dimensions are the same.

(ii)=(iv) The solutions of (3.4) are exactly the flat (respectively holo-
morphic) sections of the vector bundle End(€1) = £ ® £, and vice versa.

(iii)=(iv) Let A = D— A € g(M)*. Then the tangent space to the coad-
joint orbit at A, Ta O,, consists of vectors of the form DX — [A, X], where
X is an arbitrary matrix-valued function on M. Therefore, the codimen-
sion of the orbit is equal to the codimension of the image of the operator
D — adA in C*°(M, gl,(k)). Since this operator is elliptic, its index is zero,
so the codimension of its image equals the dimension of its kernel. But the
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kernel of this operator consists of flat (respectively holomorphic) sections
of the bundle £; ® £ and only of them. Therefore, the dimensions of the
kernel and the space of sections coincide. o

PROPOSITION 6AB. The codimension of every symplectic leaf (coadjoint
orbit, conjugacy class) is congruent to n modulo 2.

Motivation: Thanks to Theorem 5AB, it is enough to consider coadjoint
orbits. Coadjoint orbits have a natural symplectic (or holomorphic sym-
plectic) structure — the Kirillov-Kostant structure. Therefore, they must all
be “even-dimensional”, i.e. their codimensions must have the same parity.
Also, the orbit corresponding to A = d has codimension n?, which is con-
gruent to n modulo 2. Therefore, all codimensions must be congruent to n
modulo 2. o

It is not obvious how to make this argument into a rigorous proof, so we
give a different (algebraic) proof.

Proof: Case 1. Because of Theorem 5AB, it is enough to show that codi-
mensions of all conjugacy classes in GL,(k) have the same parity. This fol-
lows from the fact that all conjugacy classes in GL, (k) are even-dimensional
— a standard fact from linear algebra.

Case 2. Because of Theorem 5AB, Proposition 6AB is equivalent to
the assertion that for any rank n holomorphic vector bundle E of degree
zero over an elliptic curve M the dimension of the space H'(M, E ® E*) of
global holomorphic sections of the bundle E ® E* is congruent to n modulo
2. This assertion is a corollary of the following Lemma.

LEMMA. Let E be a holomorphic vector bundle over an elliptic curve M of
rank r and degree d. Then dim H*(M,E ® E*) = rd + r + d mod 2.

Proof of the Lemma: Let V be a holomorphic vector bundle over M of de-
gree d. Then by the Riemann-Roch theorem dim H°(M,V)—dim H(M,V)
= d. Also, Serre’s duality tells us that H'(M,V*) = H}(M,V)*. Combin-
ing these two facts, we get:

dim H(M,V@®V*)=dmod 2 . (3.5)

The proof of the Lemma is by induction. For line bundles the statement
is obvious. We assume that we know the Lemma is true for bundles of rank
I < m. Let E be a bundle of rank m. We consider two possibilities.

1) E is indecomposable. Then a theorem of Atiyah’s [At] tells us that

dim H(M,E ® E*) equals the greatest common divisor (r,d) of the

rank r and the degree d of E. But (r,d) =rd+r + d mod 2. Q.E.D.
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2) E = El (a3} Ez. Then

H°M,EQ E*)=H°(M,E, ® E})® H°(M,E, ® E3)

5 . . (3.6)

@H (M,El ®E2 @E2 ®E1) .
Using the assumption of induction, congruence (3.5), and the facts that
(El ® EZ.)‘ =F® Ef and deg(E1 ® E;) = rids + rody, we get the
congruence

d1mH°(M,E®E*)E(r1d1+r1+d1)+(r2d2+r2+d2) (3 7)
+ (7‘1d2 + Tzdl) mod 2 ; ’
where r; are the ranks and d; are the degrees of E;. But the right hand
side of (3.7) equals to (r1+72)(di +dz)+(r1+7r2)+(dy +d2) = rd+r+d.
Q.E.D. o

4. Existence of Differential Operators
With a Prescribed Monodromy

A natural question in the theory of differential equations is: given a con-
jugacy class in GLn(k) (GLn(C)), does there exist a differential operator
L € £ whose monodromy is this conjugacy class? In other words, is the map
assigning conjugacy classes to symplectic leaves of the GL,- (affine GL,-)
Gelfand-Dickey bracket surjective? The answer to this question is positive:

PROPOSITION 7AB. (i) Any matrix in GL,(k) (with positive determinant
if k = R) is a monodromy matrix of an n-th order differential operator on
the circle with the highest coefficient 1.

