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A DUALITY BETWEEN HILBERT MODULES AND

FIELDS OF HILBERT SPACES

por

Alonso TAKAHASHI

Abstract. The category of Hilbert modu
les with abelian C*-algebra of scalars and
the category of fields of Hilbert spaces
over compact Hausdorff spaces are discussed
and a duality between them is exhibited.

§0. Introduction. In [3] we considered Hilbert
modules over a C*-algebra A ([3], 2.15), and
fields of Hilbert modules ([3], 3.04), obtaining

a representation of Hilbert modules as continuous

sections on a field mw: E + X over the maximal
ideal space X of the center of A ([3], 3.12);

when the C%*-algebra A is commutative the asso-
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ciated field m is a field of Hilbert spaces ([3],
3.13). This representations will be used here to
get an equivalence between Hilbert modules on the
one hand and fields of Hilbert spaces on the other.
These results appeared first in the author's doc

toral dissertation (Tulane University, 1971).

§1. Decomposable operators. The pull-back

field. - In order to state the adequate definitions
of morphism between fields over different base
spaces we need some information about linear maps
between modules of continuous sections on field of

normed spaces.

A field m: E + X of normed spaces ([3], 3.01)
will sometimes be denoted by (E,m, X). A subset
F1 of sections of 7 is fuff if for any e€E there
exists a section 0€Tyq such that o[n(e)] = e.

We always suppose that I'P(m) is full.

We also assume that for each oE:Pb(n) the
function N  given by N (x) = Jlo(x)], xex, is
in cP(X). Observe that this is the case when T
is a field of Hilbert spaces, for each pair o0,T€
Pb(ﬂ) we have <q|1>€ cP(x) and so No = <0|o>

is also in Cb(X)°

1.,01. Lemma. Suppose that (E,m,X) 48 a field
0f normed spaces and Let o ¢ rPcr) and X, € X.
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Then:

(i) 1§ o0o(x,) # 0 there exists an aC.Cb(X) such
that (1) 0 < a < 1, a(x) =1 and (2) lag,] =
“co(xo)" .

(ii) 1§ 0o(x,) = 0 then, for each & > 0 thexre
exists an a in CO(X) satisfying condition (1) abo
ve, and (3) Jao,| < 6.

Proof. Take a(x) =(¥g§ {1, ||<7‘.,(xc,)||"1
ﬂoo(x)|})-1 , in the first case and
a(x) = 1-6-1mi§ {loo(x)|,6}, in the second.
X€
Boundecness is clear and continuity follows from

the continuity of x » |0°(x)| . The other condi-

tions are easily checked. ®

1.02. Definition. Assume that (E,m,X) and

(E', "', X) are two fields of normed spaces (over
the same base space X). A linear map T: Pb(n) +
Fb(ﬂ') is said to be decomposable (over X) if there

exists a family {T(x)} such that:

xeX

(1) For each x¢c X, T(x) 1is a bounded linear ope-
rator of E_ = ﬂ-l(x) into E! = (w')-i(x).
(2) sup "T(x)| < + ®,
xeX
(3) (To)(x) = T(x)o(x) for any Gc:Pb(w), xe€X.

In this case we write T = {'l‘(x)}x(x . Note
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that (3) implies part of (1), namely the boundedness
of the operators T(x), x&X. The next proposi-
tion gives equivalent conditions for T to be de-

composable.

1.03. Proposition. For any Linearn map
T: Fb(n) > Fb(n') the folLlowing assentions ane
equivalent:

(i) T 448 bounded and Cb(x)=££nean (i.e. T(ag) =
a(To) for all ac cb(x), o€ rb(w))o

(ii) T 48 bounded and for any x,€x and any
0,ETP (M), £§ 0o(x0) = 0 then (To)(xg) = 0.

(iii) T 4§ decomposable ovenr X.

Morneoven, it these conditions hokd and

T = {T(x)}xEX then |T] = sup |T(x)] -
xe€X
Proof. (i) = (ii). Assume 0,(x,) = 0 and take
€E > 0 arbitrary. Let 8§ > 0 be such that

ITol ¢ € whenever lo] < 6. By 1.01. (ii) we can
pick ac¢ cb(x) with 0 < a <1, a(xy,) =1 and
"3°o| < 8 . Then |T(ao,)] € €, and this implies
“T(aoo)(xo)“ € €. But T(ao,)(x,) = [a(TGo)](x°)=
a(x,)(To,)(x,) = (To,)(x,), thus I (Too)(xx) ]| < €
and since € > 0 was arbitrary, (To,)(x,) = 0.

