D
[-A elt

Werk

Titel: Asymptotic form for generalized factorial

Autor: Minoli, Daniel

Jahr: 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?320387429_0011 | log11

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

Revista ColLombiana de Matemdticas
Vo£. XI (1977), pdgs 59 - 75.

ASYMPTOTIC FORM FOR GENERALIZED FACTORIAL
by

Daniel MINOLI

ABSTRACT

In this note we generalize the concept of fac-

torial by defining

n
f(n) 2 = NI £(i)
i=1
for suitable f(x)'s, We then obtain an asymptotic

expression, as follows
59



£(n) 2 = /E@Y 7P oY
with
x 3
o(x) = f 1n f(t)dt, and -0(5) £ vy £ 0.
1
RIASSUNTO

In questa nota generaliziamo il concetto del fa

ttoriale definendo
n
F(n) 2 = T £(1i)
i=1

per funzioni appropriate. Otteniamo quindi una ex-

pressione asintotica, come segue

£(n) 2 =~ /E(@) (M) Y
con
X 3
o(x) =/ 1n £f(t) dt, e - o(3) € vy < 0.
1

§ 1 Introduction.

In this note we generalize the concept of the
factorial function in a novel way. An asymptotic ex
pression along the lines of Stirling's formula, is
obtained; such generalization was required to solve
in close form a number of combinatorial problems the

author has encountered in his work.

Definition 1: A continuous, monotonically increasing

function f(x), from the reals R into the reals, is

called a factorial generator.
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pefinition 2: By the generalized factorial on f,

where f(x) 1is a factorial generator, we mean a

functional
uf : I + R
with
n
]Jf(n) = Il f(i)’
i=1

where I are the natural numbers.

We shall use the notation f(n)? = uf(n).‘
Clearly, with f(x) = x, one obtains the standard
factorial function. Generalized factorials with
simple f(x) have frequent applications as combina-
torial quantities, e.g., f(x) = 2x gives
£(n)? = 2(n)!! ; f(x) = ¢ gives f(n)? = cn; etc.
Also, they have interesting applications in analy-

sis. For example,

a. [Spiegel, 63] allows us to say that if |x|<1,then

2x-1
2x

. Gl 1
(1-x01/2= 1 T X7 £(i)? . with £(x) =
i=1

b. Wallis formula (see [Spivak, 67] can be written
as 2
I . 1im £(n)? with £(x) = —

2 n-+o x2-1/u

c. Using [CRC, 66] we can write, for example

®/2 | 2n+1 , 2 x

{ sin x dx = h(n)? with h(x) = % + 1 °
w/2

J sin2n x dx = % g(n)? with g(x) = 2x2- z H
3 x

1 2.n _ . .
f (1-x%)" = £(n)? with f£(x) given above ;
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1
J ——*13—5 dx = % (n-1)? with g(x) given
°  (1+x°)

above.

Other applications are readily available.

The following basic properties are easily esta
blished.

Proposition 1:

(1) If f(x)
(ii) If f(x)

g(x) h(x) then f(x)?
g(x)/h(x) then f(n)z

g(n)? h(n)?;
g(n)?2/h(n)?;

E g(m)

(iii) If f(x)=cg(X) then f(n)? = ¢

.
b

(iv) If £(x) =(g(x))° then £(n)? = (g(n)?)° ;

(v) If £(x) = h(x) + k(x)then £(n)? = L [ b(i)
i=1

where b(x) = h(x) or b(x) = k(x), and the sum is

taken over all possible 2" combinations.

For simple functions, the generalized factorial
can be expressed in terms of the standard factorial;

for example,

Proposition 2: Let f(x) = axP. Then
£(n)? = a™(n!)P.

Proof: We have

n n n n n n n

M £(i) =1 aiP = a® 1 4P = a®C 1 i)P= a®(n!)P.
i=1 i=1 i=

QED.
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: . - P p-1
Proposition 3: Let f(x)-apx +ap_1x +."+a1x + ao.

then

n-1 p"k
f(n)?s= T I 3,k (n-3) 3
O‘ko,kia---skj’-hﬂkn_iSp j=0 j

Proof: By definition,

f(n)?=(a_nP P-i, . -1)P 0P o
(n) (apn ta 4 T4 .)(ap(n 1)"+a___(n-1)" “+..)

