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INTRODUCTION .

In [3] C. RUIZ gave a definition for “‘fibration’” on the category Aunb of

Banach rings which is closely related to a functor

GR : Anmb 5 A°Gr

Work partially supported by a grant of **Colciencias’’.
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which takesits values on the category of the simplicial groups. It was assumed that
the fibration f of Amb are the Banach ring homomorphisms such that the homo-
morphisms GR(f) of simplicial groups, are Kan fibrations. This notion happened
to be equivalent (Cf. [3; p. 169]) to the notion of Serre fibration given by KAROU«
BI and VILLAMAYOR [41.

More generally, let F : Annb » Gr be a functor of Mayer-Vietoris [5] , and let

R : Annb » A° Annb

be the functor defined in [3] , p. 140. We say that a homomorphism f of Annb is
a Kan F-fibration if the morphism of simplicial groups Ro(A°F) (f) associated
to / (where A°F : A°Amnd > A°Gr is the functor that prolongates F dimension
by dimension) is a Kan fibration. The foregoing case is obtained by taking F=G/ ,

the linear group.

In [6] it was proved that, in the discrete case, this notion of fibration and the one
of F-fibration due to GERSTEN concide [5] . In order to get those equivalences, it
was necessary to characterize the Kan fibrations which are homomorphisms of sim-
plicial groups. The results in this paper complete those of QUILLEN [2] and C.
RUIZ SALGUERO[3] , proposition C. 2.1.2.

We proceed as follows : by reducing the problem to study a Kan homomorphism
we work the problem in the case of simplicial sets and we show the equivalence
between ““Kan’s relative property’’ and the notion of “‘cohereditary set’’. The
consequences are sumarized in theorem 1.6.1. In §2 these results are applied to
simplicial groups and completed with a study on *‘cohereditary equivalence relations”.

The main results are given in theorems 2.2.2, 2.3.4, 2.3.5.
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I. KAN'S RELATIVE PROPERTY
1.1, Epimorphisms of simplic ial groups.

1.1.1. LEMMAI[1]. Every simplicial group satisfies Kan's extension con-

dition.

1.1.2. LEMMA. If f: G- H is an epimaphism of simplicial sets in which

H satisfies the Kan extension condition, then every box

b.e H

bo"""’k""'bn+1' i n

of elements of H in dimension n, is lifted into a box of elements of G. That is to

say, there exist

-~

go,..,,gk,...,gn_”, gi€Gﬂ

wbere digi= d]"lgi fOT i<j, Z‘,]’*k‘ and f(gz') =bi.

Proof: Since we have assumed that H satisfies Kan’s condition there exist
a “filler”” heH, ; of the given box: d;(h) = b; (i # k). On the other hand, sin-
ce [ is surjective in each dimension, there exist ge Gl such that f(g)=h.

The faces g, = d,(g), i % k, provide the desired box.
1.1.3. LEMMA. Every epimorphism of simplicial groups is a Kan fibration .

Proof. Let N be the kemel of a given epimorphism /: G » H. Let us take
abox g, ..., €4 +-, 8,y in dimension n, with image b =f(g ),..., b, ;=
= f(gn”) , and suppose that this last one is filled with 5 ¢ Hm_l.'dz-(b) = bi )

i # k. We will prove that there is ge G, _; such that

i) flg)=h
i) dfg) =g; i#k.



Let x€G, ; be suchthat f(x) = h. Then there exist e;e N, (i # k) such
that g, =e;.d;(x). Thebox e ,..., &, ..., e, ; isfilled by an element

eeN, ;. Wetake g=e.x and this concludes the proof of lemma.

The condition of surjectivity can be weakened, and one of our purposes is to
exhibit a sequence of equivalent conditions on an homomorphism of simplicial groups

which are also equivalent to Kan’s condition.

1.2, The decomposition of a morphism and Kan's condition .

