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A NOTE ON A SEQUENTIAL PROBABILITY

RATIO TEST
por

M.S. ABU-SALIH

Summary. This is a type of problem
that lies outside the scope of the expo-
nential family. If the Zi are real valued,

with density % exp [- Egg]h(z—u) (here h(z)

=1 or 0, according as 2z > 0 or 1z g 0),
and where one value of 0 is tested against
another, it is shown that

n
2n R =1b + (z,-U_-a),
n igl i "n

where Un=1?12n Zi, a is a positive cons-

tant. Using this expression it is proved
that for every non-degenerate distridbution
of the 1Z,, P(N > n) is exponentially boun
ded, which, of course, implies termination
with probability 1.
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§1. Introduccidn. In Abu-Salih [1], the follo

wing model was discussed. Z.Zl,Zz,... is a se-

quence of independent identically distributed (iid)
m-vectors, with k-parameter exponential distribu-
tion P. G¥ is a group of transformations of the
form Zn - C(Zn + b), where C€G, G is a Lie
group of m X m nonsingular matrices, dim G > 1,
and G is closed in the general linear group
GL(m,R); b is an m-vector of reals, and the total
ity of vectors b form an invariant subspace un
der G.

Let P have the density

k
(1.1) P2 (x) = B(@)h(z) exp ( ] 0.5, (2))
joq 173

with respect to Lebesgue measure on the m-dimen-

sional Euclidian space Em, and where 0 = (01,09

no,Gk)' belongs to the natural parameter space 2,

and S = (Sl,g.n,sk)' is a continuously differen-
k

tiable mapping of E" into E".

Let U = (U1,U2,oaa) be a maximal invariant
under G* in the sample space, and Yy = y(0)
a maximal invariant in Q. For given 61,626 Q
such that v(0') # y(0?%) , write UM = (U,,0,,

""Un)’ and let P'in be its density under

Y(Gl) s 1 =1,2, with respect to some o-finite
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measure. Let

- ] ?
(1.2) r = P', / P 1n
and
n
(1.3) Rn = rn(U ) s

then Rn is the probability ratio at the nth

stage of sampling based on the maximal invariant U.
A sequential probability ratio test (SPRT) based

on {Rn} continues sampling as long as B < Rn< A
(B and A are two fixed stopping bounds), stops
and accepts ol (resp. 92) the first time that
Rn < B (resp. Rn > A). A SPRT based on {Rn}

will be called in 4nvariant SPRT.

The limiting behavior of R_ = is studies in [1]
under the assumption that the actual distribution
belongs to certain family JF, and it is proved

thatrthere are three cases:

(i) 1lim Rn = ®, a.e.P,

n-»>o
(ii) 1im R_ = 0, a.e.P,
n->c n
(iii) lim spp R = o aqaaf,ﬁ—or lim inf Rn;
R B . - n+eo

= 0, a,e,P;j

each one corresponding to a subfamily of F. This
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establishes termination with probability 1 of
the (SPRT) based on {r_ } .

The results obtained above form an extension
of those of Wijsman in [2] and [3] in which the
underlying model was assumed to be multivariate
normal. Our methods of proof are closely modeled
on those in [2] and [3] .

§2. Sequential probability ratio test based on
negative exponential distribution with location pa-

rameter. It is of interest to consider a model si
milar to the exponential one, except for a loca-
tion parameter in the function h(z) of (1.1). We
were unable to reduce this model to the one we have
summarized in the introduction. Yet, we have
worked a simple example for which we obtained an
exponential bound on P(N > n) for any non-dege-
narate distribution P,

Let Z,Zi,Z2,°oa be iid random variables with
density Pg with respect to Lebesgue measure.
Assume

(2.1) pg(z) = % h(z-u)exp(- é(z-u))

where © = (u,0) and h(x) =1 if x > 0 ’
h(x) = 0 if x < 0. 8 = {8 = (M,0): - ®» < u<wo,0>0}
is the parameter space. The joint density of
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(Zi,oou,zn) is given by

2 5 590
19> 99n
(2.2) PO (zl,ea,,zn)

n n
1
= [ TT h(z_-u)]em[- l ! (z,-m].
n i 1
g i=1 g i=1

Test about 0, e.g. H,: 0 = 01 vs H1: o = 02 -

where 01 > 02. Consider the group of transla-

tions G acting on the sample space as follows:
g: 2., +7Z. + a for i=1,2,...

where -» < a < ® and gegG. It is clear that

G leaves the model invariant.
Using (2.11) in [1] ((3.3) in [2]) we get

(2.3) r (zl,a.o,zn)

1 1 n n '
f—g exp [- —— ) (zi+a-u)]TT h(zi+a-u)da
02 2 i=1 i=1
) n
f—% exp[- é— ) (zi+a-u)]f¥ h(z ,+a-u)da
o4 1 i=1 i=1
’ (o) n
1 2 1 n
og - exp [ 5, iZi(zi w)]exp[ 02(u un)]
= e .
1 1 1 n
— — exp[- =— ] (z;-w)]exp[-—=2 (p-u_)
of ® 91 421 1 ] o1 ]
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(Where u_ = min z. )

