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ON THE BETTI NUMBERS OF
A HYPERBOLIC MANIFOLD

X. XUE

§1. In this paper we will give lower bounds of the i-th Betti numbers of a
family of compact hyperbolic n-dimensional (n > 3) manifolds, in terms of
their volumes. In fact, we show that for any compact hyperbolic manifold
whose fundamental group is an arithmetic lattice arising from a quadratic
form, most of its congruence covering has non-trivial i-th Betti number and
the ¢-th Betti number is bounded from below by a power of its volume with
an exponent depending only on i and n. The main result of this paper is

Main Theorem. Let I' be an arithmetic lattice in SO(n,1) which arises
from a quadratic form. For any torsion-free congruence subgroup I'(p) and
any € > 0, there is a constant ¢, > 0, such that for all but finitely many
ideals q of p,

Bi(T(q) \ H") > c Vol (D(g) \ H)%+~

n-1(n=i) 2 forj=1,... [2H].

where 6; = oy 2

The non-vanishing-properties of the Betti numbers have been devel-
oped by various authors. Among them, Millson and Raghunathan were the
first ones who have shown the non-vanishing of 8; [MR]. On this line, [M],
[K] and [Li] are also referred to. The result in this paper is the first and
strongest quatitative bound known. Theta-lifting [Li] could also provide
quantative lower bounds; essentially the multiplicities of certain discrete se-
ries representations of certain groups, such as SL(2,R) for the first Betti
number. However, for large n, this multiplicity is much smaller than the
above bound. But for certain limited n and i (for instance, n = 3 and
i = 1), lifting gives a better bound.

Besides the obvious geometric interest, the result here has its signifi-
cance in representation theory. It is well known that the i-th Betti number
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of a compact hyperbolic n-dimensional manifold M is equal to the multi-
plicity of a certain representation (so-called Hotta-Wallach representation
Tni) Which occurs in L2(T'\ SO(n, 1)) where T is the fundamental group of
M [HW]. In [DW], it is shown that

THEOREM 1. Let I' be a torsion-free, cocompact lattice in a semi-simple
real rank one Lie group G and {T';} be a family of normal subgroups with
N:I's = {1}. Let m be a unitary representation of G and m(I';, ) be its
multiplicity. Then

Jim m(Ty,7) _ [d(m) >0 if 7 is a discrete series representation
Vol(T; \ G)

0 otherwise ,
where d(7) is the formal degree of w.

This raised the question whether or not the representations other than
discrete series representations, especially the non-tempered representations,
have similar asymptotic behavior.

Let G be a semi-simple Lie group of non-compact type and G be its
unitary dual. For each 7 € G, let p(7) be the infimum over p > 2 such
that K-finite matrix coefficients of 7 are in L?(G) (where I is a maximum
compact subgroup of G).

For cocompact arithmetic lattices and their congruence subgroups, it
is conjectured in a recent paper [SX] that

CONJECTURE. Given I, for any € > 0, there is a constant c, such that
m(m,T(q)) < cc Vol(I(g) \ G) 7™

When G = SO(n, 1) and m,; are those Hotta-Wallach representations,
P(myi) = 251, The conjecture asserts

Bi(T\ H") < ¢, Vol(T' \ H™) =21+, (1)

Such behavior of the Betti numbers was suggested by Gromov in the context
of L? (p # 2) cohomology.

For large n and small 4, the exponent §; in the Main Theorem is remark-
ably close to the one predicted in (1). This suggests that the conjectured
bound is, very likely, optimal.
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In Section 2 we construct a pair of totally geodesic submanifolds and
show that they give non-trivial homology classes. In Section 3 we prove
the Main Theorem. By the time this work was completed, Millson and
Raghunathan’s paper [MR] was not available to the author. It turns out
that the second section of this paper is essentially a repetition of [MR].
Except here the approach is more elementary and simple.

We would like to acknowledge helpful conversations with J. Li, and
thank P. Sarnak for encouragement. Most of all we would like to thank
G. Mostow for his time and encouragement.

§2. In this section, for each ¢ < [1‘%], we will construct a pair of closed,
oriented submanifolds in certain compact hyperbolic n-manifolds. One of
these is i-dimensional and the other is i-codimensional. Then we show that
the intersection number of these two is non-zero. As a consequence, we
have a non-zero i-th Betti number. When ¢ = 1, the process here is just a
refinement of [M].