1.2.1. We begin by decomposing a given homomorphism f: G > H in an

epimorphism and a monomorphism
G —{ H
N / ‘f
K
where K= im(f) . Accordingto Lemma 1.1.3, by is a Kan fibration. Therefore ,

in order to f be a Kan fibration a sufficient condition is that if satisfies Kan’s

condition. More precisely :

PROP OSITION. In order that a homomorphism of simplicial groups f: G->H

to satisfy Kan's condition, a necessary and sufficient condition is that the injection
i, :Im(f) > H
/

associated to f, satisfies Kan's condition.

We can prove that such condition is a necessary one in a less restrictive way.

In order to do solet g: X > Y be a simplicial map, let K=1Im(g), PgiX > K,



ig : K>Y beas before. Then

1.2,.2, PROPOSITION. If K and g satisfy Kan's condition so does ig‘

-~

Proof. Let kl,...,/e... , k

q ; o be a box of K whose image by ig is

filled with an el[ement 1y ¢ Y1

By lemma 1.1.2., there exist a lifting of the given box (k]-)]. in X. Thatisto

-~

say, there exist a box «x Xgp woor Xpal s

with x;eX such that

0:--'1 ﬂ+1'

Pg(xj) = k]' i # q.
Since by hypothesis g satisfies Kan's condition, there exist xe X _; satisfying

the following two properties .

° glx) =y
oo d].(x) =x #q
The element & = pg(x) satisfies the two desired properties :
ig(k) = ig pg(x) =glx) =y ;
d;(k) = d; py(x) = ppd;(x) = p,(x;) = k
(i# q).
1.3. Kan's relative property .

The proposition above lead us to study monomorphisms which are Kan fibrations

and to extend the results so obtained to maps wich are not, in general, injective,

1.3.1. DEFINITION. A given simplicial subset X of a simplicial set Y
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is said to satisfy Kan condition relative to Y if the injection i: XY is a

Kan fibration.

This means, of cowse, that if a box of X is filled in Y then the filler

belongs necessarily to X .

There exist a close relation between Kan's relative condition and connected-
ness. In order to stablish it, let us recall the definition and some properties of

(1] ”
connected components’’.

1.3.2. Let X bea simplicial set. Let x,y e X,. We write x -y if there
exist zeX;, suchthat d (z) =x and d;(z) =y. The equivalence relation

generated by this relation will be denoted again by - .

Recall that 7, (X) is the quotient of X by this relation. By definition, a
simplicial set X is said to be connected if no(X) is a singleton. By the way,
it is also true, that if | A)\} is a collection of simplicial sub-sets, and x € X
is such that i) A, is connected ; ii) x, e Ay forevery A. then UA) is
also a connected simplicial set.

DEFINITION. Let X asimplicial set, xe X . We call the connected
component of x in X and denote it by C(X,[x]), the union of all connected
simplicial sub-sets of X containing x. [t follows from the foregoing remark
that the connected component C(X, [x]) is the largest connected simplicial sub-

set which contains x.

1.4, Cobereditary Sets.

1.4.1. DEFINITION. A simplicial sub-set A of a simplicial set X is

said to be cobereditary if it satisfies the following condition :



(C) In order that an element x e X, belong to A, it is necessary and

sufficient that there exist a face

w*:X > X, , w:lm] >[4 |

such that w*(x) ¢ Am .
1.4.2. Condition (C) is equivalent to the following one :
(C’) In order that an element xe X, (n> 0) belongsto A, g necessary

and sufficient condition is that there exist a face

di .'Xn - Xﬂ-l

for some i, 0<i<n, such that

di(x) € An-I

Let us prove that (C’) => (C). Let xe X, . Assume that there exist a face
w*: X, » X, suchthat w*(x)e A, . According to McLane's descomposition of

w*, we have

with 7+ g-p =m. Therefore

d]-po “esiO d,-]oo)*(x) = dilo. 020 diq(x) € An_p "

Applying condition (C’) we get

dijone 0d; (3 €Ay,

Applying (C’) successively we get

A

XcAn-p_‘_q: m "



1.4-3. It is clear that unions, as well as intersections of cohereditary sub-
sets, are cohereditary. As we will see in the next numeral, the set C(X,[x]) is
the smallest cohereditary sub-set of X containing x. Moreover every coheredita-

ry subset of X is a union of subsets of this kind.

