

Werk

Titel: Rates of Convergence for the Distance Between Distribution Function Estimators.

Autor: Boos, D.D.

Jahr: 1986

PURL: https://resolver.sub.uni-goettingen.de/purl?358794056_0033|log43

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Rates of Convergence for the Distance Between Distribution Function Estimators

By D. D. Boos¹

Summary: The normed difference between "kernel" distribution function estimators \hat{F}_n and the empirical distribution function F_n is investigated. Conditions on the kernel and bandwidth of \hat{F}_n are given so that $a_n \| \hat{F}_n - F_n \| \xrightarrow{wp1} 0$ as $n \to \infty$ for both the sup-norm $\|g\|_{\infty} = \sup_{x} |g(x)|$ and L_1 norm $\|g\|_1 = \int |g(x)| dx$. Applications include equivalence in asymptotic distribution of $T(\hat{F}_n)$ and $T(F_n)$ (to order a_n) for certain robust functionals $T(\cdot)$.

1 Introduction

The empirical distribution function $F_n(x) = n^{-1} \sum I(X_i \le x)$ is the most widely used nonparametric distribution function estimator. However, integrals of kernel density estimators form a large class of smooth competitors. These estimators may be expressed as

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n K\left(\frac{x - X_i}{b_n}\right) = \int_{-\infty}^{\infty} K\left(\frac{x - y}{b_n}\right) dF_n(y), \tag{1.1}$$

where K is a distribution function on $(-\infty,\infty)$ and $b_n > 0$ is the "bandwidth". Nadaraya (1964), Winter (1973, 1979), Yamato (1973), Azzalini (1981), Reiss (1981), and Falk (1983) have studied the convergence of \hat{F}_n to F, the distribution function of the observations. The purpose of this present note is to give sufficient conditions on F, K, and b_n so

that
$$a_n\|\hat{F}_n-F_n\|\xrightarrow{wp1} 0$$
 for several norms $\|\cdot\|$. Of particular interest is the sup-norm $\|\hat{F}_n-F_n\|_{\infty}=\sup_{-\infty < x < \infty} |\hat{F}_n(x)-F_n(x)|$ and $a_n=n^{1/2}$. Then $n^{1/2}\|\hat{F}_n-F_n\|_{\infty} \xrightarrow{wp1} 0$

implies weak convergence of $n^{1/2}[\hat{F}_n(F^{-1}(t))-t]$ as well as the Chung-Smirnov property (law of the iterated logarithm for $\|\hat{F}_n-F\|_{\infty}$) of Winter (1979) and the asymptotic equivalence in distribution of $n^{1/2}[T(\hat{F}_n)-T(F)]$ and $n^{1/2}[T(F_n)-T(F)]$ for the many robust functionals $T(\cdot)$ which are locally Lipschitz with respect to $\|\cdot\|_{\infty}$, i.e., $|T(G)-T(H)| \leq C \|G-H\|_{\infty}$ for all $\|G-H\|_{\infty}$ sufficiently small. More details and

Dennis D. Boos, Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695-8203 USA

applications are given in Section 3. The main results proved in Section 2 are simple and rely on the usual integration by parts representation of \hat{F}_n and Serfling's (1980) generalization of a theorem of Sen and Ghosh (1971) on the uniform convergence of $F_n(x+t) - F(x+t) - [F_n(x) - F(x)]$ as $t \to 0$.

2 Main Results

For functions G and H on $(-\infty, \infty)$ define $||G - H||_{\infty} = \sup_{-\infty < x < \infty} |G(x) - H(x)|$ and $||G - H||_1 = \int_{-\infty}^{\infty} |G(x) - H(x)| dx$. The sampling situation is

(S) $X_1, ..., X_n$ are independent real-valued random variables having the distribution function F.

The first two theorems require

(C) K has support in a compact interval [c, d], $-\infty < c < d < \infty$.

