D
[-A elt

Werk

Titel: Efficiency and Optimality Properties of a Class of k-Sample Rank Test Against Tre...
Autor: Terpstra, T..

Jahr: 1980

PURL: https://resolver.sub.uni-goettingen.de/purl?358794056_0027 | log50

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

Metrika, Volume 27, 1980, page 225—235. © Physica-Verlag, Vienna.

Efficiency and Optimality Properties of a Class of
k-Sample Rank Tests Against Trend

By T.J. Terpstra, Enschede')

Abstract: A class of k-sample rank tests is considered for testing the hypothesis Hq: F; (x) = F (x),
i < k against the hypothesis Hy: F; (x) =F (x —6;),01 <02 <...<8,,0; #0;. These tests are

based on a rank statistic S = Z d. (7) Ta_ (R.,
= q i T n=il

n'/% 0, ~o,itis shown that Eff (& d, 7) | (F, 80 = Eff (v | F) Eff (1) Eff> @ 19). For

. . -1 -
) mwhlchn—(nl,...,nk). Ifn Rin E,.and

— -
given ¢ the ‘minimax’ efficiency weight-vector do (?) is derived with respect to

—> - —

©={01—1=6; <...<6, =1}and also the Bayes vector d (£, r) with respect to a d.f. r on ©.
The properties of these tests are investigated. Further an allied class of tests is considered based on
a statistic W = ’};‘,<EI d i ) yh,i’ where Lt’h,’. is a rank statistic for the samples taken of x, and x ..

1. Introduction and Summary

By means of n = n; + ...+ n; completely independent observations x; ;, I < n;,
i <k taken of k variables x , . . ., x; with distribution functions F; x)=F(x— Bi)’
i < k we want to test the hypothesis

H0:61 =...=0k,
against the alternative hypothesis
H1:01<02<...<0k, 01¢0k.

The class of tests considered are defined by means of a statistic of the structure
-> > > > k - T
S@d (). v:B)= 2 d;(m) 2 a, R, 7). (1.1)
1= = 4

in which R; ; is the rank number of observatior_L x; ; obtained by arranging all n obser-
vations according to increasing magnitude, d; (n) the weight of sample i, y a score
function and a,, (s, 7). s < n the scores which are defined by

l) T.J. Terpstra, Department of Applied Mathematics, Twente University of Technology, En-
schede, The Netherlands.
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a, (s N=EyWUY), s<n, (1.2)

7482 U™ being the order statistics of a random sample of size n from a uniform
distribution on [0, 1].
We assume that 7 satisfies the condition

1
Pig'y(u)du=0, 0<(})72 (u) du < oo (1.3)

The score function 7y corresponding to the d.f. considered is given by [cf. Hijek/
Sidik, p. 19]

!

g =—7(F'1(“)), 0<u<l, (1.4)

in which f is the probability density function.
If f is absolutely continuous and f” absolutely integrable then vz satisfies the first
condition in (1.3).

1
IfyETthenZ a, (s, Y)=n[y@)du=0and E (S |Ho)=0.
s 0

For convenience we introduce the following notation

a* () = z Y (u) du, (1.52)

> n;
b (d) =—§7d,-,

(1.5b)
n. n.
2 (=L g2 s L2
0% (d) : ? - d] (§ —d)?,
d <t < =
(1.5¢)
() =2 t.d? — (2 £d)?
OE’()""_Eii (ifll')-
Then [cf. Héjek/Siddk, p. 163]
var (S | Ho) = n 6 (d (n)) 0*(¥). (1.6)

If we assume that ~a'3; (3 (;l))) > 0and v €T then we can consider instead of S the
standardized variable

Sp= fvar S, |H)} V2 S,,, (1.7

which has mean zero and variance one under Hy.
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We now assume that following conditions are satisfied for n - o

k does not depend on n,

"-l"in"si’ i<k,
. - < > (1.8)
dl (nn) —)dl (E)v s k’

T S
o @(E)>0.
Then the variable S is asymptotically equal (with probability one) to the variable