Let k be a totally real algebraic number field of degree m (m > 1) with
placeso; = 1, 02,... 0. Let O beits ring of integers. Let f(zo, z1,...,Zn)
be a quadratic form on R™*! defined over k with signature (n, 1) and 7 f are
positive definite for i = 2,...,m. An arithmetic lattice I of SO(n, 1) arising
from f is, by definition, a subgroup of SO(n,1) which is commensurable
with ® = U(f) N GL(n, O) the group of units of f. Where SO(n, 1) is the
special group of the group of matrices which leave invariant the quadratic
form f. It is well known that f can be diagonalized by an element g in
GL(n, k) and the groups of the units of f and f9 are commensurable [B].
Without loosing generality, we can assume that f is diagonal and

F®os Tiseivs Tn) = blmf +... +b,~:1:? - bozcg +b,-+1:c?+1 + ...+bnx%

where b; € k and b; > 0.

Since m > 1, ® has no unipotent elements and therefore it is a cocom-
pact lattice. For each ideal p of O, let ®(p) = {y € ®| v = 1 mod(p)}-
We obtain congruence subgroups I'(p) of T' by setting I'(p) = ' N &(p)-
For all but limited p’s [X], I'(p) is a torsion-free normal subgroup of finite
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index. I'(g) «T'(p) if and only if ¢ C p. Because 3;(T'(p)) > B:(®(p)), it is
sufficient to prove the Main Theorem for ®(p). So we assume that I' = @.
We also make the following convention. Let N(p) be the norm of a ideal
p. From now on congruence subgroups I'(p) only refer to those torsion-free
and N(p) # 2 congruence subgroups. Sometimes we may use the notation
I'(1) to refer I.

Let H™ be the n-dimensional real hyperbolic space with homogeneous

coordinates (z1,...,Ti, Zo, Ti+1,-..,Zn). SO(n,1) acts transitively on H"
i

and the isotropy group of e; = m,l, 0,...,0) is SO(n). We may
identify SO(n,1)/SO(n) with H". I'(p) acts freely on H" and has a compact
quotient I'(p) \ H™ which is denoted as X(p). Since N(p) # 2, X(p) is
oriented.

Now analogous to the construction in [M], we construct a pair of closed
and oriented submanifolds in X (p). Let

V'i={(zl"--amm'"v"’:n)lxi"'l=“'=xn=0}

Vi={(a:1,...,:c0,...,xn)|x1=--'=$i=0}

then V; & H (resp. V? = H"~). Let I';(p) (resp. I'(p)) be the stabilizer of
Vi (resp. V) in T'(p), then the elements in I'; (resp. I'¥) have the following

form,
A 0 res E 0
0 E P-\o &

where A (resp. A’) isan (i +1) x (¢ + 1) (resp. (n —i+1) x (n —i+4 1))
matrix and E (resp. E')isa (n—i+1) x (n —i+1) (resp. (i+1) x (i +1))
diagonal matrix with entries +1. In fact, when p # 1, v € I'(p) implies that
E =1 (resp. E' =1I).

Ti(p) (resp. T¥(p)) (when p # 1) acts freely on V; (resp. V*) and has
compact quotient I';(p) \ Vi (resp. T'(p) \ V*). Let 7(p) be the projection
H" — X(p) and Si(p) = 7(p)(Vi) (resp. S‘(p) = 7(p)(V")). One has [M].

LEMMA 1. When p # 1, Si(p) (resp. S'(p)) is a closed, oriented i(resp.
n — i)-dimensional submanifold of X (p). Moreover, S;(p) = I'; \ V; (resp.
S'(p) 2T\ V7).

Such a closed, oriented submanifold S;(p) (resp. S*(p)) gives a homol-
ogy class [S;(p)] (resp. [S'(p)]) in Hi(X(p)) (resp. Hn—i(X(p)))- Now the
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question is to show that it represents a non-zero homology class. When
i =1, it is just the result of [M].

THEOREM 2. Fix a I'(p). Then for all but finitely many subgroups I'(q)
of I'(p), the intersection number of [S;(q)] and [S(q)]

[Si(@)][S*(9)] # 0.
Consequently, [Si(q)] # 0, [S(q)] # 0 and B;(X(g)) = Ba-i(X(g)) > 0.
Proof: For each q C p, one has
I(g)aT(p), Ti(g)<aTi(p) and TI*(g)<l*(p).

Let 7, m; and 7 be the covering maps

T X(g) — X(p);

mi: Li(@ \Vi — Ti(p) \ Vi

7 i)\ V' — I(p)\ V'
By Lemma 1, ; (resp. 7') induces a covering map S;(q) — Si(p) (resp.
Si(q) — S%(p)) which is also denoted by =; (resp. 7).

