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A NOTE ON THE ARITHMETIC OF THE ORTHOGONAL GROUP
by

Nelo D. ALL AN

The purpose of this paper is to discuss the maximality as a discrete group of the
group Gz of all rational -integral matrices of the Real Special Orthogonal Group
G = SO (H) for all unimodular integral symmetric » by » matrices H with signa-

ture (p+r,p), p> 1.

We prove that N(Gy) = G, , where N(G,) denotes the normalizer of G,
in G and that \here is at most one maximal discrete subgroup of G which
contains G, . Moreover Gj is always maximal, with exception of the case
where r is an odd multiple of four and H is odd. It is well known that if T is
a maximal discrete subgroup of G then N(I') =T" ; the above exceptions give a
negative answer to the question of whether the conditions N(I') =I" is enough

to characterize maximality.

Essentially we present complete proofs for the results anounced in 3] ; alsowe

use, and the material overlaps with, chapter Il of [41.

1. Preliminaries. We shall denote by R the field of all real numbers, by @

the field of all rational numbers and by Z the ring of all rational integers. If
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a¢Q, ord(a) will denote the order of 2 in a. Forany subring S of R, M,(S)
will denote the ring of all # by » matrices with entries in S, and GL,(S) , the
group of units of M_(S). The deteminant of a matrix g will be denoted by det(g);
the » by = identity matrix will be denote by E,. orsimply E whenever there is
no danger of confusfon, and e;r 1< i,j<n, denotes the matrix with 1 in (4,j)-
entry, zero otherwise. g is the trans pose matrix of the matrix g. Let H be an
integral unimodular symmetric matrix of signature (p+71, p), n=2p+r, i.e., HeM,(Z),
'‘H=H, and det(H) = + 1. We say that two matrices H and H’ are integrally
equivaleml, H =~ H’, if there exists an integral unimodular matrix U such that
H'='UHU. Let V be m n-dimensional vector space over R and { &]-} 5
i=1,...,n, be afixed basis for V; we shall identify, as usual, a vector x¢V
with a column matrix; the bilinear form associated to H shall be written as

f(x,y) = txHy, and we set f(x) = f(x,x) forall x¢V. Wecall (V,f) aquadratic
space. Let L be the lattice of all points in V whose coordinates are integers.
If H= H’, then we can regard U as a change of basisof L and H and H’

as the matrices associated to the same form f in different basis. We say that H
is even if for all x¢ L, f(x) iseven; otherwise we say that H is odd. Let A
and B be respectively r by r and s by s matrices,thenwe shall denote by

ALB the r+s by r+s marwix

A 0 0 1 0 Ey
. We write J(a) = , JO)=] and J,=
0 B 1 a Ep 0

We recall the following two results from [1].

LEMMA 1. Given m> (0 there exists a unimodular symmetric integral m by

m matrix V such that Em“ V  and VE]q.LA mod 2 , where A=j(1) -or
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else Eg, according to whether m is even (m-2=q) orodd (g=m-1). Moreover
if m iseven andifwe write V= ("ij) , then we can find such V with

Ul m-1=™ and V =V'1 J(1) modulo 2% where a=ord (m)

LEMMA 2. (Meyer) Let H be an unimodular symmetric integral matrix with

signature (p+r,p), pP£O0.

(a) If H is even, then either r> (0 and H:]p_l_(br, where ‘757 is posi-

tive definite, even and r is a multiple of 8, or r=0 and H~ -’P

(b) If H is odd and r # 0, then H"]p"LVI where v, satis fies lemma

(c) If H isodd and r=0, then H=]p_1 LJja).