(ii) =»(iii). For each x,C X define

-1
5 ' : =
T(x,): By, * Exo as follows. Given eC‘Exo T " (x%o)
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let 0€1Fb(n) be such that o0(x,) = e and put
T(x,)e = (To)(x,). Let us check that T(x,) is
well defined. Suppose e = 0(x,) = T(%x5), o,

1€ Fb(ﬂ), i.e. (o-1)(x,) = 0. Then, by hypothe-
sis, (T(o-1))(x,) = 0 and SO (TO)(x,)=(TT)(%) . Clear
ly T(x,) is linear. Now, for e and 0 as above
take a 1in Cb(X) as in 1.01 (i) if o(x,) # O
and a = 0 if o(x,) = 03 let T = adc Fb(ﬂ)o

Then 1(x,) = e and |t = lo(xo)) = llel; thus we
have: [T(xo)ef = IT(xo)T(x) ] = 'f%(xo)“ <

sup | (TT)(x)] = Itt] < Tl I<] = ft] lel. since
x€X

e€E, 1is arbitrary, we get IT(x )l ¢ fT) < + =,
for all %€ X. Thus each T(x,) is bounded. Fi-
nally, for 0€:Fb(ﬂ) arbitrary, T(x,)o0(x,) =
(To)(x,).

(iii) =» (i). For any o€IFb(n) we have:

Itol = sup| (To)(x) | = sup|T(x)o(x)]|
x€X xeX

sup“T(x)l'“U(x)“ < (suplT(x )P all
x€X xeX

7

Hence ||T] < sgg“T(x)ﬂ < 4+ w, i.e. T is bounded.
Now take ae cP (X)), OC.F (") and x€ X, then:

U]

(T(a0))(x) = T(x)(ao)(x) = T(x)(a(x)a(x))

a(x)(T(x)o(x)) = a(x)(To)(x)

(a(To))(x).

Thus T(ac) = a(To), i.e. T is cb(x)-linear L
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1.04. Corollary. If T 448 decomposable over X,

day T = {T(X)}xcx' then || = sup |T(x)].
xeX

1.05. Let (E,m,X) and (E', m', X) be two
fields of normal spaces over X and let {T(x)}x(x
be a family of maps satisfying conditions (1) and
(2) of 1.02. Then we can use the relation (3) of
(1.02) to define To: X » E'. Then TOEZZb(n) for
each OEIFb(n) and we obtain a map T:Pb(ﬂ) * Xb(n),
o+ To. We will also write T = {T(x)} in this

b b x€ X
case. If To€Tl " (m') for each o€T " (w) +then T
is a bounded Cb(x)—linear map of Fb(ﬂ) into
rP(nv). 1In particular [T| = sup [T(x)].
xeX

We will see that this situation holds under a
rather weaker condition. Indeed, suppose that in
addition to (1) and (2) of 1.02 the following con-

dition is verified:

(%) There exists a full subset r, ¢ r®(m)  such
that To€T(n) for all cerl,.

Define a map Q = i,: E > E' given by Qe = T(m(e))e,

for each e €E. Observe that m'_Q = 7 and 2 is

linear on each fiber.
1.06. Lemma. The map R, 44 continuous.

Proof. Fix e, €E and let x, = 7m(e,). Since

P1 is full there is a o0, € P1 with 0,(x,) = eq.
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Put 0)= TO,; by hypothesis ogcl‘b(n')° Now take
ecE with x = m(e). Then w'(QTe) = x and more

over, if M > sup |T(x)|, we have:
xeX

lage - gl (x) = T(x)e-T(x)oox)=IT(x)(e-0,(x)) ]|
< Mle - ago(x)] ,

showing that for arbitrary € > 0, if e is in the
M-ie-tube around 0 then QTe is in the e-tube

around O,. We conclude that QT is continuous.®

Now we will prove that the situation described
at the beginning of this section holds in this

case also.
b b, ,
1.07. Lemma. For each o€ T (w) we have Toel (m').