1 p-1
Tedious collection of terms produces the above ex-
presion. QED.

An asymptotic expression for f(n)? is now sought.
It is seen later that the requirements imposed by
the next definitionsare sufficient to guarantee that

an asymptotic form exists.

Definition 3: A factorial generador f(x) for which
f(x) > 1, for all x > 1, is called expandable.

Definition 4: An expandable factorial generator f(x)

for which 1n f(x) is a concave downward fuction is

called log-concave.

It can be shown that if feC2[R], a necessary
and sufficient condition for f(x) to be log-concave

is that 2
f(x) £" (x) - (f' (x))° < 0 ;

in particular, if f(x) is concave downward, the

f(x) is log-concave. We begin with a subcase.

Theorem 1: Let f(x) be log-concave with £(1) = 1
Then,

£(n) 2 = /E(n) &9(M) Y
with

X
o(x) =/ 1n f(t) dt
1
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and
o 3)evso0

where = means asymptotically equal.

Proof: Consider
a = in ( f(n)!) - 1/2 1n f(n)

= 1n £(2) + 1n f(3)+...+41n f(n-1)+1/2 1n f(n),

by virtue of the fact that f(1) = 1. Consider the
curve y = 1ln f(x). The area under the curve and
between the two lines x = 1 and x = n is

A = fn in f(x) .

1

This area can be approximated by the sum of the a-
reas of the n trapezoids which are bounded by the
lines x = k-1 and x = k, k = 2,3...,n . See Figure

1. The approximated area is

1/2 (1n £(1)+1n £(2))+ 1/2 (1n £(2)+ 1n £(3)) +...
+ 1/2(1n f(n-1)+ 1n f(n))= 1n £f(2)+ 1n f(3)+...
+ 1n f(n-1)+1/2 1n f(n)= 1n (f(n)?)-1/2 1n f(n)

= a_. .

n
which is smaller than the exact area, since the region
under the curve y = 1n f(x) is convex, by virtue

of the fact that f(x) is log-concave. Therefore

n
a_ € J 1n f(x) dx (1)
LB |
On the other hand, the area under the curve y=1nf(x)
between the lines x = 3/2 and x = n is
n
B = S 1n f(x) dx ,
3/2
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which can be approximated by the sum of the areas
of the (n-1) trapezoids bounded by the tangent at
the point (k, 1n f(k)) and the lines x = k-1/2 ,

x = k+1/2 for k = 2,3,...,n-1 , together with the
area of the rectangle bounded by the horizontal 1i
ne at the point (n, 1n f(n)) and the two lines

x = n-1/2 and x = n. See figure 2. The approxi-
mated area is

in £(2)+1n £(3)+...+1n f(n-1)+1/2 1n f(n) = a

n
y
A
’/)fo i
Ln f(x
7 A ~p X
0 1 2 3 &% S (n-1) n
Figure 1
y
Ln’fﬁjl__j_,
o0 o e 0
) 1 \ ] [
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Again,

fn In f(x) dx ¢ a_ . (2)
3/2 a

Combining inequalities (1) and (2), we get
n n
J _1n £f(x) dx < a; < / 1n £(x) dx.
3/2 1

Let
X
o(x) = [ 1n f(t) dt
1
Then

o(n)-0(3/2) < a <o (n)

Since
in ( £f(n)?) = a +1/2 1n f(n),

we have _
0(n)+1/2 1n f(n)-0(3/2) <1n( £(n)?)<o(n) +
+ 1/2 1n f(n).

It follows'that
In(f(n)?) = o(n) + 1/2 1n £(n) + Yo o
-0(3/2) « Y, €0 .

Since
Y, = 1n (f(n)?)- o(n)-1/2 1n £f(n) = ah-o(n)
n n
=a - { In f(x) dx =-[ { In f(x)dx - an],
and n
S/ 1n f(x) dx - a
1 n

increases monotonically as n increases (due to the
fact that it represents the difference between the

area under the curve y = 1n f(x) and the sum of the
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areas of the trapezoids in Figure 1 we can state
Yo decreases monotonically as n increases. Howe -
ver, since Y, has a lower bound of -0(3/2), the
sequence of Y, converges by the Bolzano-Weiers-

trass theorem to a value Yy with
-0(3/2) €y £ 0 .