> > > -> > 2 > > _ k —> Min
TEd@ mnR,)=@op@®) ™ -2 4 (s)ljzl 2,R; 7).
(1.9

Thus if we want to investigate the asymptotic properties of tests based on test-statis-
tics S defined by (1.1) and the conditions (1.8) are satisfied then this is equivalent to
investigating the asymptotic properties of sequences of tests consisting of critical re-

gions

Zyw=1wITEdE, 7 m R, @)>E ), (1.10)

where £, _, = ¢~'(1 —a), ¢ (u) being the normal distribution function. For conven-
- > -
ience we denote the foregoing sequence of tests by (&, d (§), ).
From the results of Héjek/§Wék [1967, p. 227] we immediately obtain the follow-
ing
Theorem 1: Under condition (1.8) the asymptotic power of a procedure ('{, d »Y)s
v €T, for testing the hypothesis H,, against a sequence of alternatives defined by F
>
and 0, for which e € I'and

n'’2§ -9, (1.11)
is equal to
> > —>
1=0 ¢, — 2 (:7p)pp(@ 0) o (vp) 0p(6)), (1.12)
where
1
P () :=£ ¥ @) vp (W) du (1.13)

and
- >
cov?(d, 0)

p-»((_it 3) =—,
¢ op(d) op(9)
where (1.14)

- - k 5 7
cov?(d, 9):= i§l ¢ @, — I‘g'(d)) ©; _”?(0 )- )
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Remark:

1. This theorem contains the property that the variable T defined by (1.9) is asymp-
totically normally distributed under Hy.
2. The test considered is invariant with respect to the location parameter 6. Thus with-
—

out loss of generality we may consider the sequence {6} for which (1.11) holds in-

stead of n!’? (5; -6 - T) —>5>, where 6 is the common value of 64, . . ., 6, under
H,.
From (1.12) the known property follows that for each ?the asymptotic most power-

ful test against (¥, 0) is obtained by taking v = v and d=3. This test is also a locally

most powerful rank test [cf. Lehmann)].
- —> >
Defining for given £ the efficiency of a procedure (£, d, ) with respect to an alter-
>
native (F, 0 ) as the fraction of the number of observations the asymptotic most power-

g
ful test (?, 6, 7r) needs to reach the same asymptotic power as the test considered,
then it follows from (1.12) that

Effp((d, 7) | ¢, ) = Bff (v | F) - Effp @ | ), (1.15)
where

Eff (v | F) = p*(v, 7p) (1.16)
and

Effp(d | ) = p3(d, 0). (1.17)

If we now take into consideration the possibility of designing the experiment in such a
way as to increase the power it follows that for each (F, i) the asymptotic most
powerful test is obtained if we take

Y =Y
£ =E :=(1/2,0,...,0,1/2), (1.18)
d =dy=(—1,0,...,0,1).

It follows that with respect to this optimal procedure

Eff (€ 4, 7) | (F, 8)) = Eff (v | F) - Eff F18) - Effp (1), (1.19)
where
B E19) = —— * & (). (1.20)

(6, —01)?

Thus we can speak about the efficiency of the score function vy w1th respect to F, the
efficiency of the des1gn E with respect to8 and, given the design E the efficiency of
the weight-vector d with respect to g.
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Further we have

—

Eff (£ d) |f7)=Eff(§’|5’)-Eff§» @19). (1.21)

- —> -
As the efficiency of (£, d ) with respect to 6 is invariant for a linear transformation of

—> -
6 we assume § € ©, where
=@ 1—1=0,<86,<...<6, =1} (1.22)

We remark that the optimal procedure (?o, 30, vF) only regards the samples taken of

x; and x, thus the efficiencies of a procedure (Ef (-1) ) for different vectors 5) € Oare
comparable.

In the sequel we shall consider optimality problems with respect to the “part”
(‘;’ d ). For the “part” y analogous problems can be considered. We shall pay special
attentlon to the ch01ce of the weight-vector d for a given non-optunal design £.

fe 1s known then d will be taken equal to g.Butifd is not known then we must
choose d in 1 some optimal way and it may be expected that the optimal vector d will
depend on 2

In the followmg section we derive for given E £ > 0 Ek >0 the “minimax”
weight-vector do (2) for which the minimum of Eff ((‘;‘ d) | 9 ) with respect to @ is
maximal (cf. (2.1)). It appears that the efficiency of (?, do (5) does not depend on ]
and that it is equal to the efficiency of the corresponding procedure which takes only
mto consxderatmn the samples taken of of x4 and x . (cf. (2.2)). Also the Bayes-vector
d (g 7) and the Bayes-efficiency Eff (E r) with respect to a distribution function 7 on
© can be obtained. It appears that Eff (E 7) is equal to the largest eigenvalue of the
positive definite matrix (2.11) and that d (E’, 7) immediately follows from the corre-

sponding eigenvector (cf. (2.9)).
In section 3 we consider an allied class of tests based on onesided critical regions

defined by means of a variable

—> —> —> -
W, {dy,; 0}, R =22 dy () W (), (1.23)
: *h, :
where
(7,R) = (n, +n, +1) z a, +nL(h D y), (1.24)

