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PARTIAL DIFFERENTIAL EQUATIONS WITH NON-HOMOGENQUS
BOUNDARY CONDITIONS
by
René W, SANDOVAL

1.0 Introduction

Boundary value problems of partial differential equa-
tions are very often solved by the method of <<separa.tion
of vuriables>> or Fourier method. The method can be used
without any difficulty in homogenous problems, that is,
in prohlems where de differential equation and the bounda-
ry conditions are homogenous. Most of the textbooks con-
centrate their attention on such problems and for the in-
homogenous case they merely suggest using an integral
transform procedure. Nevertheless the Fourier method may
be extented to treat the inhomogenous problems. A recent
text by Tolstov (see reference l), treats the case when
the diiferential equation is not homogenous but not the
case when the boundary conditions are also inhomogenous.
Kaplan (see reterence 2), in his Advanced Calculus treats
relatively simple cases of inhomogenous boundary condi-
tions.

A general case with inhomogenous boundary conditions
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me-dependent boundary conditions. The method is valid not
only for vibration of beams but also for other types of
inhomogenous problems.

The object of this paper is to exhipnit and apply the

method to some particular problems. We will explain the



method using the problem of vibration of beams but we
will also apply that general procedure for another type
of problem. This is done only for convenience when working

the examples.

2.0 Method of solution

The theory of elasticity establishes that transverse
displacements of a prismatical beam are goverred by the

partial differential equation

2
a2 oty L2 W a(x)p(t) (1)
ex4 et2 PA

where
W = deflection of the beam.
X = position along the beamj x = O is one end
and x = L is the other end of the beam.

P = density.
A = cross—-sectional area of the beam.
2 _E

PA?
dulus and the second moment of area of the

®
1]

where E and I are the Young s mo-

cross section of the beam respectively.

q(x)p(t) = external load per unit length of beam.
When the load does not vary with time, p(t)=1.

The boundary conditions migth, for example be

W(0,t) = fl(t) )

WI(O,t) = fz(t) ()
2

-~

wxx(L,t)= f3(t)

Wm(L,t) = f4(t) J
and the initial conditions



W(x,0) =Wo(x)
. (3)
W, (x,0) = W (x)
The gist of the method consists in assuming that the
solution will be given in two parts, one of which is la-
ter adjusted so as to simplify the boundary conditions

on the other. On this account we take
_ 4
W(x,t) = Tlx,t) + 27 ) £, (t)g (x) o (4)

Now, if we substitue equation (4) into (1), (2) and (3)
we find that 7T(x,t) must satisfy

4 2 (x)p(t)
g2 27T 7T ST Egzl[azfi(t)giv(x) +

ox?  ot? eA
B* (t)gi(x)] (5)
7(0,1) = £,(¢) - 1}, £, (+)g, (0) ‘
T (0,t) = £,(¢) - 2;_, £, (t)g(0) S (6)
T (Lst) = £5(8) = 2% £ (£)g/ (1)
Tux19t) = £, (1) = 2% £, (+)g," (1)

T(x,0) = Wy(x) - 2% | £, (0)g, (%)

(7)

T, (x,0) = ;Io(x) L, £1(0)g, (x)

Now comes the key of this method and that consists in
choosing the functions gi(x) in such a way as to reduce
C(0,1t), ‘Cx(O,t), Txx(l,t) and Y;H(L,t) to zero.

From equations (6) we can see that in order tc have
t(0,t), Z‘I(O,t), ‘Cn(L,t) and Tm(L,t) equal to zero,



we should choose the functions gi(x) under the following

16 conditions

|
(@)

g,(0)=1 3 g,(0) =

sé(o) =

3 &(0)=0 3 g4(0)=0

|
-

3 83(0)=0 ;5 g;(0)=0

s

& (o) > (8)

g7 (L)=0 3 g7 (L)=0  §gi"(L)=1 ;5 g (1)=0

g; " (L)=0 3 8} (L)=0 3 837 7(L)=0 3 g;"(L)=1

We can notice that each column in equations (8) gives
us four conditions for each function gi(x) and since
derivatives of the fourth order of gi(x) are involved
in equation (5), in order to satisfy thesc conditions we

will choose polynomials of fifth degree in x, like the

followings
\
- 2 3 4 5
gl(x) = a, + DX+ 00X +dX +ex 4 fx
- 2 3 4 5
gz(x) = a, + byX + 0, X" + A X" + e X' + fx
> (9)
g3(x) = a3 + byX + c3x2 + d3x3 + e3x4 + f3x5

