

Werk

Titel: Efficiency and Optimality Properties of a Class of k-Sample Rank Test Against Tre...

Autor: Terpstra, T.J.

Jahr: 1980

PURL: https://resolver.sub.uni-goettingen.de/purl?358794056_0027 | log50

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Efficiency and Optimality Properties of a Class of k-Sample Rank Tests Against Trend

By T.J. Terpstra, Enschede1)

Abstract: A class of k-sample rank tests is considered for testing the hypothesis $H_0: F_i(x) = F(x)$, $i \le k$ against the hypothesis $H_1: F_i(x) = F(x - \theta_i)$, $\theta_1 \le \theta_2 \le \ldots \le \theta_k$, $\theta_1 \ne \theta_k$. These tests are based on a rank statistic $\underline{S} = \sum_i d_i(\vec{n}) \sum_l a_n (\underline{R}_{i,l}, \gamma)$ in which $\vec{n} = (n_1, \ldots, n_k)$. If $n^{-1}n_{i,n} \to \xi_i$ and $n^{1/2}\theta_{i,n} \to \theta_i$ it is shown that $\mathrm{Eff}((\vec{\xi}, \vec{d}, \gamma) \mid (F, \vec{\theta})) = \mathrm{Eff}(\gamma \mid F) \mathrm{Eff}(\vec{\xi} \mid \vec{\theta}) \mathrm{Eff}_{\vec{\xi}}(\vec{d} \mid \vec{\theta})$. For given $\vec{\xi}$ the 'minimax' efficiency weight-vector $\vec{d}_0(\vec{\xi})$ is derived with respect to $\Theta = \{\vec{\theta} \mid -1 = \theta_1 \le \ldots \le \theta_k = 1\}$ and also the Bayes vector $\vec{d}(\vec{\xi}, \tau)$ with respect to a d.f. τ on Θ . The properties of these tests are investigated. Further an allied class of tests is considered based on a statistic $\underline{W} = \sum_{n \le i} d_{n,i}(\vec{n}) \underline{W}_{n,i}$, where $\underline{W}_{n,i}$ is a rank statistic for the samples taken of \underline{x}_h and \underline{x}_i .

1. Introduction and Summary

By means of $n = n_1 + \ldots + n_k$ completely independent observations $x_{i,l}$, $l \le n_i$, $i \le k$ taken of k variables $\underline{x}_1, \ldots, \underline{x}_k$ with distribution functions $F_i(x) = F(x - \theta_i)$, $i \le k$ we want to test the hypothesis

$$H_0: \theta_1 = \ldots = \theta_k$$
,

against the alternative hypothesis

$$H_1: \theta_1 \leq \theta_2 \leq \ldots \leq \theta_k$$
, $\theta_1 \neq \theta_k$.

The class of tests considered are defined by means of a statistic of the structure

$$S(\overrightarrow{n}, \overrightarrow{d}(\overrightarrow{n}), \gamma; \underline{\overrightarrow{R}}) := \sum_{i=1}^{k} d_i(\overrightarrow{n}) \sum_{l=1}^{n_i} a_n(\underline{R}_{i,l}, \gamma), \tag{1.1}$$

in which $R_{i,l}$ is the rank number of observation $x_{i,l}$ obtained by arranging all n observations according to increasing magnitude, d_i (n) the weight of sample i, γ a score function and a_n (s, γ), $s \le n$ the scores which are defined by

¹) T.J. Terpstra, Department of Applied Mathematics, Twente University of Technology, Enschede, The Netherlands.

226

$$a_n(s, \gamma) := E\gamma(\underline{U}^{(s)}), \quad s \leq n,$$
 (1.2)

 $\underline{U}^{(1)}, \ldots, \underline{U}^{(n)}$ being the order statistics of a random sample of size n from a uniform distribution on [0, 1].

We assume that γ satisfies the condition

$$\Gamma: \int_{0}^{1} \gamma(u) du = 0, \qquad 0 < \int_{0}^{1} \gamma^{2}(u) du < \infty.$$
 (1.3)

The score function γ_F corresponding to the d.f. considered is given by [cf. Hájek/ Šidák, p. 19]

$$\gamma_F(u) = -\frac{f'}{f}(F^{-1}(u)), \qquad 0 < u < 1,$$
(1.4)

in which f is the probability density function.

If f is absolutely continuous and f' absolutely integrable then γ_F satisfies the first condition in (1.3).