(ii) Every holomorphic vector bundle over an elliptic curve M arises

n-—1 3
u,-+18], Uj €

as monodromy of an n-th order operator L = 3"+ s

C>(M,C).

Proof: (i) The proof is analogous to that of (ii) given below. For k = R, a
proof of this proposition has been given in [Sha].

(ii) Thanks to Proposition 1B, it suffices to prove the following state-
ment: for any monodromy matrix R(z) € LGL,(C)o there exists a smooth
vector function f : ¥.— C*, f = (f1,..., fn), such that f(z + 7) = f(2)R(2),
and the Wronskian of f does not vanish on .

First of all, the vector bundle on M prescribed by the gluing function
R(2) is topologically trivial since R(z) is homotopic to the identity. There-
fore, it admits a smooth trivialization — a smooth function X : ¥ — GL,(C)
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such that X (z + 7) = X(z)R(z). Let us look for the vector function f in
the form f = gX, g = (g1,.--,9n). Then the monodromy condition on f is
equivalent to the condition that g is T-periodic, i.e. that g € C*>°(M,C").

Let Y(z) = 0X(z)- X(z)~!. This is a smooth matrix-valued function
periodic with periods 1 and 7, i.e. a function on M. Consider the operator
D on C®°(M,C") defined by Dg = g + gY .

It is easy to check that the Wronski matrix of f can be written in the
form W (f) = Wp(g)X, where Wp(g)i; = (D~'g); (i.e. the rows of Wp(g)
are g, Dg, D?g,...). Therefore, our problem reduces to finding g such that
Wp(g) is everywhere nondegenerate. This can be done as follows.

Let z = z + 7y, 2,y € R. Set gm(z) = *™™** 1 < m < n, where k
is an integer. If we regard k as an independent variable, then the expres-
sion Wp(g) is a polynomial in k and e27*** (with coefficients dependent
of z). The highest term in k is the usual Wronskian W(g), which equals
(mik)Mn=D/2y, emikn(n+1)z  where V, is the Vandermonde determinant of
1,2,...,n. The absolute value of this term equals |Vn|(7rk)"("_1)/2, which
grows as k™(»~1)/2 a5 k — co. The rate of growth of the terms with lower
degrees of k is lower, so for k big enough (uniforinly in z,y) the highest
term will dominate. Therefore, Wp(g) does not vanish if k£ chosen to be big
enough. Q.E.D. o

5. Examples

Let us describe an explicit realization of vector bundles by differential op-
erators for n = 2. Before we do so, let us formulate Atiyah’s classification
theorem for vector bundles of rank 2.

ATIYAH’S THEOREM (for rank 2 bundles)[At]. Any rank 2 holomorphic

vector bundle of degree zero over an elliptic curve M = C/(Z&7Z), T € C*t,

is isomorphic to one of the following:

1) E(a,b,m) (a,b € C*, m € Z, m > 0) — the vector bundle corresponding
to the conjugacy class of the element

anwimz 0
( [ 0 be—21rimz ] ) T) (51)

of GL,(C). The bundles E(a;,b1,m;) and E(az, by, m2) are isomorphic
iff my = my, a;/as = g¥, by /by = q*, where k,,k;, € Z, and q = €2™'".
2) F(a), a € C* — the vector bundle corresponding to the conjugacy class

of the element
a 1
([0 ]T) (5.2)
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of GL,(C); the bundles F(a) and F(b) are isomorphic iff a/b = ¢*,
kel

A bundle E(a, b, m) is never isomorphic to F(a).

Let us now realize each bundle from classes 1) and 2) by a differential
operator L = 52 + ul—g + ug.

Observe that if a bundle E is realized by a differential operator then it
is easy to realize X ® F, where X is an arbitrary degree zero line bundle.
Indeed, let X correspond to the conjugacy class of the element (a,7) €
GL:(C), a € C*. Let E be realized by a differential operator L. Then
it is easy to see that X ® FE is realized by the differential operator L =
e*(*=%) o [ 0 e=2(*=%) where

_ loga

(5.3)

T—T

(any branch of log can be taken).

