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The Occurrence of Outliers in the Explanatory Variable Considered
in an Errors-in-Variables Framework

By A.E. Ronner, Eindhoven') and A.G.M. Steerneman, Groningen?)

Summary: The problem of estimating the slope of a linear relationship between two jointly normal-
ly distributed random variables is considered when outliers may occur in the explanatory variable.
It will be studied as a special case of an errors-in-variables problem where the explanatory variable
is measured which a nonnormally distributed error. In this more general model and under certain
conditions a consistent estimator can be given with a normal limiting distribution. Applications to
cases of outliers in the explanatory variable will be presented.

1. Introduction

The method of least squares (LS) is still a very useful tool in analyzing data. In
the usual linear regression model with normally distributed disturbances the LS-esti-
mators have nice optimality and asymptotical properties. However, in practice this
linear regression model is not always suitable, because e.g. the normality assumption
is doubtful or measurement errors occur. In the structural model a linear relation is
postulated between a dependent variable and the systematic parts of explanatory
variables. The observational errors are assumed to be additive. From the extensive
literature on this subject we refer to Moran, Kendall/Stuart and Schneeweiss [1976].
Dealing with measurement errors one always assumes that the observations on a
variable are all measured with error. However, it is possible that only a part of the data
is erroneously measured.

Two variables £ and 7 are linearly related as n = o + £, where the parameters a and
B are unknown and § has to be estimated. It will be assumed that n is not observable,
but that one can measure Y = n + €, € being an error term. The variable ¢ will be
observable in principle, but it may be possible that in a set of measurements on &
outliers occur. This will be modelled by assuming that one observes X = & + §, where
8 = 0 with probability 1 —p and & is N (0, w?) distributed with probability p.

In section 3.1 a consistent estimator for § will be derived with a normal limiting
distribution. In section 3.2 such estimators will be presented for the cases p, w? or
w? [ 0* are known.
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The results of chapter 3 follow from more general results given in chapter 2, where
we treat an errors-in-variables model in which X = £ + 6 and 6§ follows a nonnormal
distribution. Chapter 3 then specializes to the mixed distribution of § mentioned
above.

2. Nonnormally Distributed Error

Consider two variables ¢ and n being linearly related as n = « + 8§, where the para-
meters « and § are unknown. It is not possible to observe £ and 1 and instead one
measures X =& +6 and Y = n + €, where 6 and € are error terms, and £, § and € are
independently distributed. On the basis of an independent sample (X, Y1), . ..

. (Xn, Yn) the parameter § has to be estimated. It will be assumed that &;,..., & ,

81,...,8,,€1,...,€, are independently distributed and €; ~ N (0, a:), o: >0
fori=1,...,n.
In the special case that §; =+« + =35 n= 0 the usual estimator for  is the LS-esti-
mator
A -1
ﬁ—Mxy Mx,z, 2.1)
where
n
— a1 7 _ v
Mxy =n i=21 (Xi X)(Yl. Y) (2.2)
and
S F\h
Mx,h—" i=Zl(Xi—X) ,h=2,3,... (2.3)

The LS-estimator § has some nice optimality properties whatever the behaviour of
Xi=&,...,X _ En as long as their distributions do not involve the unknown para-

meters a, § and o: . The estimator § is consistent in this case and has a norinal limiting
distribution.

Theorem 2.1
Letd, =+ ++=25, = 0and let one of the following conditions be fulfilled

(i) X,,...,Xnarenonrandomande2—>o§>Oasn—>°°,
(i) X,;,...,X , are independent identically distributed random variables with finite
variance oi >0.

Then

Ln'l? §—p)>N(0,0?/d?).
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The optimality and asymptotic properties of B no longer hold in the case that the _
variables §;, . . ., §, are measured with error; in a simple model we establish that g

is inconsistent:

Theorem 2.2

Let&,,... ,Sn be independently distributed as N (u, 0*) and let 6, . . ., 6n be

independent indentically distributed with finite fourth moment u, , expectation zero
and variance 0; , then

Lnt/? (§—po? (0 +02)™) >N (0,x%),

where
2 (12 4 12y-4 102 (02 4+ 0233 482 02 02 (02 + 0212 + 02 % (4. — 3 ot
k? =(0% +0;)7" [07 (0 +05)° + 8% 0% 05 (0° +05)* +B° 0" (s — 3 0y)].