If
$$\gamma \in \Gamma$$
 then $\sum_{s} a_n(s, \gamma) = n \int_{0}^{1} \gamma(u) du = 0$ and $E(\underline{S} \mid H_0) = 0$. For convenience we introduce the following notation

$$\sigma^2(\gamma) := \int_0^1 \gamma^2(u) du, \qquad (1.5a)$$

$$\mu_{\overrightarrow{n}}(\overrightarrow{d}) := \sum_{i} \frac{n_{i}}{n} d_{i},$$

$$\sigma_{\overrightarrow{n}}^{2}(\overrightarrow{d}) := \sum_{i} \frac{n_{i}}{n} d_{i}^{2} - \left(\sum_{i} \frac{n_{i}}{n} d_{i}\right)^{2},$$

$$(1.5b)$$

$$\mu_{\overrightarrow{\xi}}(\overrightarrow{d}) := \sum_{i} \xi_{i} d_{i}, \qquad 0 \leq \xi_{i} \leq 1, \sum_{i} \xi_{i} = 1,$$

$$\sigma_{\overrightarrow{\xi}}^{2}(\overrightarrow{d}) := \sum_{i} \xi_{i} d_{i}^{2} - (\sum_{i} \xi_{i} d_{i})^{2}.$$

$$(1.5c)$$

Then [cf. Hájek/Šidák, p. 163]

$$\operatorname{var}\left(\underline{S}\mid H_{0}\right) = n \,\, \sigma_{\overrightarrow{n}}^{2}\left(\overrightarrow{d}\left(\overrightarrow{n}\right)\right) \,\, \sigma^{2}(\gamma). \tag{1.6}$$

If we assume that $(\overrightarrow{\sigma_n^2}(\overrightarrow{d}(\overrightarrow{n}))) > 0$ and $\gamma \in \Gamma$ then we can consider instead of \underline{S} the standardized variable

$$\underline{S}_{n}^{*} := \left\{ \operatorname{var} \left(\underline{S}_{n} \mid H_{0} \right) \right\}^{-1/2} \underline{S}_{n}, \tag{1.7}$$

which has mean zero and variance one under H_0 .

We now assume that following conditions are satisfied for $n \to \infty$

$$k \text{ does not depend on } n,$$

$$n^{-1}n_{i,n} \to \xi_{i}, \qquad i \leq k,$$

$$d_{i}(\overrightarrow{n}_{n}) \to d_{i}(\overrightarrow{\xi}), \qquad i \leq k,$$

$$\sigma_{\overrightarrow{\xi}}^{2}(\overrightarrow{d}(\overrightarrow{\xi})) > 0.$$

$$(1.8)$$

Then the variable \underline{S}_n^* is asymptotically equal (with probability one) to the variable

$$T(\vec{\xi}, \vec{d}(\vec{\xi}), \gamma; \vec{n}, \vec{R}_n) := (n \ \sigma_{\vec{\xi}}^2(\vec{d}(\vec{\xi})) \ \sigma^2(\gamma))^{-1/2} \cdot \sum_{i=1}^k d_i(\vec{\xi}) \sum_{l=1}^{n_i} a_n(R_{i,l}, \gamma).$$

$$\tag{1.9}$$

Thus if we want to investigate the asymptotic properties of tests based on test-statistics \underline{S} defined by (1.1) and the conditions (1.8) are satisfied then this is equivalent to investigating the asymptotic properties of sequences of tests consisting of critical regions

$$Z_{\alpha n} := \{ \omega \mid T(\vec{\xi}, \vec{d}(\vec{\xi}), \gamma; \vec{n}, \vec{R}_n(\omega)) > \xi_{1-\alpha} \}, \tag{1.10}$$

where $\xi_{1-\alpha} = \phi^{-1}(1-\alpha)$, $\phi(u)$ being the normal distribution function. For convenience we denote the foregoing sequence of tests by $(\overrightarrow{\xi}, \overrightarrow{d}(\overrightarrow{\xi}), \gamma)$.

From the results of $\emph{H\'ajek}/\emph{S\'id\'ak}$ [1967, p. 227] we immediately obtain the following

Theorem 1: Under condition (1.8) the asymptotic power of a procedure $(\vec{\xi}, \vec{d}, \gamma)$, $\gamma \in \Gamma$, for testing the hypothesis H_0 against a sequence of alternatives defined by F and $\vec{\theta}_n$, for which $\gamma_F \in \Gamma$ and

$$n^{1/2} \overrightarrow{\theta}_n \rightarrow \overrightarrow{\theta},$$
 (1.11)

is equal to

$$1 - \phi \left(\xi_{1-\alpha} - \rho \left(\gamma, \gamma_F \right) \rho_{\overrightarrow{E}} (\overrightarrow{d}, \overrightarrow{\theta}) \sigma \left(\gamma_F \right) \sigma_{\overrightarrow{E}} (\overrightarrow{\theta}) \right), \tag{1.12}$$

where

$$\rho\left(\gamma,\gamma_{F}\right):=\int_{0}^{1}\gamma\left(u\right)\gamma_{F}\left(u\right)du\tag{1.13}$$

and

$$\rho_{\vec{\xi}}(\vec{d}, \vec{\theta}) := \frac{\cot_{\vec{\xi}}(\vec{d}, \vec{\theta})}{\sigma_{\vec{\xi}}(\vec{d}) \cdot \sigma_{\vec{\xi}}(\vec{\theta})} ,$$
where
$$\cot_{\vec{\xi}}(\vec{d}, \vec{\theta}) := \sum_{i=1}^{k} \xi_{i} (d_{i} - \mu_{\vec{\xi}}(\vec{d})) (\theta_{i} - \mu_{\vec{\xi}}(\vec{\theta})).$$
(1.14)