On X*'= J_l_ X, . the subsets A'=UA_ , where A={A_} isa cohe-
n>o0 n>o 4
reditary simplicial subset of X, form a topology on X, to wich we will refer as

the cohereditary topology of X .

1.5. Cobereditary sets and connectedness.
1.5.1. PROPOSITION. C(X,[x1) is a cobereditary subset of X .

Proof. 1) Let aeX;, and assume that d;(a) - x. Then there exist a chain

IAVAVAWAS

where the arrows are either do or d;.

It is clear that a simple process of induction reduces the proof of this part to

show that if an element a¢X;,d (@) =x (or dj(a)=x), then a belongs
to the connected component of x in X, In order to prove it let L be the
smallest simplicial subset of X containing C(X, [x]) and a. Let’s prove that

no(L) is a singleton, which implies that C(X, [x] ) =L and then a¢ c(x,[x])

In order to prove that L is connected recall that in dimension », L is

the union of C(X, [x] ),, and the set formed by the w*(a)’s where



w*:X; - X, isaface. Therefore, for 7=0, in the McLane's descomposition

there cannot be any degeneracies and moreover there can be only one face: d; . This

implies that
L, = C(X, [x1) Ui d,(a), dj(a) b

since it has been assumed that the faces of a are equal to x, then certainly

7TO(L) is a singleton.

2) Suppose that we have proved that for each @ ¢ X, , for which there exist

a face d;(a) e C(X, [x1 it holds that a € C(X, [x] | - And let us prove the

n-1

property for n+1: let beX be such that d;(b) e C(X,[x]),, forsome i.

n+l’
We will prove fil‘Sl, that for every j; d](b) € C(X, [x] )ﬂ . In order to do tl’liS, and accor-
ding to the induction hypothesis, it is enough 10 prove that, for some &, dk(d].(b))e C(X,[x];l_l.

For i<j wetake k=i-1. For j>i wetake k=i. Therefore every face
d; o...0d; (b) e C(X,[x]).
/4 o
With a similar process to that in part 1hlet L be the smallest simplicial subset

containing C(X,[x]) and b. We have

Lo=CX,[x)y U {0*®) |w*=d;o...od; |

We get then, that L, = C(X, [x] Yo Since L;d>C(X, [x])l we have the follo-

wing diagram
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~

|

(5]
~

l y

L) e  m(C)

where C= C (X, [x]). From this we get that 7o (L) = T, (C) is a singleton .

Since L is connected and contains C(X, [x]) we have that L =C (X, [x] ) and

therefore that & e C(X, [x]).

1.5.2, PROPOSITION. Let A be a simplicial subset of X and xe¢ A .

If A is cobereditary, then CX,[x])CA.
Proof. By induction on 7, let us prove that C(X,[x]),C A, .

For n=0 it is enought to notice that if a chain

VAYAYA

et e ap

(where the dimensions of the x.’s and also those of the «

; ]-'s can be different)

has some element in A, then all of them are in A. Assume, then, the result for = .

Let ae C(X, [x] )"+1 . Then 4 (a)e c(x,[x] ), C4,- Since A is coheredi-

tary ae An+1 .

1.5.3. COROLLARY. The connected components of X are the smallest



cobereditary subsets of X. Moreover : in order that AC X to be cobereditary it
is necessary and sufficient that A is a union of connected components of X .

Proof. Let us prove the last assertion. According to 1.5.2. if A is cohe-

reditary we have

U cix,[x])c A,
xeA,
On the other hand, for each a¢ A, y=di1°"'°di (@) e A, and yeC(X,[y]).
?

Since C(X,[y]) is cohereditary, then @¢ C(X,[y] ). From it we get

A=U c(k, [x]).
ngO

1.6. Kan's relative condition and cobereditary sets.

l.al. THEOREM. Let X be a simplicial set and ACX. Then the

following conditions are equivalent:

i) A satisfies Kan's condition relative to X.

i) A is cobereditary in X .

i) A is a union of connected components of X .

iv) the set A’ = _l>_l. A, is open for the cobereditary topology of X
n>o0

(Cf. 1.4.3.).

v) the complementary of A in X is a simplicial subset of X .