2 3 4 5
gh(x) =8, + b4x +0,x" + d4x +e,x + f1x |

The procedure of finding the polynomials gi(x) is
reduced now to solving systems of four equations. It could
happen however, that the number of unknowns is ﬁore that
the number of equationss in those cases we should make
zero the coefficient of the term of highest degree in x
and also, if necessary, the coefficient of the term of
second highest degree in the original system of equations.

Again, if some of the constants a;y bi""’fi’ do not



appear in the system of equations, we should set them e- °
qual to zero also.

It is worthy to notice that the computation of gi(x)
is only necessary when the corresponding fi(t) does not
vanish.

Once the polynomials gi(x) have been found we can

say that the problem has been reduced to

4 2 j
a2. 8’ T + 8 T a(x)p(t) _ 24 [azfi(t)gilv(x)'*fi’(t)gi(x)]

ax4 at2 PA i=1 :
T(o,8) =0 5 T (0,8) =0
Txx(L,t) =0 3 ‘Cxxx(L,t) =0 | (10)
Ux,0) = Wy(x) = 2% £, (0)g, (x)
T, (x,0) = W (x) - 5, £](0)e, (x) J

Arriving at this state is really the aim of the method
and in fact, as we can see, the time-dependence has been
removed from the boundary conditions.

From that state on, the classical methods for free or
forced vibrations can be used. However, we will complete
the solution of the problem explaining its next stages.

A solution of (5) will be of the form

Tx,t) = £ X T (11)
where

X, = Xn(x) and T = Tn(t)

and we assume that the functions Xn will be orthogonal
with respect to the interval (O,L): as indeed happens
when the ends of the beams are fixed or free or simply

supported or restarined against translation or rotation



by linear springs. The fact the functions Xn are ortho-
gonal implies we can expand the functions q(x), gi(x)

iv . . . . .
and g (x) in series of functions Xn using expansion

formulas:
_ 00
a(x) = Z:n=l ann
o
g;(x) =z °, G X (12)

iv o
i (x) = “n=1 Ginxn

where the constants Qn, Gin’ Gin are given by the ex-

pressions -
]
L CL >
Q = | J q(x)X dx J X ax
n o n 5 |
L \
R
[ L (L °
Gp= | Le@xax /([ X ax| , i=l,...,4
O 0 )
(L 4 Lo, ] (13)
g = fg ()X ax| [ |/ X dx| , i=ly...,4
in L LO

Then, let us substitute equations (11) and (12) in equa-
tion (5)

2 00 s p(t) (o0}
a? 22 XVr 43P x - I A%,

o 4 o »
21=1[§ £, () zn 1 G &, * £ (t)z 1 8%,

which can also be written

foo] 2,iv o & 4 ~ 4 .
zn_l[é X'T+X T+ a zi L 5 (86 X o+ 2T L £27(%)G, X



p(t)
PA QnTn ] =0

Now, since the series is xero, the generating term w

will be also equal to zero and after we divide that term

by X T , the variables are separated

nn .
1iv 3% ~ »
52 fa_ + E&_ L 22 ph £, (£)G, L4 £ (t)qin
n n n n
p(t)Q,
- it - O
n
or
iv .. 2 5 3
2% p(t)a, N 4 B £.(4)G, . £7(4)C,
X PAT T i=1 T T
n n n " N
- A
n .

