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Rates of Convergence for the Distance Between
Distribution Function Estimators

By D. D. Boos!

Summary: The normed difference between “kernel” distribution function estimators ﬁ,, and the
empirical distribution function F, is investigated. Conditions on the kernel and bandwidth of F),

are given so that a,,||ﬁ‘n —F,,IIMO as n - for both the sup-norm | glle = suplg(x)l and L;
x

norm (I glly = J 1g(x)Idx. Applications include equivalence in asymptotic distribution of T(ﬁ’n) and
T(F,) (to order a,,) for certain robust functionals 7°(-).

1 Introduction

The empirical distribution function F,(x) =n~! ZI(X; <x) is the most widely used
nonparametric distribution function estimator. However, integrals of kernel density
estimators form a large class of smooth competitors. These estimators may be expres-
sed as

n x—X; o [x—
= K( ')=fK( by)dF,,(y), (1.1)
e o

where K is a distribution function on (—°,0) and b,, > 01is the “bandwidth”. Nadaraya
(1964), Winter (1973, 1979), Yamato (}973), Azzalini (1981), Reiss (1981), and Falk
(1983) have studied the convergence of F, to F, the distribution function of the observa-
tions. The purpose of this present note is to give sufficient conditions on ¥, K, and b,, so

N 1
that a,||F, — F,ll bt 0 for several norms ||-||. Of particular interest is the sup-norm
A - - 1
| E,—F,lle = sup  |F,(x)—F,(x)| and a, =n'/2. Then nllzlan—FnIIm-‘YL*O
—o L x< oo

implies weak convergence of n'/ 2[13‘,,(F:1(z‘)) —t] as well as the Chung-Smirnov prop-
erty (law of the iterated logarithm for || F,, — Fll») of Winter (1979) and the asymptotic
equivalence in distribution of n/?[T(E,) — T(F)] and n'/?[T(F,) - T(F)] for the
many robust functionals 7(-) which are locally Lipschitz with respect to |||, i.€.,
IT(G)-T(H)|<C||G—Hll for all ||G—H |l sufficiently small. More details and
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applications are given in Section 3. The main results proved in Section 2 are simple and
rely on the usual integration by parts representation of F, and Serfling’s (1980)

generalization of a theorem of Sen and Ghosh (1971) on the uniform convergence of
E,(x+t)—F(x +t)—[F,(x) —F(x)] as t = 0.

2 Main Results

For functions G and H on (—,) define |G —Hll« = sup |G(x)—H(x)| and
—oo < x< o0

IG—Hll; = [ 1G(x)— H(x)|dx. The sampling situation is

(S) Xy,...,X, are independent real-valued random variables having the distribution
function F.

The first two theorems require
(C) K has support in a compact interval [¢, d],— o0 <c¢ <d <oo.

Lemma 2.1 of Winter (1979) justifies the use of integration by parts to reexpress 1:",, of
(1.1) as

Fa()= [ Fulx = bu)dK().

Theorem 1: Suppose that (S) and (C) hold and F satisfies the Lipschitz condition
1 1
|F(x)—F(y)I<L|x—ylon(—=,). Ifa,b, 2P, 0and nb,/logn ﬂ>°°, then

- 1
a, |l F, — Fylle P50 as noo. 2.1

Proof: Let e(c, d) =max { |cl,|d|}. Then
an = Fylo <ay sup f | F(x = boy) = o) |dK ()
<ay sup }’ By (x = byy) — Fx — by) ~ [F(x) =~ ()] 1 dK ()
*+ay sup cf |F(x — b,y) — F(x)| dK(») (2.2)

<a, sup sup |F,(x +1) = F(x +t) — [F,(x) — F(x)]!
x Iti<e(c,d)by

d
ta,b,L [ |yldK(y). (2.3)
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Rewrite the first term of (2.3) as 2,,Q,, . Lemma 2.2 of Serfling (1980) yields

n 1/2
[—} 0,=0(1) wpl asnp—>oo
b, logn

for uniform random variables. (See also Stute 1982, Theorem 0.1.) Following the re-
mark on page 194 of Sen and Ghosh (1971), this result also holds for all F which are

n
Lipschitz. That is, if G,(x) =n~! £ I(F(X;) <x), then
i=1

sup sup |Fp(x +1)— F(x +t) — [F,(x) — F(x)]I
—w<x<o [tI<e(c,d)bp
wpl
= sup sup |G, (F(x +1)) —F(x + 1) = [G,(F(x)) = F(x)]|
—w<x<oo [tI<e(c,d)by
< sup sup |Gy (u +v) = (u + ) =[Gy (u) —ull,

0<u<1 lvi<Le(c,d)by,

1
and Serfling’s result applies. Then a,,Q, 25,0 since @,0p, = anb, [logn/(nb,)]"/?
[n/(b, og m)]'/* Q.