Remark 2.3
In the case that uy =3 og , which holds e.g. when 61. ~N (0, og), it follows that

£ntl? (8 —Bo? (o +62)')>N (0,02 (0* +02)! +
+6% 0® 0} (0 +03)7?).
This agrees with Schneeweiss [1980, formula 5.2].

Proof of Theorem 2.2

We use the following definitions:
W, =n'2 (M, —BM, , 0* (0> +3})™")
Z,=(X,—w) (Y, —a—Bu—Bo® (> +03)™ (X, —m),i=1,....,n
= 1/2 3
U, =n ’_=El Z;

V,=nl2 X =) (¥ —a—pu—po* (> +0})™ (X—p)).

Note that
W =U, V.
It can easily be seen that Z,, ..., Z are independent and identically distributed with

EZ;=0and var Z; = (0 + 02)* k*. According to the central limit theorem we obtain
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LU, >N (0, (o + og)2 k2).
Since plim ¥, = 0, because of
Lnll2 (X =)~ N(0, 0% +0?)
and
plim Y=a+8u,
it follows that
Lw, =N (0, (o + 02)2 k?).

By remarking that plim M, , = 0® + o} the theorem is established.

Obviously the estimator § is inconsistent, this is caused by the error §. If one tries
to find a consistent estimator for B, then it is sufficient to obtain one for ¢2. In the
sequel we are tackling this problem by looking for an estimator of 0? which is a function
of even order moments in the sample X, . . . o Xy The model we shall be concerned

with in the remaining part of this chapter is completed by the following additional
assumption.

Assumption 2.4

The random variabie £ is distributed as N (4, 0%) and the random variable 8 is
distributed symmetrically around zero with finite even order moments u,, s, . . . , Myp
k 2 2,and there exists a measurable function f: [0, °°)k - R with 6% =
=f(ux’2, e ’“x,zk)’ such that fis continuously differentiable in u =
= (“x,Z’ R x,2k)!’ where My denotes the A-th order central moment of X.

From the assumption it follows that the parameter o? is identifiable. So, § is non-
normally distributed, because otherwise X ~ N (u, 02 + og) and o2 would be un-

identifiable. In chapter 3 we shall consider some special nonnormal distributions for
8. Thus, in our model o? is estimated by the so-called method of moments. The
2 h-th order central moment of X can be written as

B (2R\ iy on. :
Hx,2m zifo(zi) 210 ) oM gy (2.4)

It will now be clear which estimator for f§ is proposed:

B=M, [fM, 5 ... M, ). (2.5)

The following theorem shows that § is consistent and has a normal limiting distribution.
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Theorem 2.5

Under the assumption 2.4
tn'2 E—p~>N(0,7),
where
=07 ¢ (6® +02) + 4% 07 20% +07) —4p% 07? i:El il‘lx,Zl'fi’(“x) +
k

k
+3207% 2

' !
P ;'Z:l My 25427 ~ M 20 P 2 T7 () 17 ().

Proof

We first give some useful notations

= t
M=M, M, o, ... M, 1)

n
S | — o —
m.,=n ifl X, =) (Y; —a—Bu)
m o o=nt X —wh=1,.. .k
_..x,zh i=1 l “ b 8 @ #0s iy
—_ t
m= ('—nxy’r—nx,Z’ b ’mx,Zk)

Z,= (X, —w) ;= a=Bw), (X, —w?, ..., (X, — ),
i=1,...,n.

n
Note thatm=n"! X Z,.
i=1

Letting LZ =LZ; = + « * = LZ, we calculate the mean and the covariance matrix
of Z. Therefore we have to evaluate