Using this as an approximation to all the Yoo Ve
get ’
in (£(n)?) = o(n)+1/2 1n f(n) + ¥

from which the desired result follows. QED.

Naturally for f(x) = x, 0(n) = n 1n n-n+l,
from which ‘

f(n)? = n! z(n)l/2 a® el oF ¥t

It is shown in [Spiegel, 1963] using thé.Gémma

extension to the factorial,.that for f(x) = x ,
eY+1 = (211)1/2 , requiring y = 1n(¥2I)-1 = -.0816..
As the above theorem attests

-0 ( % ) = -.1081 €Y = -.0816... < 0 .

It is cdear that for the generalized factorial,
this constant is in general not equal to
1n(2H)1/2

llowing

-1 . This will be shown after the fo-

Theorem 2: Let £(x) be log-concave with f(1)>1.
Then
£(n)? g[f(i)]n-(i/2) f(“)1/2 ec(n) oY
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with
-6(3/2) € Y € 0
where <

G(x) = J 1n (£(t)/£(1) ) at
1

Proof: Consider g(x) = f(x)/f(1). Then

£(1) £(2) £(3) f(n)

g(n)? = £y * F(D * F(D **° (D

Hence £(n)? = (£(1))" g(n)? consequently

£(n)? = (£(1N® (g(n)t/2 (M) GV .
ey ]P- (M D)y 172 F(n)

-~

e’

with x
G(x) = / 1in g(t) dt . QED.
1

Example 1: Consider f(x) = e*. Then

n

f(n)? = elezea...en =z ezi = en('"i)/2

Using the asymptotic expansion,

2]

n
(t-1)dt -
£(n)? en-1/2 en/2 e& oY

2 b
- en-1/2 en/2 e.Sn -n+.5 oY

- en2/2+n/2 oY - en(nt1)/2 §

For this to agree with the exact formula we need
Y = 0. Indeed, computing &(x), we obtain

~ 2 ' -~

G(x) =(x“/2-x+1/2), so that §(3/2) = % and

- d(3/2) €« ¥ <€ o0
becomes
- 1/8 € ¥ € 0.
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Observe that y is not 1n(2H)1/2-1 = -,0816...

For this particular case the upper bound for ¥ is
achieved. The reason 8hould be evident, since for

the function at hand

- X et *
0(x) =S 1n =—4dt = (t-1)dt
1 e 1

and the trapezoidal  approximation gives the exacf‘
answer. l

Example 2: Consider f(x) = axP?. Using Proposition
2, we get f£f(n)? = a™(n!)P . Now employing Stir-
ling's formula,

£(n)? = a"(2m)P/2 p(P*1/2)P  -mp

Carrying out the steps of Theorem 2,

1 1nxPa

= a® oP/2 ep{nln n-n+1}eY

x gt np(n+1/2) e PP P Y

so that
(2m)P/2 = (P oY
or
§ = 1n (2MP/2 _

Example 3: Consider f(x) = xe™. Clearly

n(n+1)
f(n)?=nt eM(M¥1)/2_,1/2,n -0

From theorem 2 ,
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e .
F(m7 = eP M 2(pemy1/2 o 8 IS T
n(n+1) &
= nl/2 e ™ n e ee'.
Thus
7=1n(-——'2ﬁ) ,

From the above examples it is clear that y de-
pends on the factorial generator at hand. Using
the exact expression for the trapezoidal error, as

in [Young, 72] we obtain

Proposition 4: Let f(x) be log-concave, f(1)=1
and f € CIER] . Then if ' ‘
Q(z) = (£(2)£"(z) - (£'(2))2)/(£(2)2 ),
(1)Yn = (n-1) Q(e)/12 where 1<e<n.

(2)Yn € (n-1) max Q(z)/12 .
1€z<n

This formulation is, however, not too useful since
it does not show that Y, converges to a limit. Such
convergency could be established if one could for
example prove that n/2<egn.

The situation 1is remedied by the next theorem.

Theorem 3 : Let £(1)

= 1 then
© 2
- 1 £ 1 - f" f-f!
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where Ez(x) is the modifield Bernoulli polynomial
of degree 2.

