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SPECIAL ARITHMETIC AND GEOMETRIC MEANS

PRESERVE ¢-LIKE UNIVALENCE
by

S. K. BAJPAI

Let R be a region containing 0.Let ¢ be ana-
lytic in R and satisfying ®(0) = 0 and
Re{6'(0)} > 0. Let D be the open unit disc of
the complex plane centered at 0. Define S(®) as

the set of normalized functions, f(z) = z+a2a2+

..., analytic in D such that f(D)cR and
¢ z
2 ‘(z)
(1) Re ¢( 2£182)_ 3 5 o
| 8(£(z)) |
for all z€D. The elemts of S(%) are called
®-1like in D. Geometrically, we define R to be

®-1ike if for any YeR the initial value problem
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(2) av . . o(W) , W(0) = ¥y

dt

ha a solution W(t), defined for all t 2 0 , such
that W(t)€R for all t and W(t) » 0 as t + o
With these definitions, Professor Luois Brichkman
[1] proved the following two theorems, stated be

low without proof, together with a corollary.

Theorem A. Let £ be &-1ike in D. Then f is uni-
valent in D and f£(D) is &-1like.

Theorem B. Let £ be analytic in D with £(0) = 0,

If £ is univalent and £(p) 1is ®-1ike then f is
d-1ike in D,

Corollary A. Let f be analytic in D with £(0) = 0.
Then £ is univalent in D if and only if f is &=11i
ke for some &.

With R and ¢ as defined above, we define
M(a,b,%(f) ) to be the class of those functions
f(z) = zta, 22+, .., , analytic in D and satis-
fying Re{K(a,b,®(f) )} > 0 (a and b real numbers),
£'(2)8(£(z)) # 0 in 0 < |z| < 1, and also

(3) K(a,b,0(£)) = aA(f,0)+bB(f,0)

(4) A(f,0) = 1 + zf"(z)/f'(z) -
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- 2(8(£(2))) /0(£(2))
(5) B(£,0) = zf (2)/8(£(z)) .

We define G(a,b,8(f)) to be the class of ana
lytic functions f(z) = z+a222+..., in D which
satisfy Re{T(a,b,8(£))}> 0, £ (z)8(£(z)) # 0 in
0 < |z| <1, for a and b real number a+b an

odd integer, where :

a b
(6) T(a,b,d(f)) = ( A(£f,9) ( B(f,9))
is defined by taking principal branches.

Clearly M(a,b,%(f)) and T(a,b,b(f)) con-
tain arithmetic and geometric means of the func-
tions A(f,%) and B(f,?) relative to masses a
and b, respectively. In this note we demonstra-

te the following:

Theorem 1. A11 functions belonginag to M(a,b,d(f))

or G(a,b,d(f)) are ¢-1ike univalent functions
from the class S(9).

Proof. First of all we note if fe G(a,b,d(f) )
or feM(a,b,8(f) ) then &(f) is analytic in D
and O®(f) has no zero in 0 < |z| < 1, If we
define w(z) by the equation

]
(h  HAE) . o« {(1::<:>)> . ia
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§ - Sw(z)
(1+w(z)) ?

where ¢ = (<!>e(0))'-1 = a + i B, and a and B are
real numbers, we find that w(z) is certainly ana
lytic in the neighbourhood of zero. Also, since
£'(z) ®(£(z)) £ 0 in o0 < |z] < 1 , we find that
zf'(z)/®(£(z)) is analytic in D. Hence, without
loss of generality, we may choose w(z) to be re
gular in D, Also equation (7) implies that

w(0) = 0. Since a > 0, to show that fe&€ S(®) it
is enough to show that |w(z)| < 1 for zeD.
Suppose this were false. Let M(r,w) = max {j(z)

:|z] = r} , then there is some ry such that

M(ri,w) =1, and so there is some z, €D such

that IW(Z1)| 1 and |21| = r. By Jack’s lemma

there exists t > 1 such that ziw'(zi) = tw(zy)

[2] . Now we compute A(f,d) and B(f,d) from
(7) and find that

(8) ACE,P) = - E_zw’(z) _ zw' (z)
§-Cw(z) i+w(z)
(9) B(£,0) = —5=8 w(z)
1 + w(z)

From (8) and (9) it follows :

(10) K(a,b,8(f)) = - aSzw (z) _ azw (z) +
§-8w(z) 1+w(z)
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b(8§-8w(z))
1+w(z)

+

—_ 1 ' a
(11) T(a,b,0(f)) = ( _ Z8W (z) _zw (z) )

§-8w(z) 1+w(z)
. (s-a'w(z) b,
i+w(z)

If we require f +to be in M(a,b,d(f)) and use

(7) with =z = z, » we find that lW(21)| = 1 and

(12) Re(K(a,b, (f) ))_ . . _ zq

e {- aftw(zq) ) atw(zi)}
§-8w(zq) 1+w(zq)

+ Re { b(G-Sﬁ(zl) )
1+w(zl)
- Re uaia(t8+t1m(6w3215 ) )
(14w (zq)) (8-Fw(zq)) |2

. Re ( 2ib(B+ Im(Tw(zq)) ) - o
| (14w (zq))2 |

But this contradicts the fact that f «M(a,b,d(f)).
So |w(z)| <1 for all =z in B and, from (1),

we conclude feS(®). Similary,:if we require

feG(a,b,8(f)) we have that if .a+b is an odd
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integer then

(13) Re ('r(agb,<l>(f)))at 2712,

a b
Re((A(£,0))7(B(£,0))7) 222,

e <<uat1(B+Im(GWT?I))i )a
| (1+w(2)) (8-Fu(z,))) |2

"
o

i b
(2(s+1msw(z1)) >
| (14w (z))?]

This implies that fﬁfG(asb,Q(f)), a contradiction.
Hence, we must have |w(z)| < 1 for all z€D .
Therefore, any f€G(a,b,d(f)) is 0-1like univa-
lent by (1). This completes the proof of the theo

rem,

Remarks: If ¢ is the identity function and a = o,
b =1, then we obtain the results in [3] and [4]
due to Mocanu, Miller, and Reade. If &(f) is a
starlike function defined in D then, by using
Theorem 1 , we obtain the subclass of close-to-

convex functions in the sense of W.Kaplan [5] °
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