From this last equation we can get the equations governing

Xn and Tn in the classical way

241iv 4 _
ax A, X, =0 (14)
L 0 2 ~ Tl
p(t)Qn ) T 4 a fi(t)cin , £ (t)Gin Y
PAT T i=1 T T " n
n n n n
(15)
The genral solution of equation (14) is
An A A . An
Xn = An cos V;X + Bn sin v;x + Cn cosh VEX + Dn sinh sz

where the constants An, Bn, Cn’ Dn and An are given
by the boundary conditions (10). These will determine a
countably infinite set of eigenvalues, Ap -«

Also, once we know Xn, we will be able to compute the
value of the constants Qn’ Gin and Gin which will be

used in solving (15).



For convenience, suppose that we substitute

Ay = (mﬁVa)/L

and after we use the boundary conditions (10) to determi-
ne the m , for convenience, in (15) set

am2 =W L2.
n n

Then the general solution of (14) will be

mnX mnX m X m X
Xn = An cos — + Bn sin — + C cosh.—IL-+ D sinh s
L L n i n 5

(16)

and (15) will become
L 2 o~ , 0
p(t)Qn T, 4 @ fi(t)Gin * £] (t)cin
i T =
pATn n n
2
= wn 9

or which is the same

p{t)Q .
. B S azfi(t)Gi

PA n i=1 & fi (t)Gin -

n

In order to avoid a large handling of terms let us call

p(t)Q
n 4 2 e .o _
o - B (e (008, v 1] (1)o,,} = 7,(0).

Thus we have the differential equation for Tn

“O 2 -,
T+ Wl = Pn(t). (17)

This equation can be solved using the method of variation

of parameters which is applicable whenever we can solve



the reduced equationj in fact, the reduced equation
07+ WA = 0

has two linearly independent solutions sin wnt and

cos wnt, so we try for Tn a solution of the following

form

T, = v,8in W t + v, cosw t (18)

where vy and Voo the parameters, are functions of t.
After we use the method of variation of parameters we

find for Tn a solution like this:

t
= ﬁ;- S Pn(s) sin Wn(t-s) ds (19)

n nO

As we know, this is only a particular solution of the
complete equation (17);a &eneral solution is given by a-
dding to any particular solution of the complete equation
the general solution of the reduced equationj in our ocase,
that is

T =E coswt+F sinw t +
n n n n n

L ¢ .
= f P (s) sin w _(t-8) ds. (20)

The solution of T(x,t) will be given then as the sum
from n=1 to n= o of the product of (16) and (20).

It remains only to compute the values of the constants
E,  and F , which can be done by using conditions (7).
Indeed,

T(x,0) = 22 B X_ = W(x) - >:‘i‘=l £, (0)g, (x).

T (x,0) = £ FXw_ =W (x) -z} | £:(0)g,(x).

n l nnn

A similar reasoning to that which led to equations (12)°



and (13) allows us to compute E and F_ from the

last two equationss

L
I [t = B £, (0)g, (x) x_ ax

E_ = 0

5

T X% ax

0 n

(21)
L f, s )

. Of [Wo(x) - I% fi(O)gi(x)] X dx
-

L

LA f Xi dx
o

which finally completes the formal solution of the whole
problem since we have found T(x,t) and gi(x), and

thus, the two parts of aour solution.

3.0 Application of the method

~ e~~~

with sources and variable end temperatures, where the

temperature u(x,t) satisfies

2
2ok 9—-% = q(x)p(t) , (1)
9x

u(o,t) = £, () ,
(2)

u(Lyt) = f2(t),

u(x,0) =uo(x), 0<x <L (3)

Let us try a solution of the form

u(x,t) = (x,t) + 2§=1 £, (t)g; (x). (4)