Remark:

- 1. This theorem contains the property that the variable \underline{T} defined by (1.9) is asymptotically normally distributed under H_0 .
- 2. The test considered is invariant with respect to the location parameter θ . Thus without loss of generality we may consider the sequence $\{\vec{\theta}_n\}$ for which (1.11) holds instead of $n^{1/2}$ $(\vec{\theta}_n \theta \cdot \vec{1}) \rightarrow \vec{\theta}$, where θ is the common value of $\theta_1, \ldots, \theta_k$ under H_0 .

From (1.12) the known property follows that for each $\vec{\xi}$ the asymptotic most powerful test against $(F, \vec{\theta})$ is obtained by taking $\gamma = \gamma_F$ and $\vec{d} = \vec{\theta}$. This test is also a locally most powerful rank test [cf. *Lehmann*].

Defining for given $\vec{\xi}$ the efficiency of a procedure $(\vec{\xi}, \vec{d}, \gamma)$ with respect to an alternative $(F, \vec{\theta})$ as the fraction of the number of observations the asymptotic most powerful test $(\vec{\xi}, \vec{\theta}, \gamma_F)$ needs to reach the same asymptotic power as the test considered, then it follows from (1.12) that

$$\operatorname{Eff}_{\overrightarrow{F}}((\overrightarrow{d}, \gamma) \mid (F, \overrightarrow{\theta})) = \operatorname{Eff}(\gamma \mid F) \cdot \operatorname{Eff}_{\overrightarrow{F}}(\overrightarrow{d} \mid \overrightarrow{\theta}), \tag{1.15}$$

where

$$\operatorname{Eff}(\gamma \mid F) := \rho^{2}(\gamma, \gamma_{F}) \tag{1.16}$$

and

$$\operatorname{Eff}_{\vec{F}}(\vec{d}\mid\vec{\theta}) := \rho_{\vec{F}}^2(\vec{d},\vec{\theta}). \tag{1.17}$$

If we now take into consideration the possibility of designing the experiment in such a way as to increase the power it follows that for each $(F, \vec{\theta})$ the asymptotic most powerful test is obtained if we take

$$\gamma = \gamma_F,
\vec{\xi} = \vec{\xi}_0 := (1/2, 0, \dots, 0, 1/2),
d = d_0 := (-1, 0, \dots, 0, 1).$$
(1.18)

It follows that with respect to this optimal procedure

$$\operatorname{Eff}((\vec{\xi}, \vec{d}, \gamma) \mid (F, \vec{\theta})) = \operatorname{Eff}(\gamma \mid F) \cdot \operatorname{Eff}(\vec{\xi} \mid \vec{\theta}) \cdot \operatorname{Eff}_{\vec{\xi}}(\vec{d} \mid \vec{\theta}), \tag{1.19}$$

where

$$\operatorname{Eff}(\vec{\xi} \mid \vec{\theta}) := \frac{4}{(\theta_k - \theta_1)^2} \cdot \sigma_{\vec{\xi}}^2(\vec{\theta}). \tag{1.20}$$

Thus we can speak about the efficiency of the score function γ with respect to F, the efficiency of the design $\vec{\xi}$ with respect to $\vec{\theta}$ and, given the design $\vec{\xi}$, the efficiency of the weight-vector \vec{d} with respect to $\vec{\theta}$.

Further we have

$$\operatorname{Eff}((\vec{\xi}, \vec{d}) \mid \vec{\theta}) = \operatorname{Eff}(\vec{\xi} \mid \vec{\theta}) \cdot \operatorname{Eff}_{\vec{\xi}}(\vec{d} \mid \vec{\theta}). \tag{1.21}$$

As the efficiency of $(\vec{\xi}, \vec{d})$ with respect to $\vec{\theta}$ is invariant for a linear transformation of $\vec{\theta}$ we assume $\vec{\theta} \in \Theta$, where

$$\Theta := \{ \overrightarrow{\theta} \mid -1 = \theta_1 \leqslant \theta_2 \leqslant \ldots \leqslant \theta_k = 1 \}. \tag{1.22}$$

We remark that the optimal procedure $(\vec{\xi}_0, \vec{d}_0, \gamma_F)$ only regards the samples taken of \underline{x}_1 and \underline{x}_k , thus the efficiencies of a procedure $(\vec{\xi}, \vec{d})$ for different vectors $\vec{\theta} \in \Theta$ are comparable.