This observation implies that it is enough for us to realize explicitly the
bundles E(a,a™1, m) and F(1) by differential operators, since all the other
bundles can be obtained by tensoring them with line bundles.

It is easy to see that the bundle F(1) is realized by the operator L = 52;
the corresponding vector f of solutions is (1,y), where 2 = = + 7y. The
bundle E(a,a™!,0) is realized by the operator L = 3 - a?, where « is
defined by (5.3) (any nonzero value of log can be taken); the corresponding
vector f of solutions is (e*(*~%) e=(2~2)),

It remains to realize the bundles E(a,a™!,m) for m > 0.

Let zy,..., 2, € M be pairwise distinct points, and let 1) : M — C be a
smooth function on the elliptic curve which has the following properties:

(i) 4 vanishes at 2y, ..., z,, and nowhere else;

(ii) in the neighborhood of z; the function 1 has the form

Y(z)=|z -zl . (5.4)
Such a function is very easy to construct: set
Y(2) = o(2) + Y i(2)|z - =l (5.5)
i=1

where 19(z) = 1 everywhere except the disks B(z;,r) centered at z; of a
small radius r, and ¥o(z) = 0 in B(z;,7/2); for ¢ > 0, ¢; is a nonnegative
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function equal to 1 in B(z;,7/2) and to 0 outside B(z;,r) (all ¢; have to be
smooth everywhere and positive in the annuli 7/2 < |z — z;| < r).

From the definition of 1 it follows that the function u = 32¢/ 1 defined
a priori in M \ {21, ..., z»}, can be continued to the points 2y, ..., 2z, (since
it is simply equal to zero in their neighborhoods). This implies that
is a solution of the equation Ly = 0, where L = 3° — u. Pick a vector
f = (f1, f2) of solutions of this differential equation with a nondegenerate
Wronski matrix. Then there exist unique holomorphic functions ¢;(z), c2(z)
on the cylinder ¥ such that 1 = ¢; f; + c2f2, and the vector-function ¢ =
(€1, ¢2) is a global holomorphic section of the holomorphic vector bundle £;.

Let us show that this section vanishes at the points z, ..., 2,, and only

at them, and these zeroes are simple. Indeed, the vector F = ('gfp) equals
W (f)c?, thus ¢ = 0 iff F vanishes, and the vanishing points of F are exactly
21, ...y Zm. Also, in the neighborhood of z; one has F = (z — z;) (z _1 z,-)’

which shows that z; is a simple zero of c.

It follows from the theory of holomorphic bundles that the presence of a
section ¢ with the above properties guarantees that £, has a line subbundle
X of degree m defined by the monodromy function e27”(2=20)  The bundle
A2&| is trivial since the operator L does not contain a first order term, and
hence the Wronskian (which is a section of A?£y) is constant. This fact
together with Atiyah’s classification theorem implies that £, is isomorphic
to X @ X*, which is the same as E(a,a”!,m), where a = e~2"™m20 =
I1 p e?™%i, Since the points z; could be chosen arbitrarily, one can get any
value of a.

Let us now describe the codimensions of symplectic leaves for n = 2
(Case 2). It follows Theorem 5AB that it is enough to do it for vector
bundles.

ProrosiTiON 8B. (i) If £ = E(a,b,m) then codim(Op) equals 2m + 2 if
m >0, 2 if m = 0 and a/b is not an integral power of q, and 4 if m = 0 and
a/b=gq* kel

(ii) If Er = F(a) then codim(Op) equals 2.

Proof: E(a,b,m) = X4 m®Xs,—m, where X4 m, is the line bundle described
by the monodromy function ae?™*™*. Therefore, E(a,b,m)® E(a,b,m)* =
X1,0 ® X1,0 ® Xasb2m ® Xoja,—2m- The number of linearly independent
holomorphic sections of this bundle is 2 if m = 0 and a/b# ¢, 4if m =0
and a/b = ¢*, and 2m + 2 if m # 0, which proves (i).

It is also easy to see that F(a) ® F(a)* = X1, ® F3(1), where F3(1)
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is the vector bundle of rank 3 whose monodromy matrix is the 3 x 3 Jor-
dan cell with eigenvalue 1. Therefore, the number of linearly independent
holomorphic sections of F(a) ® F(a)* is 2. This settles (ii).