Substitution of (4) into (1), (2) and (3) gives



1%(x,t) - k‘txx(x,t)

i=1
(5)
T(0,8) = £,(¢) - 25_ £, (t)g,(0) (6)
, (6)
2
L,t) = £,(¢) - 27, £, (¢)g, (L)
Ux,0) = u(x) - 272, (0)g, (x) )
If we want conditions (6) to ve homogenous we should
choose gi(x) such that
g, (0) =1 3 g (0)=0
1 ¢ (8)

sl(L) =0 3 sz(L) =1

First degree polynomials in x are enough for this

example, so gl(x) =a +bx and gz(x) = a, '+ b,x. Ap-

plication of conditions (8) gives

g (x) =1-%
et (9)
gQ(X) = =

With these polynomials the problem has been reduced to

T, (x,t) = kT (x,t) = a(x)p(s) - 2§ £1(t)g, (x) (10)

T(0,%) = 0 (11)
T(L,t) = 0
z(x,0) = uo(x) - 2§=1 fi(O)gi(x). (12)

Now we try for T(x,t) a solution of the form

@
Tx,t) =2 _, X T . (13)
Therefore
@ . @© som _ 52 -
Iy XTI - kIP, X°T = q(x)p(t) Zi=1fi(t)gi§x)3
14

a(x)p(t) + 'E [kfi(t)si (x)-f;(t)gi(xi

11



If we consider that q(x) and gi(x) can be expanded in

series of functions Xn by means of the expansibén formu-

las .
a
a(x) = 2:n 1 ann s gi(x) - En=l Ginxn
where L
J a(x)X ax
0 n
Q =
n
L 2
S X dx
0
L
Of g, (X)X dx
G. =
in L 2 ’
S X dx
0

then we can write (14) in the folowing form:

rd 'l 2 rd —_
[X T, -p(¥)Q X + I ) fi(t)GinXA] =0
which implies
T kX° p(t)Q 1
n n 2 _
- -7 +7 L., £ (t)G =0
Tn n n n

or also

, r’
% Th _ p(t)Q, A I
X_ - KT KT KT i=1 “i in~ M.
n n n n

This last equation shows the variables separated, hence:

Xn‘ + )\Xn =0 (15)

2

T; + AKT = p(t)Qn - i fi(t)Gin = Pn(t). (16)



The general solution of (15) comes ln the form

X = A sin x(A + B cos A, (17)

Applying conditions (11) we get

= (0°72)/1% (1=1,2,3,....)
and
X, = sin( (nnx)/L) (18)

2 2
. ., n°mn _
0+ 2 kT = P (t) (19)

The general solution for (19) is

T, = ¢ m“t[C + f e&Tr‘P (s) ds] (20)

Now, if we apply condition (12) we will have

En L X T (O) = En 1 c, snrng—x- = uo(x) - Zil fi(O)gi(x).
Therefore
2 L 2 . NNX
Cn =T é[uo(x) -1, fi(O)gi(x)] sin 5= dx

(21)

And that completes the solution.
Problem 2. Let us consider a particular example of

~ i~~~

problem 1 and suppose then that
a(x)p(t) = 05 £,(t) =0y f£,(t) = F(t)
u (x) = 0, 0<xc<lL.

With this data, let us etart computing Cn given by the
equation (21) in problem 1:

L ‘ n
¢ =280 Fyoin IEE gy - 2F(0) (-1)
0

n L2 nn

In order to compute Pn(s) we only need G2n because



fi(t) = 0, therefore

L
J xX_dx .
e -0 " __(1)"%/fes _ _ 2(-1)
2n L, L/2 nn :
L [ Xfax
0 n

Now Pn(s) is found to be
2 . 2(=1)"rF" (s)
P (8) = p(t)Q -z, £I(t)e, =
and from that

t ik ‘x‘Ke
S eu‘-z ‘Pn(s)ds = -K—Ln f e '- F*(s)ds
0

- { 2[*“u—— F()-F(0)] - nx?i I R F(s)da},
rmL

With this values Tn becomes

n _nrikt t mntks
Tn(t) = ﬁ:;l_[LzF(t) P [ e & F(s)ds]
nnL 0

And the final solution will be

u(x,t) = —F(t) + - Zn

-(—:%ll:[LzF(t) - n27l2kl

TtL &
_RR%t t  nixtks
e ¥ [ U F(s)ds] eln-r%-l-
0

The next problem will be applications of MINDLIN and
GOODMAN’s procedure.