Proof. Let us see that i) => ii) . Let x¢ X, be such that d;(x) e A. If we
have shown that di(x) €A for every i, then the di(x) ,{# k, form aboxin A
for which xe¢ X is afiller. Since A satisfies Kan’s condition relative to X,

then xe A.
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In order to prove that * if there exist j such that d];(x) eA, then d;
d;(x)e A forevery i’ , we use induction on the dimension of x. In fact, if
dim(x) = 1 it is clear that when x;= d].(x) € A, these elements alone form a box

in A ,which s filled in X, and this filler x is, by hypothesis, in A .

Now let dim(x) = n+l , d].(x) ¢ A. Consider, without loosing generality,
i< j. The relation d; d]-(x) = dj-I d;(x) implies that the element y=d;(x) ,
whose dimension equals 7, has the face dj-l in A. All of its faces are in A,

by the induction hypothesis. Those faces conform a box because A satisfies

Kan’s condition relative to  X.
It isobvious that ii) => i)
Proposition 1.5.3. states the equivalence i) and iii) .

By definition iii) => ii) (Cf. 1.4.3.). Conversely, let A be a simplicial
subset of X. A’ = g_ A, . Assume that A’ is open for the cohereditary topo-
n>o
logy of X*’. Then there exist a cohereditary simplicial subset B of X, such

that

it is clear now that B,=A,, n>0 and then A is cohereditary.

ii) <=> i) is also evident, since in order that B =U B, (B, CX,) tobea
n>o
simplicial subset of X it is necessary and sufficient that B to be stable relati-

vely to the faces; i.e.,

xeB, => w*(x)eBn,co-'[n] - [m].

These facts been established, let A be a simplicial subset of X . Let



B,=X,-A,. Then in order that B =UB, tobe a simplicial subseta ne-

cessary and sufficient condition is that for every w :[#] »[m] and xe¢ X,
x¢A, => 0¥ A,

which is equivalent to: A is cohereditary .

1.6.2.  Simplicial Topologies. Let O = { AM} be a collection of simplicial
subsets of a simplicial set X . We say that O is asimplicial topology on X
if the unions as well as finite intersections (both given dimension by dimension )
of elements of O are elements of O and if the empty set (dimension by dimen-
sion) and X itself belong to O . These topologies can be compared in the way

used for Top. If Ae¢Q, the graded set {B B, =X _-A,_ is saidto be

nl n2o n n n .
closed for the topology O . It is convenient to notice that B is not in general

a simplicial subset of X . According to the previous theorem, part v), we have

COROLLARY. The cobereditary simplicial topology on X is the finest of the
topologies on X which satisfy the condition: ‘'B is closed => B isa sim-

plicial subset of X * .

1.63. COROLLARY. Let f: X »Y be a simplicial map. Assume that in

the descomposition of f,

xﬁy
™ /y

fiX)

by and [(X) satisfy Kan's condition. Then the following conditions are equiva-

lent :



a) f is a Kan fibration .

b) if is a Kan fibration,

c) f(X) = Im(f) satisfies Kan's condition relatively to Y,
d) f(X) is cobereditary in Y.

e) f(X) is a union of connected components of Y .

2, COHEREDITARY SIMPLICIAL GROUPS

2.1, Kan's relative condition and cobereditary notion on A°Gr .

2.1.1,  We will say that a simplicial sub-group G of a simplicial group
H satisfies Kan's condition relatively to H (respectively, is cohereditary in
H) if the underlying simplicial subset of G satisfies Kan's condition relatively

to (respectively, is cohereditary in ) the underlying simplicial subset of H .
2.1.2, Caracterization of cobereditary subgroups.

PROPOSITION. Let G be a simplicial subgroup of H. In order that G
to be cobereditary in H a necessary and sufficient condition is that the equality

d (x) =1 (in H) implies xeG . Or equivalently, that for every ne N, n>0
Ker(d :H, 6 - H, ;) CG, .