In the sequel we shall consider optimality problems with respect to the "part" $(\vec{\xi}, \vec{d})$. For the "part" γ analogous problems can be considered. We shall pay special attention to the choice of the weight-vector \vec{d} for a given non-optimal design $\vec{\xi}$.

If $\vec{\theta}$ is known then \vec{d} will be taken equal to $\vec{\theta}$. But if $\vec{\theta}$ is not known then we must choose \vec{d} in some optimal way and it may be expected that the optimal vector \vec{d} will depend on $\vec{\xi}$.

In the following section we derive for given $\vec{\xi}$, $\xi_1 > 0$, $\xi_k > 0$ the "minimax" weight-vector \vec{d}_0 ($\vec{\xi}$) for which the minimum of Eff (($\vec{\xi}$, \vec{d}) | $\vec{\theta}$) with respect to Θ is maximal (cf. (2.1)). It appears that the efficiency of ($\vec{\xi}$, \vec{d}_0 ($\vec{\xi}$)) does not depend on $\vec{\theta}$ and that it is equal to the efficiency of the corresponding procedure which takes only into consideration the samples taken of \underline{x}_1 and \underline{x}_k (cf. (2.2)). Also the Bayes-vector \vec{d} ($\vec{\xi}$, τ) and the Bayes-efficiency Eff ($\vec{\xi}$, τ) with respect to a distribution function τ on Θ can be obtained. It appears that Eff ($\vec{\xi}$, τ) is equal to the largest eigenvalue of the positive definite matrix (2.11) and that \vec{d} ($\vec{\xi}$, τ) immediately follows from the corresponding eigenvector (cf. (2.9)).

In section 3 we consider an allied class of tests based on onesided critical regions defined by means of a variable

$$W(\vec{n}, \{d_{h,i}(\vec{n})\}, \gamma; \underline{R}) := \sum_{h \leq i} \sum_{d_{h,i}(\vec{n})} W_{h,i}(\gamma; \underline{R}), \tag{1.23}$$

where

$$W_{h,i}(\gamma; \overrightarrow{R}) := (n_h + n_i + 1) \sum_{l=1}^{n_i} a_{n_h + n_i} (\underline{R}_{i,l}^{(h,i)}, \gamma), \tag{1.24}$$

 $R_{i,l}^{(h,i)}$, $l \le n_i$ being the rank numbers of the observations $x_{i,l}$, $l \le n_i$ if the two samples taken of x_h and x_i are arranged according to increasing magnitude.

For $n \to \infty$ and under appropriate conditions the variable $n^{-3/2} \underline{W}^{(n)}$ is under H_0 as well as under contiguity alternatives asymptotically equivalent with a statistic $n^{-1/2}\underline{S}_n$ of the structure (1.1) with a weight vector $\overrightarrow{d}^{(W)}(\overrightarrow{\xi})$ given by (3.17). From this equivalence we immediately obtain property (3.19) for the asymptotic efficiency of the weight-functions $\{d_{h,i}(n)\}$ for a given design $\overrightarrow{\xi}$ against a contiguity alternative $\overrightarrow{\theta}$. This efficiency will be investigated for some tests formerly introduced by the author [cf. Terpstra, 1952, 1955].

2. The Minimax and the Bayes Weight-Vector

We will prove the following

Theorem 2: For a given design $\vec{\xi}$, $\xi_1 > 0$, $\xi_k > 0$ the minimax weight-vector \vec{d}_0 ($\vec{\xi}$) is given by

$$\vec{d}_0(\vec{\xi}) = \left(-1, \frac{\xi_k - \xi_1}{\xi_k + \xi_1}, \dots, \frac{\xi_k - \xi_1}{\xi_k + \xi_1}, 1\right)$$
(2.1)

and

$$\operatorname{Eff}\left((\overrightarrow{\xi}, \overrightarrow{d_0}(\overrightarrow{\xi})) \mid \overrightarrow{\theta}\right) = \frac{4\xi_1 \ \xi_k}{\xi_1 + \xi_k}, \qquad \overrightarrow{\theta} \in \Theta, \tag{2.2}$$

this efficiency being equal to that of the corresponding procedure which is only based on the two samples taken of \underline{x}_1 and \underline{x}_k .

Remark: This theorem is in concordance with property (3.3) shown by Koziol/Reid [1977] from which it follows that under H_0 as well as under any contiguity alternative \overrightarrow{A}

$$T(\vec{\xi}, \vec{d_0}(\vec{\xi}), \gamma; \vec{n_n}, \vec{R_n}) - (n^3 \xi_1 \xi_k (\xi_1 + \xi_k) \sigma^2 (\gamma))^{-1/2} \underline{W}_{1,k}^{(n)}) \stackrel{P}{\to} 0, \tag{2.3}$$

where $\underline{W}_{1,k}^{(n)}$ is defined by (1.24).