~ o~~~ ~~

free end is under the action of a cam producing vibra-
tions with the following characteristics:

Boundary conditions:

W(0,t) = P sin kt 3 wn(o,t) =0 3 Wx(L,t) =0

14



W(L,t) = O.

Initial conditions:

W(x,0) = 0 3
5 wt(x,o) =0 .
|
| % The reason for these conditions
}f L _, is that we are starting from the
X=0 *=q? X position of equilibrium. Then
the problem is to solve
2 o*tw 2%y a(x)p(t)
a ok =g 5k (3.1)
ex4 at
N
W(0,t) = P_ sin kt = fl(t)
W (0,t) = 0= f2(t) . (3.2)
WI(L,t) =0 = f3§t)
W(L,t) = 0 = f (¢t
( ’ ) 4 ) J
W(x,0) = 0 (3.3)
Wt(x,0)= 0

According to the method and our given conditions, the

solution W(x,t) will be given in the form

W(x,t) = Tx,t) + Pogl(x) sin kt: (3.4)

then
__94W —'Ci'(x t) + P g¥(x) sin kt
4 “x7? o1 ’
ax
%W 2
— =T"(x,t) = K°P g.(x) sin kt ,
et2 t o°1l

and substitution of these last two equations in(3,1) gi-

ves us
a?'t;(x,t) + aZPOgY(x) sin kt + tg X,t) -
2 R 1€9)-16))
-k Pogl(x) sin kt = oA .

By conditions (3.2),



T(0,t) + Pogl(o) sin kt = P_ sin kt
hcu(o,t) + Pog'l'(o) sin kt = 0

*cx(L,‘I‘) + Pogi(L) sin kt = O

T(L,t) + Pogl(L) sin kt = O,

Therefore, if we want to have
T(0,t) = 0 3 "cn(o,t) =03 T(L,t) = 03 T(L,t) = O,
gl(x) should be chosen such that
U] - . = =
g (0) =1y gl(0) =0y g(L) =03 g()=0.

Suppose that we choose & third degree polynomial

2 3
81(1) =a + blx + o x4+ dlx ’

. 2
Sl(x) = b, +2¢x + 3dlx ’

‘l =
gl(x) 201 + 6d11 .

Then by the prior conditions
a, =1 3 o = 0

1 3
3 -1 -d.L
1+bL+dL” =0 3§ b = —0 1
1 1 1
L
2 2
b, + 3d1L =0 3 b = 3d1L -
and 3
s T #dlL 3
34,1L° = § 2d.L7 =13
1 1
L
1 3
d, = $ b= - — ,
1753 1

gl(x) =1 - é%-x + —lg 13 .
2L
Now that we know gl(x) equation (3.5) becomes

3
i 3 .
EZT:(I,t) + 'C:(I,t) = kZPo’(l - 5—;— + -:—1‘3-)51n kt +

16



. ﬂ‘%i_@_ (3.6)

On the other hand, conditions (3.3) applied to (3.4)

gives us
*(x,0) = 0 ,
T, (x,0) + kP (1 - 3x | x Y =0
$\ % o 2L '3 = Y

Summing up the work that we have done so far, the problem
has been reduced to solve equation (3.6) and the condi-
tions for (x,t) that we got from (3.2) and (3.3),

that is (3.6) and
~

]
(@]

T(0,t) = 0 5 T_(0,%) } (3.7)

~

Lx(L,t) =03 T(L,t)

[}
o

-

T(X,O) =0 Ix 1 (3.8)
t;(x,o) = - kPo(l ~ o * )

o

This, of course, is a problem of forced motion but the
time-dependence has been removed from the boundary condi-
tions.