2. The enveloping algebraof G, . Let O(V) be the group of automorphisms of
(V,f), G be the group of all rotations in O(V) , i.e., G = 0% (V), and G° be
the connected component of G. Let G; be the group of units of L in G, i.e.,
the group of all ge¢ G such that gL = L ; with respect to the basis {e;} ,
G=SO(H) =1 geGL,(R) |"gHg = H, det() = 1},G;=G N M,(Z) and Gg=
=G NM,(Q. We have o(V)z > GOZ . If H=H',then G is isomorphic to
G'= SO(H') under an isomorphism which sends G, onto G’z and GQ onto
G'Q . Hence the maximality or not of G is preserved. It follows from lemma 2
that we may assume H=]q.l. V, m=2q+ s where g is respectively p,p or p-1
and V isrespectively ¢, (or0) V;, or J(1), according to whether we are in
the case (a) , (b) , or (¢). If I' is any subgroup of 0(V)g . then we shall denote
by A(TI', Z) the Z-algebra generated by the element of I" in M,(Q). Although
if follows from the general theory that A(T",Z) is an order, if I' is discrete, in
our case the direct calculation will antomatically prove this fact. Another trivial

remark isthat if H=KL H then O(K), SO(K), and O(K)° can be embedded
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respectively, in O(H), SO(H) and O(H)°, the mapping being g->gLE where
E is the identity of O(H') ; also O(K) can be embedded in SO(H), but now
the mapping is g-»glp where be O(H') and det(g) = det(h) . The same is
valid for the corresponding groups of integral matrices. In particular this applies
Lo our case with K= Jg- Moreover we have an imbedding of A(O(K);,Z) into
A(SO(H)z,Z) which preserves addition and multiplication, namely g gl0 ,
where 0 isthe n-m by n-m zero matrix, and K is m by m.

LEMMA 3. Let? K=SO(]q)° , n=2q. Then the ooder L = A(Kz,Z) is genera-
ted by &E,, ge Ky andcoincides with M, (Z).

0

Proof. Firstof all D={ge¢ O(]q) | €= g(A.D) = " AfGLq(R) } is

0

D
E B
clearly isomorphic to GLq(R) ; let T= {g€0(]q)| g=¢g(B) =( el ‘B=.B}
and T = tglggT} . Clearly D, T, and 'T  are connected. Hence Dy Tg,

and 'TZ are subgroups of Kz . Now if we take A= E+ei’- ,i#j and

B=e, -e

jm"®mj m# j, we get that (g(A,D)-E)(g(B)-E):eiq+mgL, and

(g(D,A)-E) (tg(B)-E) = g me L. Hence after interchanging indices and taking

products we get that e;; lies in this order for all i=1,...,7n. Now

eiig(A,D)eﬁ=e,-].gL and so does €ig irg Also ei+qmemj=ei+qj‘L and

similarly g€ L. Therefore ejie L forall 4j=1,...,n

i q.e.d.
We shall decompose the matrices g¢M_(R) in 9 blocks, g= (“ij)’ i,j=12,3,

in such way that a4, and a,, are ¢ by ¢ matrices; we let H= (bij) .

and H'l=(b;),ij=123 From ‘gHg=H if andonly if e l)(*g=H1,

we get immediately :

LEMMA 4. ge¢ O(H) if and only if either
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3 t
S mibapori = by
,m

or

3 b t = b
S %m P mk %k= " -
m

We shall consider special elements in G; we shall denote by $,(R,T)=§" (R",T)
(respectively S§;(R,T)=§")(R*,T)) the matrix g where aj;= E forall j,
a32=R » @py= T, ay3=- '‘Rv=R’* and a, =az = 0 (respectively az,= R ,
ayp=-T, ay3=R", aj,=a;g=az,=0). They are the so called Siegel-Eichler

double transvections. By S(R,T) we shall denote either S, or §;. If we

replace g by S(R,T) inlemma 4 we get immediately :

LEMMA S . S(R,T) = S*(R’,T) ¢ O(H) if and only if either 'RVR=T+'T, or
RV IR =TT,

The following lemma yield trivial solutions of these equations.
LEMMA 6. S(R,T) ¢ GOZ in the following cases :

1. ~R=2ei]- and T=21}iie]~j v

2. Ileuii‘k=eij and T=(1/2)viiejj where i=1,...,9 and

j=1,...,s; where V=(Uij .