Proof. Since we know that Toeitb(n') we only
have to prove that To: X + E' s continuous. But
this follows form the relation To = QToO because

0 and QT are continuous. ®

1.08. Remark. If T: Pb(n) > Fb(ﬂ') is a bound
ed cP(X)-linear operator then it is decomposable:
T = {T(x)}xex , so that (1), (2) and (3) of 1.02

hold. Also (%) is satisfied with P1 = Pb(n). Thus
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the map QT: E+E', e® (To)(m(e)) where
oc:Fb(w) is such that O[H(e))] = e, 1is continuous.
Furthermore, ﬂgﬂT = m, and it is trivial to check
that QT is linear on each fiber, i.e. if

e,e'€ Ex’ x€X, and A€C, then QT(Ae-fe') =
A.QTe + QTe'.

When X is compact we can prove the following
converse: Suppose that : E + E' is such that
Mo = T and it is also continuous on E and 1i-
near on each fiber. For each ocrb(ﬂ) = T(m) 1let
Tgo = Qog: X + E'. Then T
'rr'o'l‘Q = T'5(Qo0) X
TQUCIPb(ﬂ') = I'(r') and we have defined a map
Tq:I'(m) + I'(w'). Given ac Cb(X) = C(X) and
0,T I'(m) we have

Q0 is continuous and

("'oR)o0 = w o g = 1 so that

[R0(ao+1)] (x) = Q(a(x)a(x)+T(x)) = a(x)Ro(x)

+ Q1(x) = (a.Qoo+RoT)(x),.

for all xe€ X, proving that Tq dis C(X)-linear.

We claim that TQ is continuous. It will be
enough to show that it is continuous at o = 0 .
the zero-section of m. Note TO = 0 = the zero-
section of ' , thus it is continuous. Now fix
€ > 0 and take xe‘X; since Q is continuous at
0(x)€ E, there exists a neighborhood V(x) of
x in X and a 68(x) > 0 such that if
e cTs(x) (O NEy,)(*) then QeeT (0'). since x

(*) The notation is that of [3].
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is compact there exist XysooosX € X, n finite,
with X = ViLJeeulJVn, where Vi = V(xi) ; let
§; = 8(x;) and § = min{él,,..,én}. Now suppose
geTl'(m) 1is such that ﬂo' < §. Given x€ X, say

xe€V,, since “O(x)“ < § £ 8§, we have G(x)qu (0)
i i i

NEy, so that Ro(x) €T (0"), i.e. I (Tgo) (x)]<e
Then “TQGH = sup "(TQO)(x)“SED We have proved
X€

that "G" < § implies, "TQO“ £ € , thus 'I'Q is

continuous.

It is easy to check that the processes just
described are inverse of each other, i.e. if u:=ﬂs

then S = Tw , and conversely.

Note that if the field under consideration are
fields of Hilbert spaces then these assertions are

equivalent:

(i) For all o,T€ I'(m),<o|T> = <To|TT>,

(ii) Each T(x) is a unitary operator of E_

s T

into Ex .

(iii) The map QT is unitary on each fiber, i.e.
if m(e) = W(f) then <el|f> = <QelQf> .

1.09. Lemma. Suppose (E;,T.,X), i =1,2,3
are fields with X compact Hausdorf§:

(a) T§ Q.:E; > E; ,, 1 =1,2 with mw, ,o0Q, = m,,
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1,2 anre continuous and Linear on each g4iben,
Q,0 has similar properties, and Tq = ngo T91°

i
1Y)

(b) I§ T ,:T(m;) » T(m, ), 1i=1,2, are bound
ed C(X)-Linean maps then T T,oT, 48 sduch and

QT = 9T2°QT1 .

Proof. (a) Clearly Mo = 7, and Q is continuous

and linear on fibers. Moreover, for each ce:P(ni)

and each xe€ X:

[1,(Tg 0100 = 8,[(1g 0)()] =0,y [0,00x)]

]

Qo(x) = (TQO)(x)‘

(b) Similar to (a) ®

1.10. Given a field m: E » X of normal spaces
and continuous function f:Y + X we will construct,
in a natural way, a new field with base space Y.

We start by defining a subspace ef
gical space Y x E, ef = {(y,e):f(y) = 7(e)}.

of the topolo

£ . . ., L
Note that E* = (U ({y}fo(y))g this union being
yeyY
disjoint.