EX—w*l (Y —a—Buw=E(¢-w+)?" 1 @E—w+e)

e B 2R+ L 2442 o2R-2i
---ﬁE,'E:()(Zi-F-l)(‘E H 6

B (2n+ 1)\ .1 ,.. =1y ;
=ﬁi§0(2i+ 1) 2H @+ @i+ Py,

=B0> Ch+ D, ,,,
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where the last equality follows from (2.4). Hence we obtain

cov (X =), (X — ) (¥ —a—Bu)) = 2hB0” 1, -
Further, it is not difficult to derive that

iy =var (X —p) (Y —a—pu)=0? (6> + 02) +p? 0 (20* + al). (2.6)
An application of the multivariate central limit theorem results in

Ln''2 (m —EZ) >N (0, VAR (2)),

where
EZ=(Bo*,p))’ 2.7
and
Zn Z12
VAR (Z2) = (2.8)
2 Zn
with

2, is given in (2.6),

Toy =2 =2p0° (30 20 4o - - -2 KR 5p), (2.9)

o =My geo)ij=1, ..k M P (2.10)
Now we shall show that

Lnl'2 (M —EZ)-> N (0, VAR (2)). (2.11)

It is sufficient to establish that plim nll2 (M — m) = 0, which can be seen as follows.
First note that

n'l2 M, —m, )=n'"2 (X — ) (7 —a—Bu),
which tends in probability to zero. Secondly we concentrate on

n =
nl/2 (Mx,2h —mx,Zh) =n'1/2 izl [(XI —u +#—X)2h _(Xl —“)Zh]

2h =7 .
=p1i2 g (?h)(u—X)f 2, — w2,
=1\ =1
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which also tends in probability to zero, because

’ -y 0 forj odd
plimn~? i=21 X, — =" =

s 2n. forjeven,

and £n1/2 (u—X)~>N (0, 0> + 0?).

According to (2.5) and assumption 2.4 there exists a measurable mapping F such
that F is continuously differentiable in 8, 8 = F (EZ) and E = F (M), where
F:R X [0,°)% >R is defined by

F(x:yla- v 7yk):x/f(yla o e syk)
Theorem 2.5 now immediately follows from Witting/Nolle [Satz (2.10) and (2.11)]:
Lnl/2 (F—B) =N (0, VF(EZ) VAR (2) (VF (EZ))") (2.12)

(A F denotes the gradient of F). The proof of the theorem will be completed by
working out the variance in (2.12). It is easy to see that

VF(xvyl""’yk)=(1/f(yla'"!yk)7—xvf(yl""9yk)/

/f? (7T ) §

if f is partially differentiable in (x, yq, ... ,yk)t. Hence
VF(EZ)= (0%, —B0™? VI (u,)).

By applying the formulas (2.6 — 2.10) we obtain
72 = VF(EZ)VAR (Z) (VF (EZ))!

=07 2y — 2607 V(1) Tay + 67 07 V() o (VS ()"

3. Occurence of Qutliers in the Explanatory Variable

In this chapter we study the following model. Of interest are two variables £ and 7
related by n = a + B, where the parameters a and § are unknown. The variable 7 is
measured with error; one observes Y =n + ¢, where € ~ N (0, a:). With regard to ¢
it is assumed that £ ~N (i, 0?). The random variable £ will be observable, but some-
times outliers might occur. This is modelled by assuming that X = &£ + § 1s observed,
& = 0 with probability 1 — p and § ~ N (0, w?) with probability p € (0, 1). The
random variables £, 6 and € are independent. The parameter § has to be estimated on
the basis of an independent sample (X, Y1), ..., (X,, Y,). The random variables
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..., ,gn,b, e ,6n, €15:045€, will be independent. Since & essentially follows

a nonnormal distribution we shall apply theorem 2.5 in order to find a consistent
estimator § with a normal limiting distribution. The moments of x are given by

Heok = 2K kD)t 28! [p (@* + 0*)F +(1—p) 0?¥]