Remark: Thus, in Case 2, unlike Case 1, the codimensions of symplectic
leaves can be arbitrarily large, even for n = 2. However, the conjugacy
classes labeling all symplectic leaves of codimension > n? stay away from
the (Id,7) € GL,(C), by virtue of Remark 4 at the end of section 3.

Appendix:
Classification of Symplectic Leaves With a Given Monodromy

In conclusion, let us discuss the problem of finding discrete invariants of
symplectic leaves.

In Case 1 (for k = R), this problem was studied in [OK], and it was
shown that it is equivalent to the problem of homotopy classification of
quasiperiodic nondegenerate curves, i.e. curves in R™ with prescribed mon-
odromy and nonvanishing Wronskian. This problem, in turn, is equivalent
to homotopy classification of quasiperiodic nonflattening curves — smooth
curves z(t) in RP"~! with prescribed monodromy such that the vectors
z',z",...,2("1) are linearly independent at each t (the equivalence is es-
tablished by replacing the original curve in R™ by its projection to RP™~1).

For general n, this topological problem turns out to be difficult. It is
solved only for n = 2 (where this problem is equivalent to classification
of projective structures on the circle ([Ku]), of Hill’s operators ([LP]), or
coadjoint orbits of the Virasoro algebra ([Kil],[S]), for n = 3 ([KSh]), and
for any n in case R = Id ([Sha]).

In the case of elliptic curve the geometric notion corresponding to the
problem of finding discrete invariants of symplectic leaves is the notion of a
quasiperiodic nondegenerate tube — a function v : ¥ — C™ with prescribed
monodromy R(z) (7(z + 7) = 7(z)R(z)) and nonvanishing &-Wronskian.
Then we have

PROPOSITION. Symplectic leaves of the affine GL,,-GD bracket whose mon-
odromy is the conjugacy class of R(z) are in one-to-one correspondence with
homotopy classes of quasiperiodic nondegenerate tubes with monodromy

R(z).

Let us consider the case of trivial monodromy (R(z) = Id). Then a
quasiperiodic nondegenerate tube is periodic, i.e. it is just a smooth map
v : M — C™ with nonvanishing Wronskian. An obvious homotopy invariant
of such a map is the winding invariant — the homotopy class of the map
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M — C* realized by the Wronski determinant det W(vy). This invariant
takes values in Z%, and can take any prescribed value.

Therefore, classification of symplectic leaves with trivial monodromy
depends on the answer to

QUESTION 1. Is it true that two periodic nondegenerate tubes are homo-
topic in the class of such tubes if and only if their winding invariants are
the same?

In the case n = 2, by projecting C? to CP!, we can reduce this question
to the problem of homotopy classification of nowhere holomorphic maps.
A nowhere holomorphic map is a map f : M — CP?! such that 8f is not
equal to zero at any point of M. An obvious homotopy invariant of nowhere
holomorphic maps is the winding invariant — the homotopy class of the map
of: M — T,CP! from M to the space of unit tangent vectors to CP! (this
space is diffeomorphic to RP?) given by the formula o;(2) = 9f(2)/|0f(2)|-
It takes value in Z/2Z @ Z/2Z. Translating Question 1 into the language of
nowhere holomorphic maps, we come to

QUESTION 2. Is it true that two nowhere holomorphic maps are homotopic
in the class of such maps if and only if their winding invariants are the
same?

After this paper was submitted, B. Shapiro found [Sh] that the answer
to Questions 1 and 2 in the Appendix is affirmative. The argument of
B. Shapiro relies on M. Gromov’s theory of convex integration ([Gr]). The
main idea is to show that the property of a smooth vector function on
an elliptic curve to have a nonvanishing J-Wronskian is an ample partial
differential relation in the sense of M. Gromov ([Gr]) and thus it satisfies
the parametric h-principle. This implies that the space of all functions with
nonvanishing 0-Wronskian is weakly homotopy equivalent to the space of
smooth maps from the elliptic curve to GL,(C), which settles Questions 1
and 2.

Note that this argument generalizes to the case of nontrivial monodromy
by consideration of D-Wronskian (as in the proof of Proposition 7 AB )
instead of §-Wronskian.