Let Py and P, be the projections of Y X E

onto Y and E respectively. Define nf - pilEf:
Ef + v ana £ = p2|Ef: Ef + E. The diagram
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m
P ek, B
nl lnf
X e———i———— Y
is a pull-back in the category of topological spa-
ces. The function nf is a continuous open surjec

tion and so (Ef, nf,Y) is a fiber structure; for
each yeY the stalk E§ above y is {y}xEg(y).
The map Bf(y)" Ey s eoaf(y,e), is a homeomor-
phism and we consider on By the unique structure
of normed spaces making this map into an isomor-
phism; in particular, we have I(y,e)] = le] for
all (y,e) in Ef. 1If 7 is a field of Hilbert

spaces we define

<(Y,e)|(y,e' )> = <e|e1>

for any ((y,e),(y,e'))C.Efv Ef. Note that if Y = X

and f = 1 then (Ef, 7f,x) and (E,m,X) are na

turally "isomorphic".

Now let O be a continuous section of m; since
To(mMo0) = (mMog)of = 1 of = foly, the pull-pack pro
perty provides a unique continuous map of: vy » £
such that: nfonf = lY, i.e. of is a continuous
section of ﬂf, and f"oof = gof. These equations
can be rewritten as pl[of(y)] = y and pz[of(y)]=
o[f(v)], for all y€Y, yielding on explicit expres
sion for of, namely cf(y) = (y,o[£(y)]), for all

vye Y.
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We observe that "of(y)“ = "o[f(y)]" for all
ye€eY and so "ofﬂ < o] for each seT(n). 1f £
is surjective then "cf" = lo]. Then ofe Pb(ﬂf)
whenever ce:Fb(ﬂ) and the set TIf = {of:oe'rb(n)}

is a subset of Fb(nf).

1.11. Lemma. The subset I'f is a full set of

(bounded) continuous sections of nf.

Proof. Take (y,e)e;Ef, Since e€E and Pb(ﬂ)
is full there is a 0€.Fb(n) with ofn(e)] = e.
But m(e) = f(y) and so o[f(y)]= e. Thus
of(y) = (y,0[y(»]) = (y,e) »

f

1.12. Corollary. The fiber structune (Ef,n »Y)

A8 a fiekd of topological spaces.

Proof. The lemma shows that condition (1) of

[1] (page 2) is satisfied. ®

1.13. Lemma. The f<ield n is actually a field
0§ normed spaces.

Proof. We will only check condi¢ion (2) of [1]
(p.4). Take a, = (y,, eo)eiEf. An arbitrary neigh
borhood of a, is of the form V = (v, x v2)r15f

where V1 is an open neighborhood of Yo in Y and

v, = “E(o)n Ey (0eT(m) with o[n(ey)] = e, and

W open in X with T(e,)e W) is a basic neigh-
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borhood of e, in E. Since f(y,) = n(e,)e€ W
there exists a neihborhood Vi of y, with
f(vi)c_._wo Without loss of generality we $ay s;p-
pose Vi = V,. Let us prove that (q;(o )ijvl)
cv. Take o = (y,e) in the intersection on
the left; in particular a€:Ef and thus m(e)=f(y).
Since a € Egi then y = ﬂf(a)C vy which implies
T(e) = f(y)€ W, and so e€E,. On tﬁe other hand
acT_(0F) so that |e-o[n(e)]] = le-o[£(y)]] =

I (y,e)=Cysa[£(IDI= laof () =Ja-o® [r (@] < ¢
that is ee_"]::(o). Thus eCaT;:(o)ﬂwa and we
have a = (y,e)eV, x V, (and also a€E" ), so that
ge V.

Finally we note that ch F(nf) and of[ﬂf(ao)]=

f
g (y°)=(Yan[f(YOﬂ)=(YO’O[“(eoﬂ)=(y°’eO)=a'ﬂﬂs‘mm
pletes the verification of the condition mentioned

at the beginning. ®

1.14. Proposition. I§ Y 4& compact then the
closed cb(Y)—Aubmodule o4 Fb(wf) genenated by rf
coincides with Pb(ﬂf).

Proof. Since Pf is full we can use an argument

entirely analogous to the used in [3], 3.12, =

1.15. Definition. The field (Ef,nf,Y) of nor-

med spaces constructed above is called the puffl-
back §iefd determined by the pain w, f.
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1.16. Proposition. I§ (E,m,X) 48 a f4ield of
Hilbenrt spaces and £f: Y + X 48 a continuous map
then the pull-back field determine by m and f 48
also a field of Hilbent spaces.

