

Werk

Titel: Quasi-covariant repesentations of nuclear ...-algebras

Autor: Moore, Steven M.

Jahr: 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?320387429_0011|log9

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen Revista Colombiana de Matemáticas Vol. XI (1977), págs 51 - 58.

QUASI-COVARIANT REPRESENTATIONS

OF NUCLEAR *-ALGEBRAS

por

Steven M. MOORE

ABSTRACT

We consider the extension of the concept of a quasi-covariant representation of C*-algebras to nuclear *-algebras. Necessary conditions for a representation to be quasi-covariant are obtained.

RESUMEN

Consideramos la extensión del concepto de una

representación cuasi-covariante de C*-álgebras a *-álgebras nucleares. Condiciones necesarias para que una representación sea cuasi-covariante son obtenidas.

§ Introducción.

In [1] we introduced locally convex *-algebras. Although this is a new type of topological algebraic structure that is ripe for more mork, it has become clear that stronger properties are needed in order to get substantial results. Since a C*-algebra is a nuclear *-algebra if and only if it is finite dimensional [2], one might expect that the additional hypothesis of nuclearity would be interesting. Thus here we consider nuclear *-algebras, i.e. a locally convex *-algebra \$\mathcal{Q}\$ that is also a nuclear space. This still includes the physically interesting case of the field algebra [3].

For nuclear *-algebras it is not possible to define quasi-equivalent representations in the same way as in the C*-algebra theory [4] (e.g. in the field algebra [3], all projections are trivial). But Kadison [5] has given an equivalent definition using the following concepts: Let Π be a representation of $\mathcal O$ in the sense of [1]. ω_{Φ} is a vector state of Π if $\omega_{\Phi}(\mathbf X) = (\Phi, \Pi(\mathbf X)\Phi)$ where $\Phi \in \mathcal O(\Pi)$, $\|\Phi\| = 1$. The set of all vector-states of Π is denoted by $\mathbf E(\Pi)$ and the closure of the convex hull of

 $E(\Pi)$ by $F(\Pi)$ (closure in the weak topology). A representation Π_1 is <u>quasi-equivalent</u> to a representation Π_2 if $F(\Pi_1) = F(\Pi_2)$.

§ 2. Quasi-covariant representations.

In [1] we also introduced the concept of covariant representation. We say that a representation II is quasi-covariant if it is quasi-equivalent to II', where (II', V') is some covariant representation of $(\mathcal{O}(Q,Q))$.

We remember that our working hypothesis is that $a \rightarrow ax$ is continuous for each $x \in aL$. The question of the continuity of $g \rightarrow g \omega$ is more delicate, partly because of possible ambiguities in the topology of Of. There is a large class of topologies for M for which (M, M') is a dual pair. these are the weak topology and the strong topology [2] . In analogy with the C*-algebra case [6,7], one might be tempted to elect the strong topology. However, for the field algebra [3], the fact that the w are products of tempered distributions and that we are in general treating a nuclear *-algebra which possesses very different properties than those of a C*-algebra suggests that we should consider Thus we let E^c be the instead the weak topology. set of all states such that $g \rightarrow g \omega$ is continuous with respect to the weak topology on OC.

2.1 Theorem. Let (Π, V) be a covariant representation of $(\mathcal{U}, \mathcal{Q})$. Then $E(\Pi) \subset E^{c}$

Proof. Let $\Phi \in \mathfrak{D}(\Pi)$, $\|\Phi\| = 1$. Then $g\omega_{\Phi}(x) = (\Phi, \Pi(g|x)|\Phi)$. Thus $\|g\omega_{\Phi}(x) - \omega_{\Phi}(x)\| = \|(\Phi, \Pi(g|x-x)|\Phi)\|$. Since $g \to gx$ is continuous, $gx \to x$ when $g \to e$. Thus $(\Phi, \Pi(g|x-x)|\Phi) \to 0$ when $g \to e$. QED.

- 2.2 Theorem. E^c has the following properties:
 - a. Ecis convex.
 - b. Ecis weakly closed.
 - c. E^{c} is invariant with respect to \mathcal{G} , i.e. $gE^{c} = E^{c}$ for all $g \in \mathcal{G}$.
- b. Suppose $\omega_{\beta} \xrightarrow{w} \omega$ and $g_{\alpha} \rightarrow e$. We have $|(g_{\alpha} \omega \omega)(x)| \leq |g_{\alpha}(\omega \omega_{\beta})(x)| + |(g_{\alpha} \omega_{\beta} \omega_{\beta})(x)| + |(\omega_{\beta} \omega)(x)|.$

Fix x for the moment. Since $g \longrightarrow g\omega(x)$ is continuous, we can find β_0 such that $\beta \geqslant \beta_0$ implies $|(\omega_{\beta}^-\omega)(x)| \leqslant \epsilon/6$.