COROLLARY . S'(R’,T) ¢ G% in the following cases :

1. R'=2€ij, T=2w]-]. eil-

2. l/2lw].]., R’ = ey and T=(1/2)wjjeii where i=1,...,q,

where j=1,...,5s and V'1=(wi].)_

LEMMA 7. Assume that 2|v;; precisely when i=1,...,s-1. Let R and

57



T beintegral matrices such that '‘RVR =T +'T +av . If a=0, then the
entries in the lastrow of R are all divisible by 2. If a=1, then then same is
true with the exception of the last entry of the last row of R which is not divisi-

ble by 2 .

Proof. Let L’ be the setof all x¢Z° such that ‘xVx=0 modulo 2;
L' isa Z-module and modulo 2 we have ’xVx= xzs vss» where x_ s the last
coordinate of x ; hence 2] xs forall x¢L’. Inthe case where a=0, if
y denotes any column of R, then ‘RVR =T +'T implies that tyVy= 0 mo-
dulo 2, i.e., ye L’ and hence our assertion. The same argument applies to any
column of R, in the case where @=1, with the exception of the last one; for
this last column ‘RVR=T + T + V implies *yVy=v

the correspondent y_ is such that yi = ysz vgo =1 modulo 2. Therefore 1y

ss =1 modulo 2, hence

is odd. q.e.d.

COROLLARY 1. Assume that 2 Iwii precisely when i #m . Let R;
and T be integral matrices such that R’ w1 'R)y=T+'T+avl. Then

the same statement bolds if we replace last row of R by m-th column of R’.

COROLLARY 2. Assumethat 2|v;, w,. precisely when i# s, and j#m.

ii
Then all g ¢ O(H); bave,with the exception of the diagonal entries, all the

entries in the last row and (2s +m)-th column, divisible by 2.
Proof. It suffices to observe that

t _ t L, t
43iVa3i= (- a0+ (-l a) + 5,5V

and a similar equation holds for ;3> where 8;3=1 or 0 according to whether

i=3 ornot

q.e.d.
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We are now ready to calculate the enveloping algebra L of G, . We recall

that n=2q+s=2p+r.

LEMMAS8 . If H es even (case (a) ), then L =M,(Z) . In the case where H
is odd we have : If r is odd, then L is generated by €jis 2e;, for all
,j=1,.0.,n, and i,j ¥ n. If r is even (cases (b), and (c) with s=2), then

L contains the order L* generated by all e

il‘,zein_llzen’-,z and

€nn-1
Cont €pi a1 4j=1,.0.,n, i #n and j+# n-1, andis contained in the

order L** generatedby L* and e .

Proof. From the embedding of A(O(]q) zZ) into A(Gz Z) we get by
lemma 3, that ejje L forall #,j=1,..., ¢ By lemmas5 and its corollary ,
S(R,T), 'R\ T) e G, if R= e;; or R'=e, ; provided 2|v;, 2| wy.,
m,j=1,..., g  QOur objective now is, by considering the corresponding $;
and Sy to see that €q+1j and e 2q+k all liein L for jim=1,...,2q
and cor sequently by taking products we see that rq+i2qrhel for these
values of 7 and k. We let g‘u = (aij)’ u=1, 2, 3, be such that allll= E
and - 4= 0 otherwise; clearly g';t.g L, pu=1,2 and gy=E-gy-gyel and
this implies that  g* (S(R, T) - E) = erqrij’ and (S*(R’,T)-E) g* “en2q+k

both lie in L, as desired. Now we shall study case by case.