Lemma 2.1 of Winter (1979) justifies the use of integration by parts to reexpress \hat{F}_n of (1.1) as

$$\hat{F}_n(x) = \int_{-\infty}^{\infty} F_n(x - b_n y) dK(y).$$

Theorem 1: Suppose that (S) and (C) hold and F satisfies the Lipschitz condition $|F(x) - F(y)| \le L|x - y|$ on $(-\infty, \infty)$. If $a_n b_n \xrightarrow{wp1} 0$ and $nb_n/\log n \xrightarrow{wp1} \infty$, then

$$a_n \| \hat{F}_n - F_n \|_{\infty} \xrightarrow{wp1} 0 \quad \text{as } n \to \infty.$$
 (2.1)

Proof: Let $e(c, d) = \max\{|c|, |d|\}$. Then

$$a_{n} \| \hat{F}_{n} - F_{n} \|_{\infty} \leq a_{n} \sup_{x} \int_{c}^{d} |F_{n}(x - b_{n}y) - F_{n}(x)| dK(y)$$

$$\leq a_{n} \sup_{x} \int_{c}^{d} |F_{n}(x - b_{n}y) - F(x - b_{n}y) - [F_{n}(x) - F(x)]| dK(y)$$

$$+ a_{n} \sup_{x} \int_{c}^{d} |F(x - b_{n}y) - F(x)| dK(y) \qquad (2.2)$$

$$\leq a_{n} \sup_{x} \sup_{|t| \leq e(c,d)b_{n}} |F_{n}(x + t) - F(x + t) - [F_{n}(x) - F(x)]|$$

$$+ a_{n}b_{n}L \int_{c}^{d} |y| dK(y). \qquad (2.3)$$

Rewrite the first term of (2.3) as a_nQ_n . Lemma 2.2 of Serfling (1980) yields

$$\left[\frac{n}{b_n \log n}\right]^{1/2} Q_n = 0(1) \quad \text{wp 1 as } n \to \infty$$

for uniform random variables. (See also Stute 1982, Theorem 0.1.) Following the remark on page 194 of Sen and Ghosh (1971), this result also holds for all F which are

Lipschitz. That is, if
$$G_n(x) = n^{-1} \sum_{i=1}^n I(F(X_i) \le x)$$
, then

$$\begin{aligned} &\sup_{-\infty < x < \infty} &\sup_{|t| \le e(c,d) \, b_n} |F_n(x+t) - F(x+t) - [F_n(x) - F(x)]| \\ &= \sup_{-\infty < x < \infty} &\sup_{|t| \le e(c,d) \, b_n} |G_n(F(x+t)) - F(x+t) - [G_n(F(x)) - F(x)]| \\ &\le &\sup_{0 < u < 1} &\sup_{|v| \le Le(c,d) \, b_n} |G_n(u+v) - (u+v) - [G_n(u) - u]|, \end{aligned}$$

and Serfling's result applies. Then $a_nQ_n\xrightarrow{wp1}0$ since $a_nQ_n=a_nb_n\left[\log n/(nb_n)\right]^{1/2}\left[n/(b_n\log n)\right]^{1/2}Q_n$.

Remarks 2.1: The proof shows that the weaker result, $a_n \| \hat{F}_n - F_n \|_{\infty} = 0(1)$ wp1, holds if only $a_n b_n = 0(1)$ wp1 is assumed. The bandwidth b_n is allowed to be random since b_n must be estimated in most applications. The usual choice of a_n is $n^{1/2}$ (see Section 3) so that Theorem 1 allows $b_n \sim n^{-\alpha}$, $\alpha > 1/2$.

The next theorem strengthens conditions on F and K in order to reduce conditions on b_n . In particular, if $a_n = n^{1/2}$ then Theorem 2 allows $b_n \sim n^{-\alpha}$, $\alpha > 1/4$.

Theorem 2: Suppose that (S) and (C) hold and $\int_{c}^{d} x dK(x) = 0$. Let F have derivatives f and f' which exist everywhere on $(-\infty, \infty)$ with $||f||_{\infty} < \infty$ and $||f'||_{\infty} < \infty$. If $a_n b_n^2 \xrightarrow{wp1} 0$, $nb_n/\log n \xrightarrow{wp1} \infty$, and $a_n[b_n \log n/n]^{1/2} \xrightarrow{wp1} 0$, then (2.1) holds.

Proof: The proof is the same as for Theorem 1 except that the second term of (2.2) is expanded by Taylor's theorem to yield

$$a_n \sup_{x} |\int_{c}^{d} [F(x - b_n y) - F(x)] dK(y)|$$

$$= a_n \sup_{x} |\int_{c}^{d} [-f(x)(b_n y) + 1/2f'(t_n^*)(b_n y)^2] dK(y)|$$

$$\leq a_n b_n^2 (1/2) ||f'||_{\infty} \int_{c}^{d} y^2 dK(y).$$

Theorems 1 and 2 are similar in spirit to Theorems 3.2 and 3.3 of Winter (1979) which conclude that

$$\limsup_{n \to \infty} \{2n/\log\log n\}^{1/2} \|\hat{F}_n - F\|_{\infty} \le 1 \text{ wp1.}$$
 (2.4)

Here, condition (C) and a slightly stronger condition on b_n than Winter required yield (2.1) which in turn yields (2.4).