Proof. Let us see that the condition implies property (C’) of 1.4.2. . Let
heH, be such that for some i>0,4;(h)eG, ;. Wewill prove that

be G, intwo steps :

Step 1. Let us see that ker(d) C G . It isclearthat Ker (d,)C G . Sup-

pose that for every j, 1< j<i, Ker (d].) C G and let us prove that Ker(d) C G.



Let heKer(d). Let x= (s, (d;, #)1) b. Then d; ;(x) = 1. Therefore

x € G, by the induction hypothesis. So we have that d;(x) e G. But di(x) =
(d; ; (b))'ld,-(b) =d; (11, then d; ;(b) e G and thus b = (s;; d; 1(h)).xeG.

Step 2. We will prove that if dh) e G then heG. Again we use induc-
tionon i For i=0,let heH, suchthat d (b)eG. Then the element
x = (so(do(b)'l) ). b satisfies d (x) = 1. By hypothesis, x e G. Therefore
=s,d,(h).xeG. Assume now, for every j, 1< j<i, that “d].(x) €eG, =>

x€ G, where xe H. And let us prove that “d;(x) e G =>x¢G". Let

bheH d;(h) € G, . Then the element x = (s, (dial(b))'l).b is such that

ntl’
d; 1(x) = 1. Therefore by stepl, xe¢ G andthen d, ;(h) = (di(x)'l). d;(h)e G.

Induction guarantees that h e G .
2.1.3. In view of the equivalence established in 16.1. between Kan’s rela-

tive condition and cohereditary subsets we can claim :

COROLLARY. Let G be a simplicial sub-group of H. In order that G to

satisfy Kan's condition relative to H, a necessary and sufficient condition is that
for every n> 1,

Ker(d,:H,6 » H,;)C G, .

n

Or equivalently, if for every n> 0, and every heH, ,and dy...d, (b) =1 in

H, then beG.

2,2, Cobereditary relations.

2.2.1. DEFINITION. A simplicial equivalence relations on a simplicial set

X is said to be cobereditary if for every pair of elements «x,y € X, and for

every o :[n] » [m],



w*(x) ~w*(y) = x.y.

2,2,2, THEOREM. The following conditions are equivalent :

a) R is a cobereditary relation on X .

b) The simplicial subset R C X x X (defining the relation) is cobereditary
in XxX.

c¢) The canonic injection R +» XxX 1is a Kan fibration.

d If

xo,.-o, xk, ve ey Xn+1

Zo,c.o,Zk, coey zn+1

(where x;,z;e X ) are arbitrary boxes in X such that x;-z;, i # k, then the
fillers x (of the first one) and z (of the second one) , whenever they exist, are

equivalent: x ~z .

e) In the quotient simplicial set Y = X/ R every face is an injection (and
thus a bijection ). That istosay Y is a simplicial set of the kind
K(A,0), where A is aset :

K(A,0), =A , n>0

with the faces equal to .id , .

) X/R is a minimal simplicial set (MOORE) such that

1}
>
~
~

no(X/R)

and

n
S
S
\4
—~

n"(X/R) A

Proof. The equivalences a) <=> b) <=>c) (1.61.) ande) <=>d) are



evident .

Let us prove that a) => e) . Suposse that d,[x] = d,[y] . This means that
[d;(x)1=[d;(y)] or equivalently d;(x) -d;(y). Since R is cohereditary x-y.
So [x] ={y] . Conversely ¢) => a) because if w*(x) -w*(y), x,y e X, then
o*[x] = [w*(x) ] = [w*(y) 1 = w*[y] . Since the faces in X/R are assumed to be
injections. Then [x]=[y] and thus x -y. Finally, the equivalence e) <=> f)

is a very well known fact (Cf. [7]).

2.2.3. Example: Let A asimplicial subsetof X . Inorderthat A to
be cohereditary in X, a sufficient condition is that the relation defined by A
in X (where the cosets on X are of two kinds : the points of X - A and

the coset A, ) is cohereditary. We recall that the condition is not necessary one

(Cf. Proposition 2.3.1) .

2.3. Fundamental Theorem.
2.3.1. Subgroups and cohereditary relations.

PROPOSITION. Let G be a simplicial subgroup of a simplicial group H.
In order that G to be cobereditary in H a necessary and sufficient condition is

1

that the equivalence relation given by ** x -y<=>y " xe G "' fis cobereditary .