Proof. Let I (resp. J) be the inner product
on EVE (resp. Efv_Ef) and let P: Efv Ef+E~’V
be the continuous map obtained by restriction and
corestriction ofA f“ x f". Then J = IoP, thus

it is continuous. ®

Let H (resp. H') be a module over a ring
A (resp. A') and let #: A + A' be a ring homomor
phism. A map T: H + H' is said to be P-£inean
if for each a in A and o, T in H:

(i) T(o+t) = To + Tt , and
(ii) T(ao) = P(a)(To).

When A = A' and ¥= 1, we say " A-Lineanr" ins-

tead of "1A-1inear".

Now let (E,m,X) be a field of normed spaces,
f,X') the
pull-back field determined by m and f. The func
tion ‘P:cb(x) > cb(x') given by P(a) = aof for
each ac,Cb(X) is a c®-algebra homomorphism. Let

f: X' »+ X be a continuous map and (Ef,n

us consider the map

4 = A:: rP(r) » Pty
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df for each oE:Fb(n). Note
I,f

defined by Ao
that A[rP(m)]

n

1.17. Proposition. (1) The map A 48 P-Lineanr.
In particulan Lt 48 Linean.

(2) jao] < Jo] gorn all oc r®(n). Thus & is bounded
and Al < 1.

(3) 14 m 46 a field of Hilbent spaces then <Ao|At>
P(<o|1>) , for akl o,T€ rb(n)n

Proof. Verification of (1) and (3) is purely

computational; (2) was observed before. ®

In the same context as above, suppose that
(E', m',X"') is another given field of normed spaces
over X' and let S: Fb(ﬂf) * Fb(w') be a bounded
Cb(x')—linear map, then the map

T = SoA: Tb(ﬂ) > Fb(ﬂ')
is such that:

(a) T is ¥Y-linear and bounded.

(b) If the fields involved are fields of Hilbert

b, f
spaces and if <Sg|Sn> = <g|n> for all E,neTl (m )s
then <Ta|Tt> = P(<o|Tt>) for all o,re:rb(n).

b
Conversely, take a bounded P-linear map S:T(m)
*Pb(ﬂo)n We claim there exists a bounded Cb(X')-
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linear map S:Pb(nf) -+ Pb(n') such that T = SoA.
In order to prove this we need some preliminary

facts.

1.18. Lemma. Foa each oe:Fb(n) and each x€ X
O(x) = 0 implies To(f Y(x)) = {0} .

Proof. Fix € > 0 and pick 0,€ Fb(ﬂ), Xo € X
and y,e€Y with 0,(x,) = 0 and f(y,) = x,3 the
lemma claims that To,(y,) = 0. Take &6 > 0 such
that ||To|l € € whenever J|o] € 6§ and choose
ac Cb(x) with 0 < a £ 1, a(xy,) =1 and
lao,l € 8§ (cf. proof 1.03); thus “T[aoo]l < €.
But since P(a)(y,) = a(f(y,)) a(x,) = 1, then
IToo(yodl = [Pa)(yo)Too(yo) ] = IT[aco](yo) ] <
"T[aoo]l < €. Since € > 0 was arbitrary,
To,(y,) = 0. &

"

1.19. Corollary. For each o€ Fbﬁﬂ, olf(x')=0
Amplies T = 0. B

For fixed x'€ X' we can define a map
£

S(x'): Eoo E;, as follows: Given a = (x',e)€
Ei, pick Gc.rb(n) with o[£(x')] = e (note

that 7(e) = f(x')) and then write S(x')a = To(x').

In order to check that S(x') is well defined
put x = f(x') and assume ol(x) = 02(x) = e.
If o = 0,-0, then 0(x) = 0 and then To(x') = 0
by Lemma 1.18. Thus Tol(x') = Toz(x').

-0
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b
Note. That for fixed o€l (m), S(x')Gf(x') =
To(x'), for all x'e€ X'.