Remarks 2.2: i) The extra condition in Theorem 2, $a_n[b_n \log n/n]^{1/2} \xrightarrow{wp1} 0$, is required to have $a_n Q_n \xrightarrow{wp1} 0$. When $a_n = 0(n^{1/2})$, this is implied by $b_n \log n \xrightarrow{wp1} 0$. ii) It is clear that we could allow K to be more general than a distribution function

ii) It is clear that we could allow K to be more general than a distribution function as in Reiss (1981, Condition A). That is, if (C) holds and $K(x) = \int_{-\infty}^{x} k(y) dy$ with $\lim_{x \to -\infty} K(x) = 0$, $\lim_{x \to \infty} K(x) = 1$, $\int x^{i} k(x) dx = 0$ for i = 1, ..., m and $\int |x^{m+1} k(x)| dx < \infty$, and F has m + 1 bounded derivatives, then there is a constant C(m, k, F) such that

$$a_n \| \hat{F}_n - F_n \|_{\infty} \le a_n Q_n \int_{-\infty}^{\infty} |k(x)| dx + a_n b_n^{m+1} C(m, k, F).$$

Reiss (1981), Remark 1.1) gives such a kernel for m = 3. In the case that $a_n = n^{1/2}$ and the optimal bandwidth rate $b_n \sim n^{-1/(2m+1)}$ is used, then (2.1) holds since (m+1)/(2m+1) > 1/2.

The last theorem in this section applies to $\|\cdot\|_1$.

Theorem 3: Suppose that (S) holds and $\int |x| dK(x) < \infty$. If $a_n b_n \xrightarrow{wp1} 0$, then

$$a_n \| \hat{F}_n - F_n \|_1 \xrightarrow{wp1} 0$$
 as $n \to \infty$. (2.5)

Proof:

$$a_n \int_{-\infty}^{\infty} |\hat{F}_n(x) - F_n(x)| dx \le a_n \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |F_n(x - b_n y) - F_n(x)| dK(y) dx$$

$$= a_n \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |F_n(x - b_n y) - F_n(x)| dx dK(y)$$

$$= a_n b_n \int_{-\infty}^{\infty} |y| dK(y).$$

The interchange of integrals is justified by Fubini's theorem, and the last step follows since $\int_{-\infty}^{\infty} [G(x+a) - G(x)] dx = a$ for any distribution function G and constant $a \ge 0$ (see Chung 1974, p. 49, prob. 16).

3 Applications

- A) Weak convergence of $n^{1/2}[\hat{F}_n(F^{-1}(t)) t]$ to W^0 , the Brownian bridge. Choose $a_n = n^{1/2}$. If K is continuous, then the convergence may be carried out in C[0, 1] using Theorems 4.1 and 13.1 of Billingsley (1968). If K is not continuous, then the space D[0, 1] is appropriate and Theorems 4.1 and 16.4 of Billingsley yield the result. (In verifying the latter it helps to note that the uniform metric $\rho(x, y) = ||x y||_{\infty}$ dominates either of the Skorohod metrics given by Billingsley, see page 150.)
- B) Theorem 4.2 of Sen and Ghosh (1971) mentioned in the proof of Theorem 1 yields for F Lipschitz

$$\sup_{-\infty < x < \infty} \sup_{|t| \le d_n} n^{1/2} |F_n(x+t) - F(x+t) - [F_n(x) - F(x)]| \xrightarrow{wp1} 0, \tag{3.1}$$

where $n^{1/2}d_n$ increases at a rate not slower than that of $\log n$ but not faster than that of n^{α} , $\alpha < 1/4$. The results of Theorems 1 and 2 with $a_n = n^{1/2}$ allow (3.1) to hold with F_n replaced by \hat{F}_n .