In the case where V is even, vl isalso even eyie L for all
ij=1,...,n ie, L=M/(Z). Inthecase where r is odd, then lemma 1
says that we can choose V=], 1E, modulo 2 hence the same is true for

-1 . e .
v'l. Consequently v;;, w;; are multiple of 2 precisely when i# m. Thus

ejie L forall #j=1,...,m1 , and hence e, = E-iazf‘meii‘ L . Now by

lemma 6, 2e;, and Ze”]- lie in L ; the corollary 2 of lemnra 7 with s=r=m
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implies that the entries of the last row and column, which are non diagonal, of all
matrices in L are divisible by 2, and ow assertion is verified in this case. In
the case that 7 is even by using lemma 6 and products we arrive to Zen]-, 2€4. 1

and 4e n-y allliein L forall j,i#n n-1, and a similar argument as above

shows that they are generators of L with the possible exception of 4e

nn-1

As eeL forall i#m n1, wegettha e liesin L. It

m* €n-1 n-1
remains to prove that 2e, ,.qe L. If r=0 this follows from the fact that

(; 10) €0(J(1))z. Letnow V='UU;ge0(E,) ifandonlyif Ulgucoluv).
If g is either a permutation matrix or a diagonal matrix having + 1 as diagonal
entries, then for all x ¢ Z7, ’xg differs from ‘x either by few changes of sign

or by a permutation of two coordinates of x. Now if ’x isthe s-th row of Ul
.and y is the (s-1)-th column of U, the (U'IgU)S s1° txgy . As y is
primitive we may assume that its first entry, y; is odd, and since x is also
primitive we can find g such that the first element of ‘xg is not divisible by

2. Hence we may assume that its first entry x; s odd. If txy is not divisi-
ble by 4 we are done; othetwise we consider g’ = diagonall{-1,1,...,1} and

we get that Leg'y = txyo2x1 y; is not divisible by 4. Completing viggu

to an element of SO(H); we get and element g in G such that

od (g, ;,)=2. g.e.d.

COROLLARY 1. L*CA(O (H));zCL**. The generators of A(Gg, Z)

and L* are the same with possible exception of 2e, n-l° and e, + €plnl1°

Proof. Our assertions follows from the fact all the elements used in the above

proof lie in  G® with the exception of the one in the last paragraph.

Remark . We do not know whether €nn lies in L or not.
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COROLLARY 2. If H is even, orif H is odd and r is odd, then

L= A(O(H)z, Z)=A(G%;,Z) .

Proof. For all the elements used in the proof of lemma, in this case belong

o
Gz.

COROLLARY 3. If p=1 and r is even, then: A(G°,,Z)C A(O(H)z Z)CL".

Proof. The reason our calculation does not go through in this case is that we
were not able to prove that e;,, e;,¢ L. Of course if we add these element to

L all the argument remains valid.

3. Main result. Let G denote any of the three groups O(H), G or G°.
We are now in the position of computing all maximal discrete groups containing
Gz. Let Tc G—Q be a discrete group containing G, ; the enveloping algebra
L(I')=A(', Z) of T' contains L and is suchthat (H1)(’L(T")) H=1(),
because g !=(H)(’g)H. Cons equently our problem is the caleulation of all
orders L* in M,(Q) which contains L and are maximal among the orders
having the property (HL)(®L")H=L". In the case (a) L=M,(Z), hence

maximal. We shall discuss cases (b) and (¢) .

LEMMAY9 . If r is odd, then L’'=M,(Z). If r is even, and if L’ > L, then

L’ contains L** and it is either M (Z) or the order generated by L and

Proof. We start observing that if for some 7,7, %k, e;;, e eppel’, and

if L'= (Ai]‘) ’ then Aij ei]'C L’ ’ and Aij Ajkc Aik . A]SO eiie L!,
implies that A;;=Z, because L’ is afinitely generated Z-module. Con-
sequently Aij = A]'i= Z provided that e

i i liein L’. Therefore in the

case (b) , 7 odd , Aii = Z forall 4,j#n, and in the case (c),
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r  even . Ai]-=Z forall 4,j # n-1, n. We shall treat first the case

where r iseven. From Zen]-e L’,j= n-1 we get that ejig(Ze”j) =28, ejjfl_,'