Proof: Let Bn(x) be the n-th degree Bernoulli po-
lynomial; let E;(x) = Bn(x-[x]). Then [Abramo-
witx, 1964] shows that the Euler-MacLaurin Sum For

mula is
m-1 1 b
I F(atkh +wh) = & J F(t) at +
k=0 a
P k-1
N T SR NG (rD (py- plk-1) (4}~
k=1 :
] 1 _ m-1 _
- b w2 PP (avkn +tm)) at
P: o P k=0

p€<2n, 15w>0

where the coefficients bk of the Bernoulli polyno-

mials Bn(x) = kgo b, x* are
n/k 0 1 2 3 i
0 1
1 -1/2 1
2 1/6 -1 1
3 0 1/2 -3/2 1
y -1/30 0 1 -2 1

Evaluating this for F(x) = 1n f(x), f(1) - 1 ,

f(x)ec2,
n n
T 1in f(m)=1/2(1n f(1)+1n f(n))+ J 1nf(x) dx +

m=1 1

71



' n_ nwe_g12
r = CE ) - - 172 £ B 08 T gy

12 1 £2
£ ®© f"f_fl2
= 1n vf(n) +0(n) - 1/2 ?—(1)-1/2 fBz(x)————a——dx +
1 £
2
1 £ et f"f-f!
+ 17 (n) + 1/2 i 82 (x) ———;3—— dx ,

where use has been made of f(1) = 1 ,

eU(n) Y _€

Consequently, f(n)?=/f(n) e e with

- 1 £ ® f"f_f'2
Y= - —1-5-?— (1) - 1/2 { Bz(X)f—2'— dx
and 2
i ' o _ NE_F
e = 1 £l (n) + 1/2 J B (x)f £=1 dx ,
12 f n 2 £2

assuming that the infinite integral converges ( for

this the log-concavity of f is a sufficient, but

not necessary condition). If we now assume in addi-

tion that ;L (x) » O_fbr x » @ , (weaker than log-
concavity), then € =+ 0 for x + ® and the asympto-

tic relation follows. QED.

In general, however, it is not easy to evalua-
te Y exactly; thus one must be content with the
bound

Actually -of % ) is 'the best bound one can get for
a general f(x); for a specific f, such bound can be
improved as follows.,
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Theorem 4 : Let 1 < a < % be such that

(a-%) in f(a)+ £ fl(x) %L (x) dx » 0.
Then

-0(a) € Y € 0

Proof: Note first of all that if f(x) = c > 1 then

the condition reduces to

(a-% ) 1nc > 0

thus a = % is the tightest general bound. By the
preceding formula for Y, one has to show that
(- ]

' - ne_ ) 2
oa)y L £ (e 315,00 EE—

dx > 0.
2 3 f2

The last inequality is immediate: From
f"f—f'2< 0 it follows that we minimize the last in
tegral, if we replace fz(x), by its largest positi

ve value, namely 1/6, and obtain

|H

(

-
N
'-hl"h

A LU | £! £ £ -
(1)+ { d(f—-))- iz (-f—(‘.l)--f-—(l)-"r(')) =0

The first one is equivalent to

a ' 0 .
Fan f0aoiy Feg LF, (0 aE .
1

Integrating by parts, the second member equals

1 £ 1= cnEln L T E =
s ?_(1)+5 B2(x)f (x)]1 -5 { F - 2 B1(x) dx =
- -1 F 0 o ax
1 1 f °
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The first member equals

a a g
x 1nf(x) ]1 - { x F-(x)dx = a 1n £(3/2) -

a 1,£! 3 2 £
- { (x-[x]-g)?—(x)dx ~ 5 { F (x) adx

where the 3/2 comes about because on the interval
[1,a] , a € 3/2 - [x] - 1/2 = - 3/2. But this ex-

pression equals

a | ]
(a-3/2)1n £(a)+ [ B, (x) %— (%) dAx
1

Thus we need
(-]

(a-3/2) 1n £(a)+ S B (x) £ (x) ax > 0.
a

This proves the theorem. QED.

If a = 3/2, this condition holds,Indeed,ineach
interval n - 1/2, ﬁl(x) = x-[x]- 1/2 varies 1i
nearly from 0 to 1/2 and from -1/2 to 0, while

]
%—(x) > 0, but decreases(this is equivalent to the
log of f(x)); hence,
n+ 1/2

B,(x) £ (x) ax > o,

)
Acknowledgment. The author wishes to thank the re
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