This gives a complete topological classification of symplectic leaves: sym-
plectic leaves with a given monodromy are labeled by a pair of integers
(winding numbers).
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[A]

[At]
[AtB]
[DrSo]
[EF]
[F]

(GD]

[Gr]
[Kil]

[Ki2]
[KSh]
(Ku]
(LP]

[0]

[OK]

[PrS]
[RSe]

[S]

[Sh]

P.I. ETINGOF AND B.A. KHESIN GAFA

References

M. ADLER, On a trace functional for formal pseudo-differential operators and
the symplectic structure of the Korteweg-de-Vries equations, Inv. Math. 50
(1979), 219-248.

M. ATivAaH, Vector bundles over an elliptic curve, Proc. Lond. Math. Soc. 7
(1957), 414-452.

M. ATivAH, R. BotT, The Yang-Mills equations over Riemann surfaces, Phi-
los. Trans. Roy. Soc. London A 308 (1982), 523-615.

V.G. DRINFELD, V.V. SokoLov, Lie algebras and equations of the Korteweg-
de-Vries type, J. Soviet Math. 30 (1985), 1975-2036.

P.I. ETiNnGoF, 1.B. FRENKEL, Central extensions of current groups in two
dimensions, hep-th 9303047 (1993), to appear in Comm. Math. Phys.

1.B. FRENKEL, Orbital theory for affine Lie algebras, Inventiones Mathemat-
icae 77 (1984), 301-352.

I.M. GELFAND, L.A. DickEY, A family of Hamiltonian structures related to
integrable nonlinear differentail equations, Preprint, 1978, English transla-
tion in “I.M. Gelfand, Collected Papers, Vol. 1” (S.G. Gindikin, et al. eds.)
Springer, Berlin-Heidelberg-New York, 1987.

M. GroMov, Partial Differential Relations, Springer-Verlag (1986).

A.A. KiriLrov, Infinite-dimensional Lie groups: their orbits, invariants and
representations, In “Geometry of Moments”, Lect. Notes in Math. 970,
(1982), Springer—Verlag , 101-123.

A.A. KiriLLov, Local Lie algebras, Russ. Math. Surv. 31:4 (1976), 55-75
B.A. KHESIN, B.Z. SHAPIRO, Nondegenerate curves on S? and orbit classifica-
tion of the Zamolodchikov algebra, Comm. Math. Phys. 145 (1992), 357-362.
N.H. KuiPER, Locally projective spaces of dimension one, Michigan Math. J.
2:2 (1953-1954), 95-97.

V.P. LAZUTKIN, T.F. PANKRATOVA, Normal forms and versal deformations for
the Hill’s equations, Funct. Anal. and Appl. 9:4 (1975), 41-48.

V.Yu. Ovsienko, Classification of linear differential equations of third or-
der and symplectic leaves of the Gel’fand-Dickey bracket, Math. Notes 47:5
(1990), 62-69.

V.Yu. OvsiENKO, B.A. KHESIN, Symplectic leaves of the Gelfand-Dickey brack-
ets and homotopy classes of nondegenerate curves, Funct. Anal. Appl. 24:1
(1990), 33-40.

A. PRESSLEY, G. SEGAL, Loop Groups, Clarendon Press, Oxford 1986.

A.G. REIMAN, M.A. SEMENOV-TIAN-SHANSKY, Lie algebras and nonlinear par-
tial differential equations, Soviet Math. Doklady 21 (1980), 630-634.

G. SEGAL, Unitary representations of some infinite dimensional groups, Comm.
Math. Phys. 80:3 (1981), 301-342.

B. SHAPIRO, private communication.



Vol.4, 1994 AFFINE GELFAND-DICKEY BRACKETS 423

[Sha] M.Z. Suariro, Topology of the space of nondegenerate curves, Funct. Anal.
Appl. 26:3 (1991), 227-229.

[W]  A. WEINSTEIN, Local structure of Poisson manifolds, J. Diff. Geom. 18:3
(1983), 523-558.

Pavel I. Etingof and Boris A. Khesin
Yale University
Department of Mathematics
New Haven, CT 06520 USA
e-mail: etingof @ math.yale.edu
khesin @ math.yale.edu Submitted: January 1994



	
	Affine Gelfand-Dickey Brackets and Holomorphic Vector Bundles.