1<ign
g n
1 .n-1 1 1
= (=) exp[( == - =) | (z,-u)].
02 01 02 . 1 n

But Rn = rn(Zi,oo,Zn), hence from (2.3):

(o} (o]
(2.4) &n R_ = &n (—l)-1+ n n e |
n ag o}
2 2
n
1 1
t (—-—=) § (2.-uU0)
CH o, foq i n

The SPRT mentioned above will continue sam-
pling as long as &n B < &n R < 2n A and, from

(2.4), it continues sampling if

g

(2.5) 2n B +8n —L
(o]
2
o n
1 1 1
<nn —+ (= --=) J (z.,-U)
92 9 93 j=4 1 m
94
<fn A + &n — ,
o
2.
where U_ = min 2., Let
1<ign
(o)
A1 = ( &n B + 2n al )/ ( El - al )
‘ 2 1 2
(o}
(2.6) Ay = ( &n A + 2n 61)/ 31 - al
2 1 2
o
a = - An 31 / (61 - El)
2 1 2

- luy



= Cen 2 -an G- =

1 9 91 9
(a is positive since numerator and denominator have

the same sing). Using (2.5) and (2.6) we continue

sampling as long as:

n
(2.7) A, < Z (z; - U - a) <A,

From now on, we drop the assumption that Z, Zl,
Zps--- have the density (2.1) and instead consi-
der Zl,Zz,nea
bution P and denote the distribution of (Zi,o.

iid random variables with distri-

qa,Zn) also by P. The only restriction we im-
pose on P is that it be non-degenerate. Unden
this conditions, we Like to establish termination,
with probability 1, of the SPRT based on (2.7) and
g§ind exponential bounds on P(N > n). Let

n
(2.8) E = {A, < [ (z, -U -a) <A}

lni,neo,sn)o Given E_

and leg us compute P(En+1

with iZi(Ai- U= a) = dn’ suppose Z ., 2 U ; then
n+1
Y (z.-uU
ia 1

1- a) = d + Z et U - aAe.
i=1

n+

Hence, g4ven En-and Z 41 % Ups Eopn ;mplles

Zn+1- Un- a <D= A2- Ai’ and, in particular

(2.9) Un < zn+1 < Un + D + a.
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On the other hand, g4ven E and z_
implies that

+1

(Un’ then En

+1

n+1
121 (Z; - U ,y-2a) =d +n(U -2 )-a
lies between A1 and A2 hence
- < - - -
Ay d_ n(Un Zn+1) a < d >
which implies
(2.10) u -2 _a., <uy+ 2.2
n n n n+1 n 5 n

Comparing (2.9) and (2.10) we have: g4ven Bn .

then En+1 implies
(2.11) v -X<z <u +1
n n n+1 n *
where L = D + a. Furthermore, given El,ncoEn .
then En+1 implies (2.11), and so
(2.12) P(E_ ,|E;s. B )
sP(U-E'(Z <U "'LIE oooE )
n g n+1 n 1? i
= E[I | E,y.v.yE_]
Fn+1 L5 n
= E[E[1 |[U_sE,seeesE J|E,se0u’sE. ]
. Fn+1 n’"1 : n 1 n
with probability 1, where IF is the indicator
n+1
= - L
function of Foeq and F_ {Un ;< Z ,1<U, ¢ L} .
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Suppose that the support of 2Z is not contained
in an interval of length 2L, and define

p = sup P(x-L < Z < x+L); then p < 1. Fur-
-0 x <00

thermore, since Zn+1 is independent of Zl,.,“,Zn
and lrence independent of Ei.e.o,En and Un’ we have

E[Ip  |EjsecesEp s U = u_]

n+1
L -

= PQu - & < 2.4 <upt LIEysoeesE nUy = up)

- L .

= P(un- = < Zn+1 < un+ L) £ p <1

and therefore,

E[E[Irn+1|31,oo.,En,Un1|E1,ooo,En] £ p<1;

hence (2.12) becomes:

(2.13) P(En*ilsl,oaosn) £ p<1 for n = 1,2,...
But
P(N>n) = P(B <R <A, 1&m¢gn)
= P(E1E2.0.En)

= P(El)P(Ez|Ei)P(E3|E1E2)O"P(EnlEi.uEn_i)

-1 n
P(E,) p° < cp ,

/A

with ¢ > 0, p < 1.

Therefore, we have established an exponential
bound on P(N>n), for P with support noi contaih-

147



ed 4in an intenrval of Length 2L.

The case of bounded support is considered
in the rest of the paper. Without loss of ge-
nerality, we assume that the support of P is
(g,b). We may do this because we are studying

y (Z, - U - a) which is invariant under
42q 3 n

translations.