Proof: The latter part of the theorem immediately follows by remarking that

$$\operatorname{Eff}\left\{ \left(\left(\frac{\xi_1}{\xi_1 + \xi_k}, \frac{\xi_k}{\xi_1 + \xi_k} \right), (-1, 1) \right) | (-1, 1) \right\} = \frac{4\xi_1 \xi_k}{(\xi_1 + \xi_k)^2}. \tag{2.4}$$

To prove the first part we remark that

$$\inf_{\overrightarrow{d}} \operatorname{Eff} \left((\overrightarrow{\xi}, \overrightarrow{d}) \mid \overrightarrow{\theta} \right) = \inf_{\overrightarrow{d}} \rho_{\overrightarrow{\xi}}^{2} (\overrightarrow{d}, \overrightarrow{\theta}) \sigma_{\overrightarrow{\xi}}^{2} (\overrightarrow{\theta}) \leq \inf_{\overrightarrow{d}} \sigma_{\overrightarrow{\xi}}^{2} (\overrightarrow{\theta}) = \sigma_{\overrightarrow{\xi}}^{2} (\overrightarrow{d}_{0} (\overrightarrow{\xi})), \tag{2.5}$$

while

$$\operatorname{Eff}((\vec{\xi}, \vec{d}) \mid \vec{d}_0(\vec{\xi})) < \operatorname{Eff}((\vec{\xi}, \vec{d}_0(\vec{\xi})) \mid \vec{d}_0(\vec{\xi})) = \sigma_{\vec{k}}^2(\vec{d}_0(\vec{\xi})), \quad \vec{d} \neq \vec{d}_0(\vec{\xi}). \quad (2.6)$$

We remark that (cf. (1.14) and (1.5c))

$$\operatorname{cov}_{\overrightarrow{\xi}}(\overrightarrow{d_0}(\overrightarrow{\xi}), \overrightarrow{\theta}) = \sigma_{\overrightarrow{\xi}}^2(\overrightarrow{d_0}(\overrightarrow{\xi})), \qquad \overrightarrow{\theta} \in \Theta, \tag{2.7}$$

consequently

$$\operatorname{Eff}\left((\vec{\xi}, \vec{d}_0(\vec{\xi})) \mid \vec{\theta}\right) = \sigma_{\vec{\xi}}^2(\vec{d}_0(\vec{\xi})), \qquad \vec{\theta} \in \Theta. \tag{2.8}$$

From (2.6) and (2.8) it follows that \vec{d}_0 ($\vec{\xi}$) is the minimax-weight-vector and that it is an equalizer vector.

Theorem 3: For a given design $\vec{\xi}$, $\xi_i > 0$, $i \le k$ and a given apriori distribution τ on Θ the Bayes-vector \vec{d} ($\vec{\xi}$, τ) and the Bayes-efficiency Eff ($\vec{\xi}$, τ) are given by

$$\vec{d}(\vec{\xi},\tau) = \left(\frac{u_1(\vec{\xi},\tau)}{\sqrt{\xi_1}}, \dots, \frac{u_k(\vec{\xi},\tau)}{\sqrt{\xi_k}}\right)$$
(2.9)

and

$$\operatorname{Eff}(\vec{\xi},\tau) = \lambda(\vec{\xi},\tau),\tag{2.10}$$

where $\lambda(\vec{\xi}, \tau)$ is the largest eigenvalue and $\vec{u}(\vec{\xi}, \tau)$ the corresponding eigenvector of the matrix

$$\|\sqrt{\xi_{i}\,\xi_{j}}\cdot E_{\tau}(\underline{\theta}_{i}-\mu_{\overrightarrow{k}}(\underline{\theta}))(\underline{\theta}_{j}-\mu_{\overrightarrow{k}}(\underline{\theta}))\|. \tag{2.11}$$

Proof: For each \overrightarrow{d} with $\sigma_{\overrightarrow{\xi}}^2(\overrightarrow{d}) > 0$

$$E_{\tau} \left\{ \text{Eff} \left((\overrightarrow{\xi}, \overrightarrow{d}) \mid \overrightarrow{\underline{\theta}} \right) \right\} = E_{\tau} \frac{\text{cov}_{\overrightarrow{\xi}}^{2} (\overrightarrow{d}, \underline{\overrightarrow{\theta}})}{\sigma_{\overrightarrow{\xi}}^{2} (\overrightarrow{d})}. \tag{2.12}$$

As the right member is invariant for a linear transformation of \vec{d} , we may assume that

$$o_{\vec{k}}^2(\vec{d}) = \sum_i \xi_i d_i^2 = 1.$$
 (2.13)