- C) Statistical functions T(F). If $|T(\hat{F}_n) T(F_n)| \le C_n \|\hat{F}_n F_n\|_{\infty}$ and $C_n = 0_p(1)$, then $a_n[T(\hat{F}_n) T(F_n)] \stackrel{p}{\longrightarrow} 0$ and $T(\hat{F}_n)$ and $T(F_n)$ have the same asymptotic distribution up to order a_n . A trivial extension is to replace X_i by the perturbed random variable $X_i + Y_n$ (e.g., Pitman location alternatives). Some specific $T(\cdot)$ are given below.
- 1. Quantile estimation, $T(F) = F^{-1}(p) = \inf\{x : F(x) \ge p\}$. Suppose that $F'(F^{-1}(p)) > 0$. For distribution functions G and H and $\|G H\|_{\infty}$ sufficiently small, one can verify that

$$|G^{-1}(p) - H^{-1}(p)| \le \left(\epsilon + \frac{1}{H'(H^{-1}(p))}\right) ||G - H||_{\infty}.$$
 (3.1)

Letting $G = \hat{F}_n$ and H = F in (3.1) and $a_n = 1$, we get $\hat{F}_n^{-1}(p) \xrightarrow{wp1} F^{-1}(p)$. Under the conditions of Theorem A of Silverman (1978) which include uniform continuity of F' and K', we have $\hat{F}_n'(\hat{F}_n^{-1}(p)) = F'(\hat{F}_n^{-1}(p)) + [\hat{F}_n'(\hat{F}_n^{-1}(p)) - F'(\hat{F}_n^{-1}(p))] \xrightarrow{wp1} F'(F^{-1}(p))$. Thus applying (3.1) with $G = F_n$ and $H = \hat{F}_n$ and setting $a_n = n^{1/2}$

yields $n^{1/2}[T(\hat{F}_n) - T(F_n)] \xrightarrow{p} 0$. This approach along with Theorem 2 yields an asymptotic normality result for $T(\hat{F}_n)$ comparable to that of Nadaraya (1964). Azzalini (1981) notes that the optimal bandwidth rate is $b_n \sim n^{-1/3}$. Theorem 2 requires $b_n = o(n^{-1/4})$.

2. L-estimators with smooth score function, $T(F) = \int F^{-1}(t)J(t)dt$. Boos (1979), Theorem 1, showed that $T(\cdot)$ has a Frechet differential with respect to $\|\cdot\|_{\infty}$ under certain conditions on J and F. Similarly, it can be shown that if J is bounded and integrable on [0,1] and equal to zero in neighborhoods of 0 and 1, then for all n sufficiently large wp1 there exists a constant C(J,F) such that

$$|T(\hat{F}_n) - T(F_n)| \le C(J, F) ||\hat{F}_n - F_n||_{\infty}.$$

Alternatively, if J is merely bounded and integrable on [0, 1],

$$|T(\hat{F}_n) - T(F_n)| \le ||J||_{\infty} ||\hat{F}_n - F_n||_{1}.$$

Each of these bounds follows directly from the representation

$$T(G) - T(H) = \int_{-\infty}^{\infty} [S(H(x)) - S(G(x))] dx \quad \text{where } S(t) = \int_{0}^{t} J(u) du.$$

 Other examples include classes of R-estimators, minimum distance estimators, and one-step M-estimators.

Acknowledgement: The author wishes to thank the referee for helpful comments.

References

Azzalini A (1981) A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika 68:326-328

Billingsley P (1968) Convergence of probability measures. John Wiley, New York

Boos DD (1979) A differential for L-statistics. Annals of Statistics 7:955-959

Chung KL (1974) A course in probability theory. Academic Press, New York

Falk M (1983) Relative efficiency and deficiency of kernel type estimators of smooth distribution functions. Statistica Neerlandica 37:73-83

Nadaraya EA (1964) Some new estimates for distribution functions. Theory of Probability and its Applications 9:497-500

Reiss R-D (1981) Nonparametric estimation of smooth distribution functions. Scandinavian Journal of Statistics 8:116-119

Sen PK, Ghosh M (1971) On bounded length sequential confidence intervals based on one-sample rank order statistics. Annals of Mathematical Statistics 42:189-203

Serfling RJ (1980) Properties and applications of metrics on nonparametric density estimators. Proceedings of the International Colloquium on Nonparametric Statistical Inference, Budapest. North Holland, pp 859-873

Silverman BW (1978) Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Annals of Statistics 6:177-184

Stute W (1982) The oscillation behavior of empirical processes. Annals of Probability 10:86-107

Winter BB (1973) Strong uniform consistency of integrals of density estimators. Canadian Journal of Statistics 1:247-253

Winter BB (1979) Convergence rate of perturbed empirical distribution functions. Journal of Applied Probability 16:163-173

Yamato H (1973) Uniform convergence of an estimator of a distribution function, Bulletin of Mathematical Statistics 15:69-78

Received September 13, 1983 (Revised version June 12, 1984)