

Werk

Label: Table of literature references

Jahr: 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?320387429_0010|log15

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

3.2. COROLLARY. Let T be a contradiction on a Banach space B, and assume that B^{\bullet} is a G-space. Then (c) implies (a).

Proof. If T^* is strongly ergodic, then 3.1 implies that T^{**} is strongly ergodic. Since B is a norm-closed subspace of B^{**} , it follows that T is strongly ergodic.

3.3. Example. To show that the hypothesis in 3.2 is really needed, we give an example where T^* is strongly ergodic while T is not. Define T on c_o (= null sequences) by $(Tx)_1 = x_1$ and $(Tx)_n = x_{n-1}$ for n > 1. For each $x \in c_o$, the sequence $\{(T^k x) : k \ge 1\}$ converges to (x_1, x_1, x_1, \ldots) , which is not in c_o if $x_1 \ne 0$. It is easy to check that the adjoint $S = T^*$ is given for $y \in \ell^1$ by

$$Sy = (y_1 + y_2, y_3, y_4, ...)$$
.

The iterates $S^k y$ converge pointwise and in ℓ^1 -norm to $(\Sigma_i y_i, 0, 0, \dots)$. (Note that the projection so defined is norm but not weak-* continuous on ℓ^1 .)

It is apparently not known whether there exist non-reflexive spaces such that both B and B^{\bullet} are G-spaces [D], page [D], so it is not clear whether [D], and [D], and [D], and [D], are non-trivial joint applications.

4. Final Remark. Corollary 1.4 has been proved independently by Michael Lin, for a semigroup of contractions. His proof embeds the π -invariant vectors in the dual of the π *-invariant vectors. I am grateful to Lin, as well as to Robert Sine, for correspondence on this and other matters.

References .

- [D] J. Diestel, Grothendieck spaces and vector measures, in Vector and operator valued measures and applications (editors: D. Tucker and H. Maynard),

 Academic Press, New York, 1973, 97-108.
- [D-S] N. Dunford and J. Schwartz, Linear operators I, Interscience Pub. Inc., New York, 1957.
- [G-K] J. Gait and S. Koo, Averages of functions and ergodic measures on F-spaces, Math. Systems Theory 6 (1972), 23-25.

- [Li] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337-340.
- [L1] S. Lloyd, An adjoint ergodic theorem, in Ergodic Theory (editor: F. Wright),
 Academic Press, New York, 1963, 195-201.
- [R₁] W. Rudin, Functional analysis, McGrow-Hill, New York, 1973.
- [R₂] W. Rudin, Averages of continuous functions on compact spaces, Duke Moth.

 J. 25 (1958), 107-204.
- [Se] G. Seever, Measures on F-spaces, Trans. Amer. Math. Soc. 133 (1968), 267-280.
- [Sem] Z. Semadeni, On weak convergence of measures and σ -complete Boolean algebras. Colloq. Math. 12(1964), 229-232.
- [S₁] R. Sine, A mean ergodic theorem, Proc. Amer. Math. Soc. 24(1970),438-439.
- [S₂] R. Sine, Geometric theory of a single Markov operator, Pac. J. Math. 27(1968); 155-166.
- [S₃] R. Sine, Geometric theory of a single Markov operator II, to appear.
- [St] W. Stangl, Weak-star convergence of measures and matrix summability, Lehigh University dissertation, 1974.

Department of Mathematics Obio University Athens, Obio 45701 U.S.A

(Recibido en noviembre de 1975).