1.20. Lemma. (1) For each x'e X', S(x') 448 a
bounded Linear operaton of E:, into Elv -

(2) s(x")] < Itl, dor all x'e X'.

Proof. An easy computation shows that S(x') is
linear, so it is enough to prove (29. Keeping the
notation as above, suppose e = o(ea # 0. By 1,01
(i) we can pick ae:Cb(X) with 0 € a € 1, a(x)=0
and [lao] fo(x)|(= Jel = |lal). Since (aoc)(x) =
a(x) o(x) e “we have S(x')a = T(ao)(x') and
thus [[s(x")a] < |r[ac] | < ﬂT“'aoI = |Tlla] for any

a€lE£, . Hence {s(x")] < “TI , for all x'eX'.®

This Lemma is the first step toward the appli-
cation of the process discussed 1.05 to the family
{S(x')}x,ex,. Now, if we take T, = rf - {Uf:
OEZFb(ﬂ)} then T, is full (Lemma 1.11) and more-
over, if for each EELPb(ﬂf) we define SE€ Zb(ﬂ')
by letting SE(x') = S(x')E(x') for all x'€ X'
then, by the Note before 1.20 we have Sof = Toe
Fb(n') for all of in Fi,
1.05 holds for S = {s(x')}

i.e. condition (%) of

x'eX'

According to 1.05 and Lemma 1.07 we conclude
that the function S:£ + S§& 1is a bounded cb(x')-
linear map of rPrf) into rP(n') with sl = TUR

x
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fs(x')|] . Since To = sof = s[Ac] , for all
OG:Fb(ﬂ), we obtain T = SoA and this proves

our claim.

1.21. Remark. Assuming X' compact, if S':
Fb(nf) + Fb(n') is another bounded G(X') linear
map with T = S5'ocA then S and S' coincide on
A[rb(n)] = Ff and then Proposition 1.14 implies
they are equal, in this case we will denote S by

Tfe Thus we have a commutative diagram:

r®m) -————————> r(m')

N/

P(n )

If moreover <T0|TT> = P(<o|1>) for all 0,71
in Fb(ﬂ) then T¢ satisfies <Tf€|Tfn> = <g|n>
for all E,ngl‘(nf).

For X and X' compact we have canonical bi-

jections between:

(a) All bounded ¥$-linear maps T: I'(m) + I'(m').

(b) All bounded C(X')-linear maps S:F(nf) > I'(n').
£

(c) All continuos maps 2 : E° = E' which are li-

near on each fiber and such that w'oQ = ﬂf.

The correspondence between (b) and (c) is
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obtained applying the discussion in 1.05 to the

fields (Ef,nf,x') and (E', 7',X').

§2. The category of fields of Hilbert spaces.

The pull-back fiel allows us to relate two fields
on different base spaces; we use this approach to
define morphism between fields. Although our con-
siderations partially carry on to fields of normed
spaces, we restrict ourselves to fields of Hilbert
spaces with compact Hausdorff base space. First
we need some additional properties of pull-back
fields.

2.01. Given a field (E,m,X) and two continuous
maps f': X" + X' and f:X' *+ X, we can construct

first the pull-back (Ef,ﬂf,xv) determined by w,f

=1 ]
and then the pull-back ((Ef)f 5 (ﬂf)f X" ) de-
termined by ﬂf, £' &
f
i AT .
E < pfe (£1) (e5)Hf
1]
nl nf (nf)f
f £
< X' X"

2.01. Lemma. The Large nectangle 4n the above
diagram 48 a pull-back. Hence we can <identify the
] ]
gieed ((eHE', (HE L xm) with  (£8,28,xm)

wheare g = fof' ; the map Ldentifying (Ef)f' with
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E = gt being (x",(x',e)) w (x",e).

