

Werk

Titel: Symmetric perturbation of a self-adjoint operator

Autor: Rao, D. K.

Jahr: 1973

PURL: https://resolver.sub.uni-goettingen.de/purl?320387429_0007|log18

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

SYMMETRIC PERTURBATION OF A SELF-ADJOINT OPERATOR

Ьу

D. K. RAO

SUMMARY

We give a proof, which is valid in both real and complex Hilbert spaces, of the following result: If A is self-adjoint, B is symmetric $D(B) \supset D(A), \ ||Bx|| < a \ ||x|| + ||Ax|| \ \text{for } x \in D(A),$ then A+bB is self-adjoint for $0 < b < \frac{1}{2}$.

Introduction. In a complex Hilbert Space, it is known that the operator A+B is self-adjoint, if A is self-adjoint and B symmetric with $D(B) \supset D(A)$ and $||Bx|| \le a \ ||x|| + b \ ||Ax||$ for all $x \in D(A)$, where 0 < b < 1. We give a proof which is valid in both real and complex Hilbert Spaces. The proof of the result in a complex Hilbert Space is given in [1]. Notice that A and B are not necessarily bounded, $A=A^*$ and $B \subseteq B^*$.

LEMMA 1. Let A be a closed operator in a Hilbert Space H and B an operator with $D(B) \supset D(A)$ and $||Bx|| \le a \cdot ||x|| + ||Ax|| \cdot Let$ b and k be real numbers such that 0 < b < 1 and $k > \frac{2ab}{1 \cdot b}$. Then for $\forall z \in D(A) \exists z' \in D(A) \ni (Az, Ax) + (Az, Ax) = (Az, Ax) + ($

 $k^{2}(z, x) = ((A + bB) z^{*}, Ax) + k^{2}(z^{*}, x)$ for all $x \in D(A)$.

Proof: Let $H_1 = D(A)$ with the inner product

$$(x,y)_1 = (Ax, Ay) + k^2(x, y)$$
.

 H_1 is a Hilbert Space. Consider the linear functional f_1 on H_1 given by

$$f_1(x) = -(Bz, Ax) b,$$

$$|f_1(x)| \le b \ ||Ax|| \ ||Bz|| \le b \ ||Bz|| \ ||x||_1 < \frac{1+b}{2} \ ||x||_1 \ ||z||_1 \ .$$

By the representation theorem $\exists z_1 \in H_1$ such that $(z_1, x)_1 = f_1(x) = -b(Bz, Ax)$ and $||z_1||_1 = ||f_1|| < \frac{1+b}{2} ||z||_1$. Define the sequence $\{z_n\} \subset H_1$ inductively by $z_0 = z$.

$$(z_1, x)_1 = -b(Bz, Ax)$$
,
 $(z_{n+1}, x)_1 = -b(Bz_n, Ax)$.

Then we have

$$(z_0, x)_1 = \sum_{s=0}^{n} [((A + bB) z_s, Ax) + k^2(z_s, x)] + (z_{n+1}, x)_1.$$

The inequality

$$\sum_{s=1}^{n} ||z_{s}||_{1} < (\sum_{1}^{n} (\frac{1+b}{2})^{s}) ||z_{o}||_{1}$$

shows that $\sum Az_s$ and $\sum z_s$ are absolutely convergent. Let $\sum_{o}^{\infty} z_s = z'$. The convergence of $\sum ||Az_s||$ implies the convergence of $\sum ||(A+bB)|z_s||$. Since A+bB is closed, $\sum (A+bB)z_s \rightarrow (A+bB)z'$.

LEMMA 2. Let S be closed and injective, $D(T) \supset D(S)$ and $||Tx|| \le b ||Sx||$ for all $x \in D(S)$ with 0 < b < 1. Then R(S+T) = H if R(S) = H.

Proof. Let $z_0 \in H$, $Sx_0 = z_0$. Define the sequence $\{x_n\}$ by $Sx_{n+1} = Tx_n$, $n = 0, 1, 2, \ldots$. Then $\sum_{k=0}^{m} ||Sx_k|| \le ||z_0|| \sum_{k=0}^{m} b^k$ implies that $\sum_{0}^{m} ||Sx_k||$ converges. Hence $\sum Sx_k$ converges. Since R(S) = H, S^{-1} is bounded and $\sum x_k$ converges to say x. $\sum ||(S+T)x_k||$ is bounded. Since S+T is closed so have $\sum (S+T)x_k \to (S+T)x$. Thus $(S+T) = z_0$.

LEMMA 3. Let A be self-adjoint and $Bx \le a ||x|| + ||Ax||$. Then $R[k^2 + A^2 + bBA] = H$ for $k > \frac{ab}{1-2b}$, $0 < b < \frac{1}{2}$.

Proof. For $0 < b < \frac{1}{2}$, we have

$$|b||BAx|| \le (2 + \frac{a}{2k})b||A^2x + k^2x||$$

 $\le \beta||A^2x + k^2x||$ for some β , $0 < \beta < 1$.

Since $R[k^2 + A^2] = H$, we have, using Lemma 2, $R[k^2 + A^2 + bBA] = H$.

THEOREM. Let A be self-adjoint, B symmetric, $D(B) \supset D(A)$, $||Bx|| \le a||x|| + ||Ax||$ for $x \in D(A)$. Then A + bB is self-adjoint for $0 < b < \frac{1}{2}$.

Proof. Since A+bB is closed and symmetric, it suffices to prove that

$$D(A + bB)^* \subset D(A + bB).$$

Let $y \in D(A+bB)^*$. Then we have

$$|((A+bB)^* y, Ax) + k^2(y, x)|$$

 $\leq (||(A+bB)^* y||+||y||)||x||_1.$

Thus the linear functional g on H_1 given by $g(x) = ((A + bB)^* y, Ax) + k^2(y,x)$ is bounded. Thus $\exists z \in D(A)$ such that

$$g(x) = ((A + bB) z', Ax) + k^{2}(z', x)$$
 for all $x \in D(A)$.

Thus we have, since A+bB is symmetric,

$$(y \cdot z^*, ((A + bB)A + k^2)x) = 0$$
 for all $x \in D(A^2)$.

Since $R[k^2 + (A + bB)A] = H$, we have $y = z^*$. Hence $D(A + bB)^* = D(A + bB)$.

COROLLARY. The Theorem is true for all b with 0 < b < 1.

Proof. Let $A_0 = A$, $A_{n+1} = A_n + \frac{\alpha}{2^{n+1}} B$, n = 0, 1, 2, ..., m, where

$$b = \alpha \left[\frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^m} \right]$$
 and $0 < \alpha < 1$.

Then

$$\frac{\alpha}{2^{n+1}} \, || \, |Bx|| \leq (\, || \, A_n \, x \, || \, + \, a_n \, || \, |x|| \, || \,) \, \frac{\alpha}{2} \qquad ,$$

for some a_n . Induct on n.

REFERENCE

1. KATO, T. Perturbation Theory for Linear Operators. Springer-Verlag, New York, Inc., New York, 1966.

Departamento de Matemáticas Universidad del Valle Cali, Colombia, S. A.

(Recibido en enero de 1973).