R(h U re n; being the rank numbers of the observations x i I<n;, if the two samples
taken of Xy and x ; are arranged according to increasing magmtude

For n - e and under appropriate conditions the variable n=3/2 W(") is under H, as
well as under contiguity alternatives asymptotlcally equivalent with a statistic n™/%S ,
of the structure (1.1) with a weight vector d (w)(ig) given by (3.17). From this equiva-
lence we immediately obtain property (3.19) for the asymptotic efficiency of the
weight-functions {d), ; (::)} for a given design 5 against a contiguity alternative 0
This efficiency will be investigated for some tests formerly introduced by the author
[cf. Terpstra, 1952, 1955].
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2. The Minimax and the Bayes Weight-Vector

We will prove the following

Theorem 2: For a given design E’, &1 >0, & > 0 the minimax weight-vector Zo (?) is
given by

‘_1, > Ek_El zk_sl
O(E)— —1’$k+gl,,£k+£1’1 (21)
and
B @3 B)17)= ok Feo 2.2)
’ El +Ek’ b

this efficiency being equal to that of the corresponding procedure which is only based
on the two samples taken of x ; and x.

Remark: This theorem is in concordance with property (3.3) shown by Koziol/Reid

[1977] from which it follows that under H,, as well as under any contiguity alternative
=

0
TEd @ vimy, B)— kit (61 +8) 0> )2 w50, (2.3)

where E/f"]z is defined by (1.24).

Proof: The latter part of the theorem immediately follows by remarking that

Eff{(( b i ) -1 1))|(—1 1) %= —ﬁlz"—,. 2.4)
G+ EtE )T ol TS
To prove the first part we remark that

inf Bf (€ D)19) = inf 3@ D) 3 @) <inf o} 0) = o} @), (25)
while

Eff (€ d) | do ®) <Eff (F do ®) 1do @)= 0o ®), d#dp B. (26)

We remark that (cf. (1.14) and (1.5¢))

covg (o (), 6) = o @o ®), §ee, @.7)
consequently
Eff (€ do (8)) 18) = 03 (do (&), 7ece. 238)

From (2.6) and (2.8) it follows that 30 (E’) is the minimax-weight-vector and that it is
an equalizer vector.
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Theorem 3: For a given design ?, §; >0, i<k and a given apriori distribution 7 on ©
> > —>
the Bayes-vector d (£, 7) and the Bayes-efficiency Eff (£, 7) are given by

uy (Z T) U (g T)

d G r)=| ——2 . 29

S Y VE, 2ok
and

Eff (€, 7) =\ &, 1), (2.10)

where A (?, 7) is the largest eigenvalue and l_l)(?, 7) the corresponding eigenvector of the
matrix

IVE & * E, (0, — @) (0, — k@D I @11)

-> 2
Proof: For each d with op @>0

2 2
covp @ 8)

E_{Eff (£d)|8)} =E ot 212
EEDID)=E, (2.12)

As the right member is invariant for a linear transformation of ;I), we may assume that
A =3gd =1. (2.13)
1

Defining §i P 0, — y?(g) we have

- —> ~

COV—E-»( ,0)= 12 Ei d; i (2.14)

-

Defining u by

u=vEd, i=1,... .k, (2.15)
we have

E Eff (£ d) 10} = Tu;uc,; E ) (2.16)

ij :
where
— —_— ~ ~
Cij &)= \/E, EI E.,. Q,"E’ .Q],? . (2.17)

The Bayes-vector corresponds with the vector u (?, 7) that maximizes the right mem-
ber of (2.16) under the constraint (cf. (2.13) and (2.15))

k

)> ul? =1, (2.18)
i=1

thus t_lle Bayes-efficigncy is equal to the largest eigenvalue A (E’, 7) of the matrix

IIciJ. (&, 7)lland ¥ (£, 7) is equal to the corresponding eigenvector.
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Corollary 1: The following inequality holds
Bff (£, 7)>E Bff (£ E, 0) | §) > Eff (E E,0) |E.9) . (2.19)

Proof: Using the inequality Ez? = var z + (Ez)?, we obtain
—> - > —> - > -
BEE (¢, 1) = suplvar, {op (@, 8) op @)} + ppld EQ) 0b(E, 0)]> (2.20)
—> - - —> > -
. Ppd.E 0)0p(E, 0)= wpBE (%, 4312, 8)=

=Eff (B E,0) |E, )=, 0).