forall j#nn1, and i# n-1,; hence 24, cZ if i#n-1. Similarly

2An-1 iC Z,j#n and in this case a similar argament shows that 4An_1 LZ

If for some gelL’, 8,n= 9/2, aodd, we get €yq n€ 20un. 1= @€, 4 5ae L,

or ae, , ae

e jelL’ and (a3/2) €nel’ which is absurd. Hence A= Z,

n-1 n-

and similarly A

p-1n-1=2Z+ Let g(L',gn_1n=a/4. a odd, then

2e, - 18(¢n 1 n-1tCnn) = 2841 p-1%n n-1t (a/2)e,, or (a/2) € e L’ which
is absurd. Now from (e, +e, ;. ;) ge; =8, i€, +8, 1:€01ns %, wegel
that A

and similarly A , £ £n-1, are integral. If for some g¢L’ ,

ni’ in-]

8p.1 i=9/2, aodd, 747, then (€p-1 n-1* e,m)gei].=g'=(a/2) €p1 j*

+ 8y iepje L*,j#£n1, and we may assume that g .=1. Now g'=
H'I((a/Z)e]-‘ﬂ_1+ e]-n) Hc L' andby observing that H =Jp‘L]q-l](1) modulo 2,

we may choose j even and greater that 2q, hence the (i-1,4)-1 entry ,

bi-l i of H is odd. Hence (i1, & (€l n-1* €np) = (b/z)ei-l,n+ ce;qn1

+ de,._l o With & odd, lies in L’ . Now if we multiply this element by

(@/2)e;; j.1+ €, ;.1 on the right, we getin L* an element (ab/4)e, | ptevey
which is impossible. Hence A, is integral forall 7 # »-1, and similarly

A is integral for all j # n. We have only one possibility left for non

n-]1j

integral ideal which is A It is easy to see that (1/2)e, ; , and L

n-1n'

generate an order which contains €p1n-1 and e, .

q.e.d.

From this we immediately get ;

THEOREM 1. Let G be either SO(H) or O(H). In the cases (a) and
% , (TZ is maximal in EQ . In ‘case (c) there exists at most one maximal group

-

in EQ containing EZ’ namely I'=L' N G.
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THEOREM 2. Let G be either SO(H) or O(H). If H is an integral
unimodular symmetric matrix of signature (p+ r, p) with either r=0, H odd

and p>2, or p>1, then N(Gy) = G, .

Proof. By lemma 2 it suffices to discuss our three cases namely, H even,
H oddand m odd, and H oddand m even. If g nommalizes &, then it
permutes the maximal orders contain ing A(EZ, Z). If H isevenor m=r
is odd, M,(Z) is the only maximal order containing the above order hence g
normalizes M, (Z) .By [2], p.105 every matrix in N(GZ) has all its entries algebraic
integral and as the only units in Q are : 1 and its class number is cne, we get
that EZ is self normalizer . Let us study now the case where m is even and
H odd. In this case there are three posibilities for g normaliziné Gz name-
ly either g normalizes M,(Z), or g normalizes L’ or permutes them. The
first case is trivial. Let us assume first that g is rational. As the group
generated by g and G-z is arithmetic the only possibility for g ¢ N(G—Z)
is geL’; inthis case if we write g= (gi]-) , g'l = (g'i]-) ,» then g ., and
& y.1 » @renon integral, and as g nomalizes L we get that
(g’ (2¢) 1) 8p-1 n= 28n-1 n&n-1 n¢ Z which is absurd. Let geN(G-Z) ,
g=g \a, by [2],p. 122, and let k=Q(/a) and O the ring of its integers.
Let L’* be the order generated by ¢ and L in M, (k). Then L’ is either
Mn(O) , orthe extension of L’ to M,(k), ora different order. In the two first
cases the above arguments apply with Z replaced by O. We write L’ =(A'i;')
and observe that 44’y s always integral, hence the only possibility for a new
order arises precisely when @=2. In this case the only possible entries of g
which are not in O are the ones lying either in the (2-1)- th row, or in the -t

column. Proceeding like in the proof of lemma 8 we can show that 24", 1 i

63



and 2A"in are all integral provided that i# »-1 and j # n. Hence in the
matrix g’ the only possible non integral entries lie in the (7-1)-th row and in
the #7-th column, and if we multiply this column and this row by 2 we get an in-
tegral matrix. Hence ord (det(g’)) > -2 ; on the other hand 1= det(g) =