Defining $\widetilde{\theta}_{i \vec{k}} := \theta_{i} - \mu_{\vec{k}}(\vec{\theta})$ we have

$$\operatorname{cov}_{\overrightarrow{\xi}}(\overrightarrow{d}, \overrightarrow{\theta}) = \sum_{i} \xi_{i} d_{i} \widetilde{\theta}_{i, \overrightarrow{\xi}}. \tag{2.14}$$

Defining \overrightarrow{u} by

$$u_i := \sqrt{\xi_i} d_i, \quad i = 1, \dots, k,$$
 (2.15)

we have

$$E_{\tau} \{ \text{Eff} ((\overrightarrow{\xi}, \overrightarrow{d}) \mid \overrightarrow{\underline{\theta}}) \} = \sum_{i} \sum_{j} u_{i} u_{j} c_{i,j} (\overrightarrow{\xi}, \tau)$$
 (2.16)

where

$$c_{i,j}(\vec{\xi},\tau) := \sqrt{\xi_i \, \xi_j} \, E_{\tau} \, \underline{\widetilde{\theta}}_{i,\vec{\xi}} \, \underline{\widetilde{\theta}}_{j,\vec{\xi}} \; . \tag{2.17}$$

The Bayes-vector corresponds with the vector $\overrightarrow{u}(\xi, \tau)$ that maximizes the right member of (2.16) under the constraint (cf. (2.13) and (2.15))

$$\sum_{i=1}^{k} u_i^2 = 1, (2.18)$$

thus the Bayes-efficiency is equal to the largest eigenvalue $\lambda(\vec{\xi}, \tau)$ of the matrix $\|c_{i,i}(\vec{\xi}, \tau)\|$ and $\vec{u}(\vec{\xi}, \tau)$ is equal to the corresponding eigenvector.

Corollary 1: The following inequality holds

$$\operatorname{Eff}(\vec{\xi}, \tau) \geqslant E_{\tau} \operatorname{Eff}((\vec{\xi}, E_{\tau} \vec{\theta}) | \vec{\theta}) \geqslant \operatorname{Eff}((\vec{\xi}, E_{\tau} \vec{\theta}) | E_{\tau} \vec{\theta}). \tag{2.19}$$

Proof: Using the inequality $E\underline{z}^2 = \text{var } \underline{z} + (E\underline{z})^2$, we obtain

$$\begin{aligned} & \operatorname{Eff}\left(\overrightarrow{\xi},\tau\right) &= \sup_{\overrightarrow{d}} \left[\operatorname{var}_{\tau} \left\{ \rho_{\overrightarrow{\xi}}(\overrightarrow{d},\overrightarrow{\underline{\theta}}) \ \sigma_{\overrightarrow{\xi}}(\overrightarrow{\underline{\theta}}) \right\} + \rho_{\overrightarrow{\xi}}^{2}(\overrightarrow{d},E_{\tau}\overrightarrow{\underline{\theta}}) \ \sigma_{\overrightarrow{\xi}}^{2}(E_{\tau}\overrightarrow{\underline{\theta}}) \right] \geqslant \\ & \geqslant \sup_{\overrightarrow{d}} \rho_{\overrightarrow{\xi}}^{2}(\overrightarrow{d},E_{\tau}\overrightarrow{\underline{\theta}}) \ \sigma_{\overrightarrow{\xi}}^{2}(E_{\tau}\overrightarrow{\underline{\theta}}) = \sup_{\overrightarrow{d}} \operatorname{Eff}\left((\overrightarrow{\xi},\overrightarrow{d}) \mid E_{\tau}\overrightarrow{\underline{\theta}}\right) = \\ & = \operatorname{Eff}\left((\overrightarrow{\xi},E_{\tau}\overrightarrow{\underline{\theta}}) \mid E_{\tau}\overrightarrow{\underline{\theta}}\right) = \sigma_{\overrightarrow{\xi}}^{2}(E_{\tau}\overrightarrow{\underline{\theta}}) \ . \end{aligned}$$

3. An Allied Class of Tests

We consider the class of tests which are based on a statistic \underline{W} as defined by (1.23) and (1.24). We shall investigate the asymptotic properties of these tests under the condition that for $n \to \infty$

$$k \text{ does not depend on } n,$$

$$n^{-1}n_{i,n} \to \xi_i, \qquad i \leq k,$$

$$d_{h,i}(\overrightarrow{n_n}) \to d_{h,i}(\overrightarrow{\xi}), \qquad h < i, \quad h, i \leq k.$$

$$(3.1)$$

Defining

$$\underline{W}_{i} := (n+1) \sum_{l=1}^{n_{i}} a_{n} (\underline{R}_{i,l}, \gamma), \tag{3.2}$$

we use the property shown by Koziol/Reid [1977] that under H_0 and any contiguity alternative $\overrightarrow{\theta}$

$$n^{-3/2} \{ \underline{W}_{h,i}^{(n)} - (\xi_h \underline{W}_i^{(n)} - \xi_i \underline{W}_h^{(n)}) \} \stackrel{P}{\to} 0.$$
 (3.3)