CASE 1: a¢ (0,b). Let § be a positive constant

such that a + 28 < b. Hence
(2.14) P(Z >a + 28 ) = p > 0.
Let
D
m = [E] + 1 (0 = |a,- A )
vk = min 2.
1€ismk
mk
(2.15) E,_= {A < .Z> (z, -V, - a)< Ayl
i=1
(so E, is the same as E_, from (2.8) )
B, = {zi > a+2§, i = m(k-1)+1,...,mk}
A, = {vk < 68},

Since &§ > 0 then

(2.16) P(Z > 68) = q4 < 1.
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Let

§k §(k-1)
A, = (z, - VvV, - a) - (Z2.-V - a) ;
k j=1 i k i=1 i k-1
then §k
A, (Z2.- a) - mV, + m(k-1)(V -v.)
k = fem(k-1)+1 i k k-1 'k
mk
> (Z,- a) - mV »
f=m(k-1)+1 * k
since Vk < vk—l' Also we have

(2.17) i) Given E then E_ implies |Ak] < D.

k-1° k
ii) Given A, then Bk*i implies Ak+j > 2mé
- mé = mé > D », which implies

| A | > D for i = 1,2,.... .

k+19

Therefore, g4ven Ek+j and A, we have for any

§ 2 132400

-~

(2.18) Bk+j+1 Amplies Ek+j+1 (~ denotes comple-
mentation)

(2.19) Ey,y,q implies §k+j+1

Now,

(2.20) P(E1E2...E2k )
& PEE, i+ Ep)

=z P(Ek...EzkAk) + P(Ek...E2kAk)
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IN

P(Ek,,.z2kAk) + P(Ak)

mk
P(EkuoozzkAk) + q1 ]

by (2.16). And

(2.21)  P(E ...E, A ) = P(Ekua.B2k|Ak)P(Ak)

- € P(Ek,,.nzklAk) .
because 0 < P(Ak) <1 for k = 1,2... Also

(2.22) P(E,...E )

2k ' 'k

= P(Eklhk)P(Ek+1|Ek,Ak)caeP(E2k|Ek,Ek+1,=o

~esBopgr A
< P(EkIAk)P(Bk+1|Ek,Ak)o,.P(B2k|Ek,oo

cooEopa1 Ay)

by (2.19). But, since is independent of

Bi+s
Ak and Ek+j-i for i f 1500057 then

(2.23) P(Bk+j|Ak, Eppi-i® i=1,.00.53)

- b m-
= P(Bk+j) =1-p =0p,

where p is given by (2.14) and so py < 1.

Using (2.23), (2.22), and (2.21), then (2.20)

P(E k mk 2k

becomes: 1Ez...E”‘) £ c Py + qy £ ey Py
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where pg = max(pi, q?) <1, and ¢y, c, are

easily determined positive constants. From (2.7)

Vv
P(N>n) = P(A, < J(Z;-U -a) < A,, for v = 1,...,n)
i=1
v
£ P(A1 < Z (Zi=Uv-a)'<A2,.for vV = m,2m,..
i=1
oo0g2mk).

(where k 1is the largest integer such that 2mk<n)

< P(EioboEzk)
€ ¢y °§k < ep”
where p = p;/m< 1, agd £ > 0, Hence,
(2.24) P(N > n) < cp?} c >0, p<1
CASE 2: a = b,
n n n
izi(zi - U - a)s= iZi(zi - U~ b) sigl(zi - b)

with probability 1.

%*

Let N be the smallest integer £ for which

L

*
) (z;- b) ¢ Ay, then N € N'. But Z < b with pro
i=1

bability 1, therefore we need to consider A, < 0

1
only.
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Let § be a constant, 0 < § < b, and

m = [%ﬂ + 1, where d = [A,]| . Let
mk
(2.25) E, = {A; < ] (2,-b) < 0}
i=1
B = {z2;- b < -8, i=m(k-1)+1,...,mk}.
Given E _4» then E, implies
' mk m(k-1)
(2.26) [A ] = I.{ (Z;- b) - 'Z (z;- b)|
i=1 i=1
mk
= |1 (z,- b)| < 4
i=m(k-1)+1 :
But, Bk implies
mk
(2.27) |8 | = |] (Z;,- b)| >mé >4,
m(k-1)+1

which implies E;j;Ek’ and therefore E E

~

implies Bk' Hence, for k = 2,3,...

(2.28) P(EklEk_l,.o.,El) < P(Bklsk_l,,.,zl)

= p(ﬁk) =1 - (P(Z < b - 6))m = q<1,
and therefore,

(2.29) P(E;,...,E.) = P(E,)P(E,|E,)....P(EL|E, ...

'.’El)‘ch [}
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with o > 0, q < 1.

\Y
P(A, <’{ (Z,-b) €0, V
i=1

(2.30) P(N%>n)

: PR 3

ml

P(A, <Z (z2,-b) s 0, 2
i=1

/7

1,2,..

..,[n/m])

k n
P(El...Ek) Lecg 1 <cp o,

where ¢ > 0 (properly defined), and pn = q[n/m]<1'

But N £ N* , hence

(2.31) P(N>n) € P(N™>n) < cp",

with ¢ > 0, p < 1.

CASE 3: a > b. We observe that Zi - Un - a<ghb
- a < 0 with probability 1, and hence we have to
terminate sampling with Probability 1 after at

most [-Ai/a-b] + 1 steps, when A1 is negative.

When A1 is positive, we have termination after

the first observation. This completes the proof.
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