2Adet (o') where 7=2) , and this implies that ) <2 which is absurd.
(g) ) P <
q. e. d.
THEOREM 3. Let G be either SO(H) or O(H).Let H be an unimodular

integral symmetric matrix of signature (p+r, p) with either r=0, H odd and
P> 2, orotherwise p> 1. If r is not an odd multiple of 4, then G-Z is

maximal in GR v

Proof. In the case where H is even, orin the case where H is odd an 7
is odd, our result is included in theorems 1 and 2, because by [2],p. 105, if G,
is maximal in E-Q , then N(G—Z) is the unique maximal arithmetic group
containing G-Z. If we prove that in the other case the group I' = L’ n G of
theorem 1 coincides with EZ , then by the same reason, theorem 2 will imply our ‘
claims. Let H beoddand r even >0 ; by lemmas 1 and 2, replacing H
if necessary by an integrally equivalent matrix H = ]q.LV with v=J(1) if
r=0, or V is definiteand V=B J(1) modulo2, B even, and if
V= (Uij) v i, j# 1L o, m then v, ,  ,=m or according to whether V
is definite or not. Let g¢I', g not integral, and write in blocks g= (ai]-) ,
£,7=1,2,3. If y denote the last column o/f 33, then y;eZ,i#m-1,
and y_ . =g, ;,=42, withaodd. Now if we look at the equations of G,
given in [emma 4, we get ’423 a3+ ’aB ay3 + td33 Vazj3=Vv, and the entries
(m,n) of both sides yield the following equation (‘133 Va3 ) mm= tyVy+b=1/mm,b

even, or a? (Um-] m-174) + Yy Vg1 + }”i Yomt &= Uy -
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If m is notdivisible by 4 we get a contradiction since the left hand side is not

integral. In the other cases 8|m or m=0, we get y_ + y2

= modulo 2,

which is absurd. Let now m=4. We consider the following matrices :

0 o 1 o0 2 -1 -2 -1
0o 1 -1 0 .12 0 o0
U= 1 1 -1 o0 , V = 20 4 1
1 0 -1 0 -1 0 11
3
(1 1 1 1 (.1 0 o 2 )
T e 101 0 1
3—2— ,U'g U=
o | 1 1 0 0 0o 1/2
i -1 -1 1 .2 0 -2 0
\ P, \ J

It is clear that ’UU=V andthat U satisfies the requirement of the first par
of lemma 1. Also g* ¢SO (Ey) and hence U lg* ¢ SO(V), hence
g** = diagonal { EZP' g*} e SO(H) . It is easy to see that this matrix lies in

SOH)° N L’ . Therefore L’ SO(H)‘;2 # 50(11)"2, and G, is not maximal in

GQI
Next if m=4+8s, them H is integrally equivalent to ]ZP_LV’ ;
= = 1 ) t 1A 740 I
ye= ¢85_LE4 . Welet U’=diagonal{ Egg,U} and we set V*="U'V'U'=¢g LV;
clearly V»*= ]Zq.l.](l) modulo 2 hence we can proceed as in lemma 9 to get that

A(SO(H)OZ, Z) in contained in L’; again we can complete Ulg*U 10 an element

of SOH)° NL’ 1o get the non maximality of SO(H)OZ . Hence we proved ;
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THEOREM 4. If r is an odd multiple of 4 andif p>1, then 52 is not
maximal in EQ , for G= O(H), SO(H), or O(H)° . Moreover if p>2, then

NG, =Gy, for G=0(H) or SOH).

Finally we would like to point out that the question of the maximality or not of
EZ in EQ remains open in the cases where p=1 , and in the case of SOH)° ,

H oddand r even.
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