It is easy to check that 7|g,q) = 7; and 7|gi(g) = 7*. This means that

the following diagram commutes.
Si(e) — X(g) — S
] £l i 2)
Silp) — X(p) — S'(p)

Let A(q) = Si(gq) N S'(q), then w(A(q)) C A(p). A(qg) is a finite set
containing 7(g)e; which is denoted as e(g). For each a(q) € A(g), there is a
pair (ai(g),a'(q)) € V; x V* and a ¥(q) € I'(g) such that

7(g)ai(g) = a’(q) - (3)

Now we classify the elements in A(p) into two kinds, one is good and
the other is bad. An element in A(p) is called good if its inverse images
under 7 do not belong to A(gq) for almost all ¢’s and bad otherwise. e(q)
is always bad. Being a good element, a(p) has no inverse image under 7 in
Si(g) N S¥(q) for almost all g’s. Because of the finiteness of A(g), we can
conclude that all the good elements have no inverse images in S;(g) N S*(¢)
for almost all ¢’s. It is equivalent to say that almost all S;(g) N S'(g)’s
contain only the inverse images of bad elements in A(p). For such S;(g) and
S%(g), we will prove that the local intersection numbers at every intersection

point are the same.
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LEMMA 2. If there exists a(q) € A(q) satisfying m(a(q)) = a(p), then there
exists a pair (a, 8) € T';(p) x I''(p) such that

v(p) =B mod(I(q)).

LEMMA 3. If there are infinitely many q’s (C p) and a(q)’s satisfying
m(a(g)) = a(p) (this is equivalent to saying that if a(p) is bad), then there
are two elements a and 3 in SO(n, 1) such that

s 7(p) = Ba.

2.
A0 I 0
=(67) wio=(o &)
where Aisa(n+1)x(n+1) matrixand A’ isa (n—i+1)x(n—i+1)
matrix.

Remark: o and 3 in Lemma 3 may not belong to I'.

We postpone the proofs of these lemmas and continue to prove Theo-
rem 2. When a(p) is a bad element in A(p), by Lemma 3, the y(p) in (3) isa
product of two elements 8 and « in SO(n, 1) which have the forms described
in Lemma 3. If a(q) € A(q) satisfies 7(a(g)) = a(p), the proof of Lemma 2
shows that there is w; € T';(p) (resp. w' € I''(p)) such that w;a;(q) = ai(p)
(resp. (w?)~la’(q) = a’(p)). Therefore y(q) = w'y(p)w; = (w'.,B).(aw,-). As
aw; (resp. w'f) preserves the orientations of H” and V; (resp. V*) simulta-
neously, the local intersection number at a(g)

[Si(@1[S*(@)] |ata) = [Si(@IS (@)1, -

Then for almost all ¢’s (C p),

@Sl = Y SN @,

a(q)€A(q)
=|A(q)|- [Si(Q)][Si(q)]Ie(q) '

Obviously this is non-zero and the proof is completed.
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Proof of Lemma 2: Since m;(a(q)) = w(a(q)) = a(p), there is o € T';i(p)
such that a~'a;(gq) = a;(p). Similarly, there is 3 € I'/(p) such that Ba’(q) =
a‘(p). Combining with (3), we get

{7(17)(11'(17) = a‘(p)
By(q)aai(p) = a*(p)

As I'(p) has no torsion elements, v(p) = By(q)a. That is
7(p) =Ba mod(I'(g)).

Proof of Lemma 3: Write v(p) € I['(p), € T'i(p) and B € I'*(p) as follows

A u 0 I 0 O
a=|v d 0 and =10 d
0 0 I 0 u A

where A;;, A are i X % matrices and A3z, A" are (n — 1) X (n — ¢) matrices.

Then
A u 0
Ba= | dv dd J | .
uv dv A

So, 7(p) = Ba mod (I'(g)) implies that

{a13 = mod(q) . (4)

22031 = Q32021
If (4) holds for infinitely many ¢’s (C p), then A3z = 0, azsaz; = azzas
and
An aiz 0
v(p) = az21 a2 Q23 | -
ags aspaz  as  Ass

Let d = (14 by (b1a? + -+ + ba?))? and d' = aged~! where a5 =
(a1y...,a;)7. Let

A;p a2 0 I 0 0
a=land™ d 0 and B=[0 d a3 | .
0 0 I 0 asnd™! Asz



Vol.2, 1992 ON THE BETTI NUMBERS OF A HYPERBOLIC MANIFOLD 133

then v(p) = Ba.
It is easy to check that both o and 3 preserve the quadratic form f. As
I
det Sdet @ = det(y(p)) = 1, by multiplying -1 on both o and
I
B if it is necessary, we can assume that det @ = det 3 = 1. This completes

the proof of Lemma 3.