Remarks 2.1: The proof shows that the weaker result, a, || 13',, —F,lle =0(1) wpl,
holds if only a, b, =0(1) wpl is assumed. The bandwidth b,, is allowed to be random
since b,, must be estimated in most applications. The usual choice of a,, is n'l? (see
Section 3) so that Theorem 1 allows b,, ~n %, a>1/2.

The next theorem strengthens conditions on F and K in order to reduce condi-
tions on b,,. In particular, if a,, = n'/? then Theorem 2 allows b,, ~ n~%, a> 1/4.

Theorem 2: Suppose that (S) and (C) hold and f xdK(x) = 0.Let F have derivatives f and
f' which ex15t everywhere on (—o°, ) w1th ||f||m <o and || f'llee <oo. Ifa,,b2 weL, 0,
nb,[logn i oo anda,[b, log n/n]l/2 yel, 0, then (2.1) holds.

Proof: The proof is the same as for Theorem 1 except that the second term of (2.2) is
expanded by Taylor’s theorem to yield

an sup | | [FGx —b,y) —F:)]dKG)|
d
=a, sup | [ [~fx)Bnp) + 1/21'(t3) (bny) 1dK(D)|

d
<a,b2(1/2)lIf'lle | y2dK(p).
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Theorems 1 and 2 are similar in spirit to Theorems 3.2 and 3.3 of Winter (1979) which
conclude that

lim sup {2n/loglogn}/2||E, = Fll. <1 wpl. (24)

n—>oo

Here, condition (C) and a slightly stronger condition on b,, than Winter required yield
(2.1) which in turn yields (2 4).

wpl
Remarks 2.2: i) The extra condition in Theorem 2,a,[b,, log n/n)\/? hia 0, is required

1 1
to have a,,Q,, 2P, 0. When a, = 0(n'/?), this is implied by b,, logn 225 0.
i) It is clear that we could allow K to be more general than a distribution function

X
as in Reiss (1981, Condition A). That is, if (C) holds and K(x) = [ k(»)dy with
lim K(x)=0, lim K(x) =1, [x'k(x)dx=0fori=1,...,mand [ [x™  k(x)|dx<oe,
X—>

x—>—o00

and F has m + 1 bounded derivatives, then there is a constant C(m, k, F) such that
ap | By = Fyllw <a,0, [ 1k(x)ldx +a,b7* C(m, k, F).

Reiss (1981), Remark 1.1) gives such a kernel for m = 3. In the case thata,, =n'/? and
the optimal bandwidth rate b,, ~ n~1@m*1) ¢ ysed, then (2.1) holds since (m + 1)/
2m+1)>1/2.

The last theorem in this section applies to [| |4 .

1
Theorem 3: Suppose that (S) holds and [ |x |dK(x) <e.Ifa,b, kel 0, then

~ 1
Ayl By ~Fyll; 2250 as n—>o. (2.5)
Proof:
an [ 1Fp()=Fy(x)ldx<an [ [ |Fy(x=byy) = F,(x)|dK(y)dx

=ty | ] 1Fy(c~buy) = ()] dxdK(y)

=ayb, [ 1yldK(y).

The interchange of integrals is justified by Fubini’s theorem, and the last step follows
since [ [G(x +a) —G(x)]dx =a for any distribution function G and constant >0

(see Chung 1974, p.49, prob. 16).
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3 Applications

A) Weak convergence of n'/ 2[13',,(F (1)) - t] to WP, the Brownian bridge. Choose
a, =n*/? If K is continuous, then the convergence may be carried out in C[0, 1] using
Theorems 4.1 and 13.1 of Billingsley (1968). If K is not continuous, then the space
DJ[0, 1] is appropriate and Theorems 4.1 and 164 of Billingsley yield the result. (In
verifying the latter it helps to note that the uniform metric p(x, y) = [|x — y |l domi-
nates either of the Skorohod metrics given by Billingsley, see page 150.)