2.3.2. COROLLARY. Let G be a simplicial subgroup of H. Assume that
the tnclusion i: G > H is a Kan fibration. Then: 1) the complementary of G
in H is a simplicial subset of H ; 2) The homogeneous quotient set H/G is
isomorfic to the space of Eilemberg-McLane, K(A, 0) where A = Ho/ G,. Mo-

reover each one of the conditions 1),2) is sufficient in order that G to satisfy

Kan's condition relative to H .



2.3.3. PROPOSITION. If G satisfies Kan's condition relatively to H,

then the inclusion map induces an isomorphism

n,(G) Z m (H), for n>1,

and furthermore m (G)C m (H). Also the homogeneous quotient set no(H)/ﬂo(G)
is precisely Ho/Go . Moreover (if G is cobereditary in H) G is a normal

subgroup of H, , if and only if = (G) is a normal subgroup of = (H).

Proof. It is enough to consider the homotopy sequence for the Kan fibration
H- H/G = K(A,0) with fiber and group G. Let us show that if 7 (G) is nor-
mal in 7 (H) then G_ isnormalin H_ . Let heH, and geG,. Then
[» gb'l] =[4] [g] (A1 -1, 7, (G) Cm (H) . Then, there exist g'¢ G, such that
'] = [bgb'l] in 7,(G) ). There exist he H; suchthat d (k) =g, d; (k) =

=bgb'1. Since G is cohereditary in H, ke G and then bgb'IeG.

2.3.4. Recall that a simplicial map K(A,0) »Y is completly determined

by a function f,: A > Y . This means that

Hom(K(A,0), Y) =Hom(A ,Y,);

in particular, if Y, isa singleton, as it is the case when Y= W (G) (the clas-

sifying set of MacLanefor G) then Hom(K(A,0),Y) is a singleton.

As a consequence there exist one, and only one principal fibering with group G

on K(A,0) which corresponds to the unique map

K(A,0) > W(G) .

Then the principal fibering



G > H-»K(AO0),
with group G , is trivial, and then

H=~K(A0)xG

as simplicial sets. In particular,
m,(H) = Ax ﬂo(G) , A= "o/Go .

That is to say, from the set theoretical point of view the subgroup G differs from

H only by a set K(A,0) of Eilenberg-MacLane .
2.3.5. In this paper we have obtained the following informations.

THEOREM. If f: K~ L is a homomorphism of simplicial groups. Then the

following conditions are equivalent :
a) [ is a Kan fibration
b) for every i and for every n,
Ker (di : Ln > Ln-l) C Im(f);
c) for every n,

Ker(d, : L, » L, )C Im(f).

n

d) In the decomposition of f
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by an epimorphism and a monomorphism, if is a Kan fibration (or equivalently

Im(f) satisfies Kan's condition relativelly to L ).

e) Im(f) is cobereditary in L (or equivalently the equivalence relation
de fined in L by its subgroup Im(f) is a cobereditary one ) .

f)  The homogeneous quotient simplicial set L/Im(f) is minimal and of the
kind K(A,0) where A is aset (Cf.[2:p. 38 , prop. 17).

Notice that in such a case A = Lo/lm (f,) » and that L/Im(f) satisfies

Kan's condition (Cf. 2.3.2. (2) ).

g) Im(f) is a union of connected components of L .

b) For every leL (diml=mn) if d, ...d ()=1 in L then

52
lelm(f) . On the other hand, when f: K - L is a Kan fibration, then
1) The simplicial sets L and Im(f) x K(V,0) are isomorphic

(V=L Imf). In particular,

m,(L)=nm,(Um(f)), n>1 ;

2) The injection Im(f) - L induces a monomorphism = (Imf) >m (L),

and we get an isomorphism
mo(L) / m(Imf) =L, / Im (fp) 5
3) if fot Ky » L, is swurjective then [ is an epimorphism.

4) if L is connected then every homomorphism f: K » L satisfying

Kan's condition is an epimorphism.
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