Now let us try a solution of the form
Ux,t) = 200, X (x)T () (3.9)

This and the fact that gl(x) and q(x) can be expanded

n=1 n

in series of the orthogonal functions, gives us the fol-

lowing results

=
3x
g,(x) = 1 -5F+35) =12 ¢ X (3.10)
2L
Q(X)—)- QX ’
where, as wWe know, Gln and Qn are given by formulas

(13) in section 1.0.

As it is explained in section 2.0, substitution of

17



(3.9) and (3,10) in (3.6) will lead us to a solution for
Xn like the following

- A ' A A
Xn Ancosv—;x+Bn31nT;x+CnsinhT;x
A
+ D cosh TaX- (3.11)

Conditions (3.7) imply

x(0)=0 3 x"(0) =0
n = (3.12)
Xn(L) =0 3 Xn(L) =0 .
So, let us compute X' and X;: :
And from oconditions (3.12)
, A +21)][l =0 y A =-D (1)
A A - A - - ‘3
- A+ " D =0 3 =-A -4 =0 (ii)
A =0 s D = 0.
n n
. AL AL oo
Bn sin v-;- + Cn senh T; =0 (111)
AL AL .
Bn cos T; + Cn cosh .v-; =0 (1V)
or
. AL AL AL . AL
Cn sinh T; cos T; = Cn cosh v-; sin v-;
or
AL AL
tanh $2 = tan 7 . (3.13)

So in order to fiﬁd A we have to solve the trascenden-
tal equation (3.13) and then we will find the ratio be-

tween B and C_ by equation (iii) or (iv). Let



us call, for simplicity
mn = AL/‘V—a .
Then equation (3.14) becomes

tan m_ = tanh m -
n n

It could be shown that this equation has an infinite

(3.14)

number of roots m and let us suppose that they have

been computed, then
sin m

n
Cn B -Bn sinh m ¢

Therefore, except for a constant, the general solution of

Xn will be
m X mnx
X =s8inh m s8in — = 8in m_ sinh
n n 1L n

Now that we know Xn(x) we can compute the coefficient

(3.15)

Gln:
L L 3x x3
é gl(x)xhdx Of {r - i ;;j)xndx ,
Ga™ T 5 = L, = (s1nk . )
0 0

Notice that very good simplifications are obtained by u-

sing the identity (3.14). Our next task is to
the equation governing Tn’ which is now
2 .
v, 2 p(t)Qn . 2k“P_sin kt
n nn PA m (sinh m_ - sin m )
n n n

T

where
2 _ 24,4
wn—amn/L.

Its solution is given by (20) in section 2.0

our example it is

solve

and for

19



T(t)-E cos wt +F sinw t +
n n n n n

2 .
[p(t)Qn 2k“P_ sin ks

t
1
+ = [ + - - }sinw (t-8)ds
Y0 l oA mn(slnh m - sin mn) n

where the coefficients En and Fn can be computed using

conditions (3.8) and formulas (21) in section 2.0. That

give us
E =0
n
and 4 - x3
J —kPo(l =2r t ——_;)Xndx
p 20 2L
n L 2
w_ [ XSdx
n n
0
2kP
- - o
mnwn(sunh m - sin mp

One more step in this problem could be the substitu-
tion of the value of one of the integrals involving Tn ’
that is

t

J sin ks sin wn(t-s)ds == 2(wnsi.n kt - k sin wnt)

0 wn-k

This substitution gives the following general solution

for Tn
2kPo(k sin kt - w _sin wnt) Q t
Tn= — + df p(s)sin w_(t-8)ds
mn(w -k“)(sinh m_ -sin m ) w_pA a
n n n n

(3.16)

So the general solution of this problem is

m x m x
W(x,t) = % [sinh m sin —— - gin m_ sinh — ]*
n=1 n L n



[ 2kP°(k sin kt - W sin wnt) Qn

t
J p(s)sin wn(t-s)ds
(0]

+
l mn(wi —k2)(sinh m -sin mn) Yo pd
+P(1-§1‘-+—3‘i)s'nkt (3.17)
Pty 0 T 3 3 T
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