Further they proved that under the foregoing conditions

$$\operatorname{var}(n^{-3/2}\underline{W}_{h,i}^{(n)}) \to \xi_h \ \xi_i \ (\xi_h + \xi_i) \ \sigma^2 \ (\gamma) \tag{3.4}$$

and

$$\cos\left(n^{-3/2}\underline{W}_{h,i}^{(n)}, n^{-3/2}\underline{W}_{h,j}^{(n)}\right) \to \xi_{h} \xi_{i} \xi_{j} \sigma^{2} (\gamma)
\cos\left(n^{-3/2}\underline{W}_{h,i}^{(n)}, n^{-3/2}\underline{W}_{i,j}^{(n)}\right) \to -\xi_{h} \xi_{i} \xi_{j} \sigma^{2} (\gamma)
\cos\left(n^{-3/2}\underline{W}_{h,i}^{(n)}, n^{-3/2}\underline{W}_{i,j}^{(n)}\right) \to 0, \neq (h, i, j, l).$$
(3.5)

Remark: For the special case that γ is equal to the logistic score function

$$\gamma_L(u) = 2u - 1, \qquad 0 \le u \le 1, \tag{3.6}$$

property (3.3) has been independently obtained by the author. Then $\underline{W}_{h,i}$ and \underline{W}_i are equal to the variables

$$\underline{U}_{h,i} := \sum_{l}^{n_h} \sum_{l}^{n_i} \operatorname{sgn}\left(\underline{x}_{i,l'} - \underline{x}_{h,l}\right)$$
(3.7)

respectively

$$\underline{U}_i := \sum_{h \neq i} \underline{U}_{h,i} \,. \tag{3.8}$$

For the variables $\underline{U}_{h,i}$, h < i, h, $i \le k$ we have [cf. *Terpstra*, 1954]

$$var\left(\underline{U}_{h,i} \mid H_0\right) = \frac{1}{3} n_h \, n_i \, (n_h + n_i + 1) \tag{3.9}$$

and

$$cov (\underline{U}_{h,i}, \underline{U}_{h,j} \mid H_0) = \frac{1}{3} n_h n_i n_j,$$

$$cov (\underline{U}_{h,i}, \underline{U}_{i,j} \mid H_0) = -\frac{1}{3} n_h n_i n_j,$$

$$cov (\underline{U}_{h,i}, \underline{U}_{j,l} \mid H_0) = 0, \quad \neq (h, i, j, l),$$
(3.10)

from which it follows that under H_0 and consequently also under any contiguity alternative $\overrightarrow{\theta}$

$$n^{-3} \cdot \text{var} \left(\xi_h \ \underline{U}_{i,j}^{(n)} + \xi_i \ \underline{U}_{j,h}^{(n)} + \xi_j \ \underline{U}_{h,i}^{(n)} \right) \stackrel{P}{\to} 0 \ .$$
 (3.11)

Denoting the sample consisting of all observations not taken of \underline{x}_h and \underline{x}_i by $(\overline{h,i})$, we have

$$\underline{U}_{(\overline{h,i}),i} = \underline{U}_i - \underline{U}_{h,i}. \tag{3.12}$$

Using this property and applying (3.11) to the three samples h, i and (\overline{h}, i) we immediately obtain (3.3).

From (3.1), (3.4) and (3.5) it follows that under H_0 and any contiguity alternative

$$\operatorname{var}\left(n^{-3/2}\underline{W}^{(n)}\right) \to \sigma_{W}^{2} , \qquad (3.13)$$

where

$$\sigma_{W}^{2} := \left[\sum_{h < i}^{\Sigma} d_{h,i}^{2}(\vec{\xi}) \xi_{h} \xi_{i} (\xi_{h} + \xi_{i}) + 2 \sum_{h < i < j}^{\Sigma} \xi_{h,i} (\vec{\xi}) d_{h,j} (\vec{\xi}) + \right. \\ \left. + d_{h,i}(\vec{\xi}) d_{i,i}(\vec{\xi}) - d_{h,i}(\vec{\xi}) d_{i,j} (\vec{\xi}) \right\} \xi_{h} \xi_{i} \xi_{j} \right] \cdot \sigma^{2} (\gamma) .$$

$$(3.14)$$

We now consider a sequence of tests consisting of critical regions

$$Z_{\alpha,n}^{(W)} := \{ \omega \mid n^{-3/2} \ W^{(n)} (\vec{R}_n (\omega)) > \xi_{1-\alpha} \cdot \sigma_w \}, \tag{3.15}$$

where $\xi_{1-\alpha} = \phi^{-1}(1-\alpha)$, ϕ being the normal distribution function. Now from (1.23), (1.24), (3.2) and (3.3) it follows that under H_0 as well as under any contiguity alternative $\vec{\theta}$.