(3.1)
By 2g+1 =0
Two useful relations between Ky 95 My g4 and M, ¢ are
0=u, ,—3u2,=3p(1-p)w*, (32)
N=u, o =150, 4u, 5 + 30;1;’2 =15p(1 —p) (1 —2p)w®. (3.3)

In section 3.1 we shall derive a consistent estimator for § with a normal limiting
distribution in the general case. In section 3.2 such estimators will be presented for
cases with additional knowledge: p, w? or w? / ¢* are known. In each case the
procedure for obtaining the consistent estimator and the normal limiting distribu-
tion is the same. So only the general case is elaborated to some extent. Ronner/
Steerneman contains the detailed elementary calculations leading to the desired
results.

3.1 The General Case

It will be assumed that p € (0, 1). In order to apply theorem 2.5 it is necessary to
find a function f with o2 =f(nx). From (3.2) it can be derived that

p=%+sgn(,;)—%)[l—4(30.}4)'10]1/2. (34)
Formula (3.3) together with (3.2) can be used in order to obtain

(1 =2p)w?=(50)"" . 3.5)
On the other hand (3.4) implies

(1-2p)o?= sgn(%— )[m4 —46/3]1/2. (3.6)

Combining the results (3.5) and (3.6) it is found that

w® =(560)"2\? +46/3.

Since p, , = 0% + pw?, it can easily be derived that

o =pu, , —%[(50)-2 A2 +46/3112 + (100) A
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It will now be clear that we define f: [0, *0)* - R by
£ () =x; = [max (0, {(5C ()™ D* () +4C () | 32 +
+(10C(x)™) D (x),
where
C(x)=x, —3x}
D (x)=x3 —15x; x, +30x3.
Noting that § = C (yx) and A=D (ux), it is seen that
0F =F () by, = (e 5o by 4oy 6)"
According to theorem 2.5 we propose the estimator
EzMxy/f(Mx,Z’Mx,4’Mx,6)’
which has the property
Lnll2 G —p)->N (0, 2).

The difficulty is to evaluate the variance 72. The partial derivatives of f at u . are
needed. It can be derived that

fl ) =[(1—p) *]™! [30* +40% w* +w*]
i) =—1301-p)* " [30? +20?]
fi () =015 —p)w*]™.
After elementary arithmetic it is obtained that
7 =0"* 02 (0 +pw?)+ B 2p(1 —p)' +po? W +8(1—p)! o W]+

+B2[15(1 —p) 0? w*]? [16m, 1, /231 +40w* gl 7]

3.2 Some Special Cases

In practice it may happen that there is additional information. We consider three
cases. For case i we propose a consistent estimator E, which has a normal limiting dis-
tribution NV (0, 77).
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Case 1: p is known, p € (0, 1)

Bi=M,, M, , —p"> (1 —p)! /2 max (0,(M, o /3—M] )V,
and
=00 (0® +pw?)+ 2% u g (1—p) 2 07* w™* /315 +

+82p(@—1D'o 2.+ —p)d? W+t /9.

Case 2: w? is known, w? >0,p# 1/2
Bo=M (M, ,—1/20> +1/2Ty {* =4 M, 4/3-M )Y/,
where
Ty =sgn (M, c—1SM, oM, ,+30M; ),
and
73 =07 0? (* +pw?) +8p Mg (1 —2p) 20t w315+
+62 (1-2p)72 0™ [8(1 —p) 0* + (3—2p)? 0® &? +20"].
Case 3:a=1+w? 07 ? isknown, p # (a + 1)!
By =6aM,, [3(a+ )M, ,+Ty 9 (a+1)* M2, —12aM, J'/2)7,
where
Ty =sgn Qa (M, ¢ —5M, (M, ,)=5(@+1)M, , (M, ,—3M] ),
and
B=0talu ,+F Pl@-1)-2)+
+82 0 @121 —p—ap)? Q2u, g —60ac® T

+90a? 0*) / 45.
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