B) Theorem 4.2 of Sen and Ghosh (1971) mentioned in the proof of Theorem 1
yields for F' Lipschitz

1
sup  sup n/2F,(x+1) - Fx + 1)~ [F,(x) - F(x)]| =~ 0, (3.1)
—w<x< oo tI<dy,
where n'/2d,, increases at a rate not slower than that of log n but not faster than that
of n%, a<1/4. The results of Theorems 1 and 2 with a,, = n'/? allow (3.1) to hold
with F replaced by F

C) Statistical functions T(F). If |T(,) ~ T(F)|< C,ll £, = Fyllw and G, = 0,(1),

then a,[T(F,) — T(F,)] Lo and T(£,) and T(F,,) have the same asymptotic distribu-
tion up to order a,. A trivial extension is to replace X; by the perturbed random vari-
able X; + Y, (e.g., Pitman location alternatives). Some specific 7(-) are given below.

1. Quantile estimation, T(F) = F ! (p) =inf {x : F(x)>p}. Suppose that
F (F_l(p)) > 0. For distribution functions G and H and || G — H||. sufficiently
small, one can verify that

G (p)-H ' (p)I< )IIG—Hllm. 3.1)

1
€t T~
( H'(H ' (p))
~ ~ 1
Letting G = F,, and H=F in (3.1) and a, = 1, we get F;; ' (p) 2P, F=1(p). Under

the conditions of Theorem A of Silverman (1978) which mclude uniform continu-
1ty of F' and K', we have F.(E; () = F'(E; W) + [En (B Y () - F' (B (p)))

—*F '(F~Y(p)). Thus applying(3.1) with G = F,, and H = F,, and setting a,, = n'/?

yields n'/ 2[T(ﬁ' )= T(F,)] £ 0. This approach along with Theorem 2 yields an
asymptotic normality result for T(F ) comparable to that of Nadaraya (1964).
Azzalini (1981) notes that the optimal bandwidth rate is b, ~n~*/3. Theorem 2
requires b, = o(n~4).

2. L-estimators with smooth score function, T(F) = [ F~1(¢)J(¢)dt. Boos (1979),
Theorem 1, showed that T(*) has a Frechet differential with respect to || * || under
certain conditions on J and F. Similarly, it can be shown that if J is bounded and
integrable on [0, 1] and equal to zero in neighborhoods of 0 and 1, then for all n
sufficiently large wp1 there exists a constant C(J, F') such that

\T(E,) - T(F,)| < CU, F)l| Fyy = Fyllo.
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Alternatively, if J is merely bounded and integrable on [0, 1],
|T(F,) —TE) < IJllell F = Fyll;

Each of these bounds follows directly from the representation
oo t
T(G)-T(H) = [ [SH(x))—S(G(x))]dx where S(¢) = [J(u)du.
= 0

3. Other examples include classes of R-estimators, minimum distance estimators, and
one-step M-estimators.

Acknowledgement: The author wishes to thank the referee for helpful comments.

References

Azzalini A (1981) A note on the estimation of a distribution function and quantiles by a kernel
method. Biometrika 68:326-328

Billingsley P (1968) Convergence of probability measures. John Wiley, New York

Boos DD (1979) A differential for L-statistics. Annals of Statistics 7:955—-959

Chung KL (1974) A course in probability theory. Academic Press, New York

Falk M (1983) Relative efficiency and deficiency of kernel type estimators of smooth distribution
functions. Statistica Neerlandica 37:73-83

Nadaraya EA (1964) Some new estimates for distribution functions. Theory of Probability and its
Applications 9:497-500

Reiss R-D (1981) Nonparametric estimation of smooth distribution functions. Scandinavian
Journal of Statistics 8:116—-119

Sen PK, Ghosh M (1971) On bounded length sequential confidence intervals based on one-sample
rank order statistics. Annals of Mathematical Statistics 42:189-203

Serfling RJ (1980) Properties and applications of metrics on nonparametric density estimators.
Proceedings of the International Colloquium on Nonparametric Statistical Inference, Budapest.
North Holland, pp 859—-873

Silverman BW (1978) Weak and strong uniform consistency of the kernel estimate of a density and
its derivatives. Annals of Statistics 6:177—-184

Stute W (1982) The oscillation behavior of empirical processes. Annals of Probability 10:86--107

Winter BB (1973) Strong uniform consistency of integrals of density estimators. Canadian Journal
of Statistics 1:247-253

Winter BB (1979) Convergence rate of perturbed empirical distribution functions. Journal of
Applied Probability 16:163-173

Yamato H (1973) Uniform convergence of an estimator of a distribution function, Bulletin of
Mathematical Statistics 15:69—78

Received September 13, 1983
(Revised version June 12, 1984)



	
	Rates of Convergence for the Distance Between Distribution Function Estimators.