$$n^{-3/2} \left(W^{(n)} - (n+1) \sum_{i=1}^{k} d_i^{(w)} (\vec{\xi}) \sum_{l=1}^{n_i} a_n (\underline{R}_{i,l}, \gamma) \right) \stackrel{P}{\to} 0, \tag{3.16}$$

where

$$d_{i}^{(w)}(\vec{\xi}) := \sum_{h < i} \xi_{h} d_{h,i}(\vec{\xi}) - \sum_{h > i} \xi_{h} d_{i,h}(\vec{\xi}).$$
(3.17)

From (3.16), (1.9) and Theorem 1 it follows that under the condition

$$\sigma_{\vec{\xi}}^2(\vec{d}^{(w)}(\vec{\xi})) > 0 \tag{3.18}$$

the sequence of tests $\{Z_{\alpha,n}^{(W)}\}$ defined by (3.15) and the procedure $(\overrightarrow{\xi}, \overrightarrow{d}^{(W)}, (\overrightarrow{\xi}), \gamma)$ defined by (1.10) and (3.17) have the same asymptotic size α under H_0 and the same asymptotic power against any contiguity alternative $\vec{\theta}$.

From the foregoing properties it immediately follows that

$$\operatorname{Eff}_{\vec{k}}(\{d_{h,i}(\vec{\xi})\} \mid \vec{\theta}) = \operatorname{Eff}_{\vec{k}}(\vec{d}^{(w)}(\vec{\xi}) \mid \vec{\theta}), \tag{3.19}$$

which is given by (3.17), (1.17) and (1.14).

Some special cases:

First we consider the statistic

$$\underline{W}_1 := \sum_{h < i} \underline{U}_{h,i} \,, \tag{3.20}$$

where $\underline{U}_{h,i}$ is defined by (3.7).

The variable \underline{W}_1 is related to Kendall's rank correlation statistic \underline{S} when ties of the sizes n_1, \ldots, n_k are present in one ranking [cf. Terpstra, 1952]. For this statistic $d_{h,i}(\vec{\xi}) = 1$ and it follows that

$$d_i^{(W_1)}(\vec{\xi}) = 2(\xi_1 + \ldots + \xi_{i-1}) + \xi_i - 1. \tag{3.21}$$

Thus $\vec{d}^{(W_1)}(\vec{\xi})$ satisfies the condition that for all $\vec{\xi}$

$$d_1(\vec{\xi}) \leq d_2(\vec{\xi}) \leq \ldots \leq d_k(\vec{\xi}), \ d_1(\vec{\xi}) < d_k(\vec{\xi}),$$
(3.22)

which means that for all $\vec{\xi}$ the test based on \underline{W}_1 is admissible as $\mathrm{Eff}_{\vec{\xi}}(\vec{d}(\vec{\xi}) \mid \vec{\theta}) = 1$ if $\vec{\theta} = \vec{d}$ ($\vec{\xi}$), while \vec{d} ($\vec{\xi}$) $\in \Theta$.

We also consider the statistic

$$\underline{W}_{2} := n^{2} \sum_{h < i} (n_{h} n_{i})^{-1} \underline{U}_{h,i}, \qquad (3.23)$$

for which [cf. Terpstra, 1955]

$$n^{-2} E \underline{W}_2 = \sum_{h < i} \sum \{2P [\underline{x}_h < \underline{x}_i] - 1\}.$$
 (3.24)

For this statistic $d_{h,i}(\vec{\xi}) = (\xi_h \xi_i)^{-1}$ and it follows that

$$d_i^{(W_2)}(\vec{\xi}) = (\xi_i)^{-1} (2i - (k+1)). \tag{3.25}$$

The test based on \underline{W}_2 is not admissible for each $\vec{\xi}$ as the necessary condition (3.22) does not hold for each $\vec{\xi}$.

References

Hájek, J., and Z. Šidák: Theory of Rank Tests. Prague 1967.

Koziol, J.A., and N. Reid: On the asymptotic equivalence of two ranking methods for k-sample linear rank statistics. Ann. Statist. 5, 1977, 1099-1106.

Lehmann, E.L.: Testing Statistical Hypotheses. New York 1959.

Terpstra, T.J.: The asymptotic normality and consistency of Kendall's test against trend when ties are present in one ranking. Nederl. Akad. Wetensch. Indag. Math. 14, 1952, 327-333.

- -: A nonparametric test for the problem of k-samples. Nederl. Akad. Wetensch. Indag. Math. 16, 1954, 505-512.
- -: A generalization of Kendall's rank correlation statistic. Nederl. Akad. Wetensch. Indag. Math. 17, 1955, 690-696 and 18, 59-66.

Received April 3, 1978 (revised December 19, 1978)