83. In this section we will prove the Main Theorem. The idea is to show
that a certain number of oriented closed submanifolds which come from the
translations of S;, give linear independent homology classes. When I'(p)
is torsion-free, it is not hard to see that W = I'(p)/I'(q) acts freely on
X(g). See [M]. Moreover, W; = T;(p)/Ti(q) (resp. W# = I'(p)/T(q)) is the
stabilizer of S;(g) (resp. S*(q)) in W. For each o € W, aS;(q) (resp. aSi(q))
is also an oriented closed submanifold. It gives a non-trivial homology class
if and only if S;(q) (resp. S%(q)) does. In fact

[S:(@)][aS(9)] = [Si(a)][S"())-

Let w = [W|, w; = |W;| and w* = [W?|. Then we have % different
non-trivial homology classes [aS;(¢)] in H;(X(g)).

To study the linear dependency of [«S;(q)], we need to explore some
properties of aS;(g) and aS*(g).

LEMMA 4. Fora € W and B e W,
1. aS;(q) N BSi(q) = 0 if and only if o # § mod(W;).
2. aS(q) N BSi(q) = 0 if and only if @ # B mod(W?).

Proof: This is obvious.

LEMMA 5. Each aS(q) intersects at most cw® (3Si(q)’s. In particular, for
each a,

{8Si(9) | [8S:(0)[aS(g)] # 0}] < ¢~ w'

where ¢ = |A(p)|.
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Proof: In fact,

|(@S*(2) N (UpBS:(@)))] = |(5*(9) N (UsBSi(a)))]

S'(g) N (UpBSi(q)) C (7)1 (x(S*(g) N (UpBSi(q))))
C (7*)71(S*(q) N Si(q)) -

Therefore, |(5() N (UsBSi(a)))] < |A()] - w'.

LEMMA 6. Let V be a linear space and V* be its dual space. Let S (resp.
S*) be a finite subset of V (resp. V*). If

1. for each v € S, there is u € S* such that (u,v) # 0.
2. for eachu € S*, |{veS | (u,v) # 0} < t.

Then dimV > L.

Proof: Use induction w.r. to both ¢ and [J%]

1. This is obviously true when either t = 1 or [Lf—l] = 0.

2. Assume that this lemma is true for either ¢t < n or [1%] < m. Now
we prove this lemma when ¢t = n and [J%] = m. The rest follows easily.
Without loosing generality, we can assume that ¢ is minimal, namely there
is a up € S* and a subset {vy,...,v,} C S such that (v;,up) # 0. Let
S§" = S\ {vi,...,v:}, then uy L §’. Therefore v; is linear independent
with S’. Here [J-STII] = [Jifl] — 1= m —1. By induction assumption we
have dim(span S’) > J—‘S;—Il Hence dimV > dim(span S’) + dim(spanwv;) >
Bl_q1= 8l

Combining Lemma 4 and Lemma 5, we have

THEOREM 3. For each p, there is a constant ¢ such that for almost all ¢’s

(Cp),
Bi(X (@) 2 e——r

wy

where 1 = 1,...,[%‘—1].
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Proof: Let ¢ = |A(p)|™!, then apply Lemma 4 and Lemma 5.

To restate Theorem 3 in terms of volume of X(g), consider the following
facts. X(q) is a w-covering of X (p). Vol(X(q)) = Vol(X(p))w. From the
definition of I'(p), one has I'(p)/T'(q) C SO(n+1,p/q). On the other hand,
the strong approximation theorem of SO(n, 1) [Kn] shows that

|(C(p)/T(g))] 2 47 |(SO(n +1,p/9))|

where t = ¢y +---+t; and g =p}' --- p;-j is the prime factorization of ¢ in
0. As |(SO(n+1,p/q))| ~ |p/q|ﬂ%l, one can get for any € > 0

w

> ¢ Vol paxe
s = o= YelX(@))

_ (n=1)(n—i) 2i_

where ¢, depends only on € and §; 1 n-7- Finally we have proved

THEOREM 4. LetI' be an arithmetic lattice in SO(n, 1) which arises from
a quadratic form. For any torsion-free congruence subgroup I'(p) and any
€ > 0, there is a constant ¢, > 0. Such that for all but finitely many ideals

q of p,
Bi(T(q) \ H") > c.vol(T'(q) \ H")% ¢

where 6; = —(-—T—-(n_,,ﬁ(l";i);z_i—l fori=1,..., ["T"'l]
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