3. An Allied Class of Tests

We consider the class of tests which are based on a statistic W as defined by (1.23)
and (1.24). We shall investigate the asymptotic properties of these tests under the con-
dition that for n > o

k does not depend on n,

wohn ok, i<k, (3.1)
dy ; (n)>dy ; ), h<i, hi<k.
Defining
7y
W,=@n+1) 1=21 a, R, ), 32)

we use the property shown by Koziol/Reid [1977] that under H, and any contiguity
>
alternative 9

n™ ) — 5, W — £ Wi o (33)
Further they proved that under the foregoing conditions

var (n W) > £, 8 &, +E) O () (34)
and

cov (n 2 W), n2 WM > ¢, & 8 0? ()
cov (172 W, n 2 W) > — g, £ 0 () (3.5)

cov (n ™2 W, 02 W) >0, % (b i/, ).
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Remark: For the special case that 7 is equal to the logistic score function
7 u)=2u—1, o0<u<li, (3.6)

property (3.3) has been independently obtained by the author. Then W, ;and W; are
equal to the variables '

Bp %y
U= Ell Ell sgn (x; » —x;, ) (3.7
respectively
U= hii gh’i : (3.8)

For the variables U, , h<i, h, i<k we have [cf. Terpstra, 1954]

1
var (yh'l.]Ho)=§nh ni(”h +nl.+l) (3.9
and
1
cov Uh,i’ gh,i | Hy) = 3 M
1
cov @h,i’ gi,j | Hy) = —3 M Ny q (3.10)
cov (U, i’gjl [Hy)=0, #(h i},
4=, )

from which it follows that under H, and consequently also under any contiguity alter-
->
native 60

- P
n™® - var (g, gif;') +E _U].(",;) +E g’,ﬁ'j})—» 0. (3.11)
Denoting the sample consisting of all observations not taken of x, and x; by (E,?), we
have
g(h—,i_),i=gi—yh,i' (3.12)

Using this property and applying (3.11) to the three samples 4, i and (h, i) we imme-
diately obtain (3.3).

From (3.1), (3.4) and (3.5) it follows that under H, and any contiguity alternative

var (n 32w ™)y > a2, (3.13)
where
o =225 08 &€ T TIZETME,, ©d,,; O+ (3.14)

* dh,]' (5 di,]' (?) —dh’j (?) d,',j (g)} Eh E,- E]] - 0? ().
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We now consider a sequence of tests consisting of critical regions
- ->
ZM = {0 n WM R (@)>E " 0,), (3.15)
where £, = ¢~ (1 — ), ¢ being the normal distribution function.

Now from (1.23), (1 .24_)), (3.2) and (3.3) it follows that under H, as well as under
any contiguity alternative 6.

k i
n™2 WM —(n+1) z a™ @ Z o & »mEo, (3.16)
= = ’
where
d™ B == g,d, O— = td, @ (3.17)
h<i ! h>i ’

From (3.16), (1.9) and Theorem 1 it follows that under the condition

o2 @™) (#)>0 (3.18)

the sequence of tests {Z (W)} defined by (3.15) and the procedure (.E am (2) 7v) de-
fined by (1.10) and (3. 17) have the same asymptotlc size a under H, and the same
asymptotic power against any contiguity alternative g.

From the foregoing properties it immediately follows that

Effy ({d, , &)} 15) = Effp @™ & 19) (3.19)
which is given by (3.17), (1.17) and (1.14).

Some special cases:

First we consider the statistic

W, =ZZ U (3.20)
h<i h.i

where U, . is defined by (3.7).
The varlable W, isrelated to Kendall’s rank correlation statistic S when ties of the

sizes My, ...,y are present in one ranking [cf. Terpstra, 1952]. For this statistic
(E) =1 and it follows that
d,-(wl’(z)=2(g1 +. .8+ E =1 (3.21)

Z(W,) o . g
Thusd ™1’ (£) satisfies the condition that for all &
—> — —> —> —>
d; (§)<d; (5)<...<d; (§), d; () <d, (®), (3.22)

—
Wthh means that for all S the test based on W, is admissible as Eff—»(g @16 )

if6=d (2) while d (E)E@
We also consider the statistic

= -1
W, = n? P ()™ Uy s (3.23)
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for which [cf. Terpstra, 1955]
n?EW, =E) Z{2P[x, <x;]—1} (3.24)
<i -

For this statistic d, ; (&) = (&, £)™* and it follows that
d¥) B =)™ @i—k+1). (3.25)

The test based on W, is -POt admissible for each E’ as the necessary condition (3.22)
does not hold for each £.
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