Proof. The first assertion is a general fact

about pull-backs. The rest follows. ®

2.02. Lemma. In the same detting as above, the
following diagrnam commutes:

o
rm) —28  or(n®) — = | r[nf)er]

£

L L

Ag ey

I'(m>)
Th write A% AT = AT
us we can write Ag,oMp = AL .,

Proof. Given oe€Tl(mw) and x"e€ x" then
Nf w Tl'f m
[(agioa™ro](x") = [aT, (4"a)] (x™)
= (%" (o) [£1 (xM)])=(x", (£' (x"),0 [£o£ (x")])))
m
w (x",0[g(x")]) = (A0)(x"). =

Given two fields (Ei’"i’X)' is= 1;2’f over X

and a continuous map f:X' + X, let (Ei,ni,x') be
the corresponding pull-back and let Q: E1 * E, be
continuous, linear on each fiber and such that

By the pull-back property there exists

£

n29 =T
1 * Eg making the following dia-

1.
a unique map Q#: E
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gram commutative

Explicitly : Q#(x',el) = (x',Qel) for each

(x',el)(‘Ei . Clearly Q# is linear on each fiber.

Given a bounded C(X)-linear map S:F(n1)+F(ﬂ2),
an application of 1.21 yields a unique bounded
C(X')-linear map, call it S# » making the follow-

ing diagram commutative:

b1
A g2 . g
F(ﬂ2) ']!("2)
y
/
3 ,s#
'"’ /
A /
f f
F(ﬂi) ;'r("1’
2.03. Lemma. The map S# 48 gdiven by S# = Tﬂg

¥

and thus Q.4 = 9
. LE |

Proof. All we need is to show that TQ#OA =

£
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m

=A :os. Take OGTF(ﬂi) and x'€ X' arbitrary:

o
[ng(Azio)](x') -2t torx = et osG)

(x',050[f(x")]) = (x',(50)[£(x")])

mw
[Af2(so)](x')° .

2,04, Lemma. Let (Ei’"i’x)’ i=1,2,3, be

§ields and Let Qi:Ei * E;lqo

uous maps, Linear on each fiben and such that
i=1,2. Then

2o

i=1,2, be contin

M, ,0, = m,
i+1 i i?

# .
(92091) = Q

Proof. Simple computation. ®

2,05, Definition. Let ¥ be the class of all
fields ™ = (E,T,X) of Hilbert spaces with X
compact Hausdorff. A morphism of (E,m,X) F into
(E',T',X') F is pair (f,2) of continuos maps
£:X' * x and 8:Ef £

+ E' such that m'o =7~ ,
and % is linear on each fiber. 1In this case we

write

(£',Q): (E,m,X) =+ (E',m',X").

Suppose (£f',Q'): (E',n',X') -+ (E",m", X") is an -

other morphism. The map Q uniquely determines the
f ] ]

map ﬂ#: (E )f + (E')f » and identifying
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CeHE' (o 5HE ,xm)  with (28,78,%x"), g = fof'
(Lemma 2.01) we can consider Q#: 8 » (E')f' .
If we write Y = Q'oﬂ#: E® + E" we obtain the mor
phism (g,¥): (E,m,X) > (E",m",X"). Let us define
(£',Q")o(£,2) = (g,¥).

That this composition of morphism is associa-
tive can be proved using Lemma 2.04. It follows
that F with the morphisms and composition just de-

fined is a category.
2.06. Lemma. Let (£,2): (E,m,X) =+ (E',m',X'")
be a morphism and f£': X" + X a continuous func-

tion. Then the following diagram commutes:

I'(m*)

>N
I‘[(ﬂt )f']
A’f\ A#

ri(ef)f"]

F(ﬂf)

Proof. Take E(:P(ﬂf) and x" ¢ X" arbitrary.
Then

(AT, (Tg8)] (x™)= (x" , TE[£ (x™)])=(x",QE [£" (x")])
# # TIf nf
= @7 (x", E[£' (x")])=0" [(A,,E)(x")] = [T (A", E)] (x")a
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2.09. Lemma. Assume that (£f,2): (E,m,X) >
(E',m', X') and (£,Q2'): (E',m', X') =+ (E",7m",X")
arne monphism ant that (g,y) = (£',Q')o(£,2). Defdine

=1 oA i T(m) » F(u'), T' = T. oaA™,
T = TQO £l ’ Q, £

T(n') » T(n") and U = TwaAg : T(x') » (™). Then
U= T'oT.