Now $\psi: g \rightarrow g (\omega - \omega_{\beta})(x) = (\omega - \omega_{\beta})(g x)$ is a conti-

nous function. Consider

$$I(\beta) = c(\beta) - \epsilon/6$$
, $c(\beta) + \epsilon/6$

where $c(\beta) = (\omega - \omega_{\beta})(x) = \psi(e) \cdot \psi^{-1} I(\beta) = V(\beta)$ is then a neighborhood of e in Q. There exists $\alpha(\beta)$ such that $\alpha > \alpha(\beta)$ implies $g_{\alpha} \in V(\beta)$ since $g_{\alpha} \rightarrow e$. If $\beta > \beta_{\alpha}$, then $|c(\beta)| < \epsilon/6$, so for $\alpha > \alpha(\beta_{\alpha})$, $|\psi(g_{\alpha}) - \psi(e)| < \epsilon/6$, i.e.

$$|g_{\alpha}(\omega-\omega_{\beta})(x)| \leq \varepsilon/6 + |(\omega-\omega_{\beta})g(x)| \leq \varepsilon/3.$$

Fix $\beta \geqslant \beta_0$. There eixists α_1 such that $\alpha \geqslant \alpha_1$ implies $\left| (g_{\alpha} \omega_{\beta} - \omega_{\beta}) (x) \right| \leqslant \varepsilon/3$. Thus for $\alpha \geqslant \alpha_1$ and $\alpha \geqslant \alpha(\beta)$ we have $\left| (g_{\alpha} \omega - \omega) (x) \right| \leqslant \varepsilon$.

c. To show $h \omega \in E^{c}$, if $\omega \in E^{c}$, let $g_{\alpha} \rightarrow e$. Then $h^{-1} g_{\alpha} h \rightarrow e$. Hence $h^{-1} g_{\alpha} h \omega \rightarrow \omega$. $h \rightarrow h \omega(x)$ continuous implies $h(\bar{h}^{-1} g_{\alpha} h) \omega(x) = g_{\alpha} h \omega(x) \rightarrow h \omega(x)$. QED.

§ 3. Necessary conditions for a quasi-covariant representation.

We have obtained the following necessary conditions for a quasi-covariant representation:

- $3.1 \ \underline{\text{Theorem}}$. Let π be a quasi-covariant representation. Then the following conditions are satisfied:
 - a. F(II) is invariant.
 - b. $F(\Pi) \subset E^{c}$.

<u>Proof</u>: Let Π be a quasi-covariant representation. Then there exists a covariant representation (Π_1, V_1) of $(\mathcal{Q}, \mathcal{Q})$ to which Π is quasi-equivalent. For $\Phi \in \mathfrak{Q}(\Pi_1), |\Phi| = 1$,

$$g\omega_{\Phi}(x) = \omega_{\Phi}(gx) = (\Phi, \Pi_{1}(gx)\Phi)$$

= $(V^{*}(g) \Phi, \Pi_{1}(x) V^{*}(g)\Phi)$
= $\omega_{V^{*}(a)\Phi}(x)$

This means that $E(\Pi_1)$ is invariant. Thus the convex hull of $E(\Pi_1)$ is invariant. Since $E(\Pi_1)\subset E^C$, it follows that the closure of the convex hull is invariant. Thus $gF(\Pi_1) = F(\Pi_1)$. But $F(\Pi) = F(\Pi_1)$, so part a follows.

Now let $\omega \epsilon \epsilon (\Pi_1)$. Then there exists $\Phi \epsilon \Phi (\Pi_1)$, $\|\Phi\| = 1$ with $\omega = \omega_\Phi$. Hence

 $|g\omega(x) - \omega(x)| = |\omega(gx-x)| = |\langle \Phi, \Pi_1(gx-x) | \Phi \rangle |$ Since $gx \to x$ is continuos, $gx \to x$ when $g \to e$.

Thus $(\Phi, \Pi_1(gx-x)\Phi) \to 0$ when $g \to e$. Hence $\omega \in E^C$. Thus $E(\Pi_1)\subseteq E^C$. E^C convex and closed implies that $F(\Pi) = F(\Pi_1) \subset E^C$. QED.

It is not known whether these conditions are also sufficient as they are in the C*-algebra case [7].

REFERENCES.

- [1] S.M. Moore, Rev. Col. Mat. X, 99-120 (1967).
- [2] A. Pietsch, Nuclear Locally Convex Spaces, Springer, Berlin, 1972.
- [3] H.J. Borchers, Algebraic aspects of Wightman field theory, in Statistical Mechanics and Field Theory, R.N. Sen, C. Weil, eds., Israel Universities Press, 1972.
- [4] S. Sakai, C*-algebras and W*-algebras, Springer, Berlin, 1971.
- [5] R.V. Kadison, Trans. A.M.S. 103, 34-52 (1962).
- [6] H.J. Borchers, Commun. math. phys. 14, 305-314 (1969).
- [7] H.J. Borchers, Uber C*-Algebren mit lokalkompakten Symmetriegruppen, Gottingen preprint (1973).

Departamento de Física Universidad de los Andes Apartado Aéreo 4976, Bogotá 1, DE, Colombia, S.A. Recibido en agosto de 1977).