Proof. By the definition of T and T' and

Lemma 2.06 the following diagram commutes:

I'(w) T > (') T -3 (")

N\
Iy ///TQ Af\\\\ Tos,

r(nf) rlen)E']

Anf AT o 4" oT 4 =
But gr b = g by 2.02, and TQ' o = TQ'OQ#

= TW by 1.2.4 (a) and the definition of V¥ Thus

f
m T m
U = TWOAg = TQ,OTQ#OAf,OAf, = T'" oT. =
The last lemma has a clear functorial charac-
ter. In order to express it in an apropiate set-

ting it is convenient to inctoduce a category M
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whose objects are all Hilbert modules with abelian
C*-algebra of scalars. Since we are about to con-
sider Hilbert modules over a not necessarily fixed
C*—algebra we will use. .iie notation (A,H) for an
A-Hilbert module H. The identity of A will be
denoted 1Ao

2.08. Definition. A morphism of (A,H)e M 4into
(A'H')eM is pair (¥,T) where ¥:A »> A' is a
C*—algebra homomorphism and T: H = is a boun-'
ded P-linear map. If (¥,T): (A,H) » (A',H') and
(P, T'): (A',H') » (A",H") are morphism we de-
fine (P', T")o (P, T) = (P, T'0T).

It is easy to check tha* these definitions make
M into a category. Define a function T: F » M by
sending each (E,m,X)EF into T(E,m,X) = (c(X),
r(m)), and each morph’ . . £,R2): (E,7,X)
(E',m',X") into the mc_ _aism (¥,T): (C(X),T(m))
+ (c(x'),T(7')), where *‘P(a) = aof for each
a€C(X) and T = TQ°A2‘

2.09 Proposition. The map T: FEM 48 a
juncton.

Proof. Follows from 2.07 u

Now define a function A: M +F which sends
each (A,H)€E M into (A,H) = (E,m,X), the field

associated with the A-module H. Without loss of
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generality we may suppose that H = I'(m) and

A = C(X). If (P,T): (A,H) + (A',H') is a mor-
phism in M and A(A,H) = (E,m,X), ACALH') =
(E',m",X'), there is a unique continuous map

f: X' + X such that Y(a) = aof for all ae€A.
Moreover, there is a unique C(X')-linear map

S = Tf: P(nf) + I'(m') such that T = SOA: - This
S determines a unique = QS: ﬁf * E' with

T'o = ﬂf, which is continuous and linear on
each fiber. Then (£,2): (E,m,X) » (E',m',X") is
a morphism in ¥; this is by definition the image
of (¥$,T) under A,

2.10. Proposition. The map A: M - F 4is a
functon,

Proof. Take (A,H) gﬁiz&-(AﬁH') Lillzl;-(A“,H")
in M and let A(A,H) = (E,m,X), etc. Assume
A = C(X), H=T(m), A' = C(X'), etec. and let
(P',T')o(P,T) = (Y,V), i.e. PP =y and
T'oeT = V. Now put A(P,T) = (£,9), A(P',T') =
(£',8') and A(p,v) = (g,¥); also put § = Tes
S' = T%, and U = Vg, so that ¢ = Qs, ¢' = QS,
and p = Q By definition we have (£',8')o(£,9)

U L]
= (g,8'00#) and thus all we have to show is
¥ = ¢ro0f s that is RU = Qs,oﬂg. But U = S'oS#.
where S# is defined as in the discussion pre-

ceding Lemma 2.03. Then by 1.09 (b) and 2.03,
#
By = 85,08 y = a_,onf.
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2.11. Theorem. The categories M and F are equi
valent.

Proof. (a) For each (A;H) M let (E,m,X) =
A{(A,H), so that TA(A,H) = (C(X),I(w)). We have
a morphism u = u(A’H)z(A,H) + 'A(A,H) given by
the pair of maps Y : A * C(X) and ~: H * I'(m),
The tuntion (A,H) = u(A,H) is a natural transfor
mation of Iy into T A and since each u(A,H) is

an isomorphism ([3], 3.12) it is an equivalence.

(b) We can also define a natural tranéformation
v of AT into If-as follows. Let (A,H) =
r(E,m,x) and (E',m',X) = A(A,H); an arbitrary ele
ment of E' is of the form e' = G+Hx s Where
oc€H = T(m), define Vo e' » o(x). This maps
is an isomorphism; the inverse is defined as fol-
lows : given e€E take o0&€Tl(m) with o(x) = e,
where x = m(e) and put e+w o+H, . Then v is an

equivalence. ®
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