

Werk

Titel: A note on symetric matrices

Autor: Allan, Nelo D.

Jahr: 1969

PURL: https://resolver.sub.uni-goettingen.de/purl?320387429_0003|log13

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

A NOTE ON SYMETRIC MATRICES

Ь٧

Nelo D. ALLAN

This is an expository note with the purpose of proving some facts which will be used in my next paper. These facts are mentioned in [1] and one of them is a special case of the well known theorem of Meyer.

1. let Q be the field of all rational numbers, and Z be the ring of integers. We shall denote by $M_n(S)$ the set of all n matrices with coefficients in a ring S. We shall say that $H \in M_n(Z)$ is unimodular if H is a unit of this ring, i. e., the determinant, $\det H$, is ± 1 . H is symmetric if it coincides with its transpose t_H . For the sake of convenience we shall write $H = V \perp W$ if written in blocks,

$$H = \begin{bmatrix} V & O \\ O & W \end{bmatrix}$$

and we set $H_{(m)} = H \perp \ldots \perp H$ m times. We set

$$J(a) = \begin{bmatrix} 0 & 1 \\ 1 & a \end{bmatrix}, a \in \mathbb{Z}$$

and J(0)=J. We say that H, $H'\in M_n(Z)$ are integrally equivalent, shortly $H\sim H'$, if there exists $U\in M_n(Z)$, unimodular, such that $H'={}^tUHU$. We say that H is even if for all integral n by I matrices x, the values of the form $H(x)={}^txHx$ are always even; otherwise we say that H is odd. We shall say that H represents zero if the equation H(x)=0 has a non trivial integral solution. Over the reals, R, H can be diagonalized to a matrix $E_T\perp (-E_S)$,

where in general E_m is the m by m identity matrix; the difference $\mu=r\text{-}s$ is called the index of H, and for our purpose we can always replace H by -H and assume $\mu\geqslant 0$. We say that H is indefinite if $\mu\neq 0$, and that H is definite otherwise. We shall use essentially the following result.

THEOREM 1. An indefinite unimodular symmetric matrix with 5 or more variables always represents zero. If H is definite, unimodular and even, then $n \equiv 0$ mod 8; if H is odd and $n \leqslant 7$, then $H \sim E_n$.

Our first objetive is to prove (see [3])

THEOREM 2: Let H be an unimodular symmetric matrix, with n > 5 and $\mu > 4$. If H is odd then H is equivalent to $J_{(m)} \perp E_{\mu}$ or $J_{(m)} \perp J(1)$ according to whether $\mu \neq 0$ or not; if H is even, then $H \sim J_{(m)} \perp W$ where W is even ond definite.

Actually if we apply the theorems 4 and 5 in [3], then theorem 2 can be easily derived as follows:

THEOREM 3: Let H be unimodular and indefinite. If H is odd, then H is equivalent, to either $J_{(m)} \perp E_{\mu}$ or $J_{(m)} \perp J(1)$ according to whether $\mu \neq 0$ or $\mu = 0$. In the even case $H \sim J_{(m)} \perp (\phi_8)_{(s)}$ where ϕ_8 is a representative of the only positive even definite class of rank 8.

2. We shall break the proof in several lemmas; we shall assume that H is unimodular, indefinite and $n \ge 5$, in all these lemmas.

LEMMA 1: $H \sim J(a) \perp H'$, and index of H' is the same as index of H.

PROOF: Let x be a solution of H(x) = 0, $x \neq 0$, which we may assume to be primitive, i. e., to have entries relatively prime. Extend x to an unimodular matrix U where $x_1 = x$ is its first column and x_i is its i-th column; we set $H_1 = {}^tUHU$. If

$$H_1 = (b_{ij})$$
, $b_{ij} = x_i H x_j = H_1(x_i, x_j)$

then $H_1(x)=b_{11}=0$. Next we can find $c_2,\ldots,c_n\in \mathbb{Z}$ such that $c_2\,b_{21}+\cdots+\,c_n\,b_{n1}=1$; we set $x^{'}_2=c_2x_2+\cdots+\,c_n\,x_n$ and $x^{'}_j=x_j-b_{1j}x_2$, $j=3,\ldots n$, we get $H_1(x_1^{'},x_2^{'})=1$ and $H_1(x_1^{'},x_j^{'})=0$, $j\geqslant 2$. Now if U_1 denotes the unimodular matrix whose i-ith column is $x_1^{'}$, $i=1,\ldots n$ and $x^{'}_{11}=x_1$, and if $H_2={}^tU_1H_1U_1$, then $H_2=(b_{ij})$ and $b_{1j}=0$ or 1 according to whether $j\neq 2$ or not. Now symmetry implies that $b_{12}=b_{21}$, and if we replace $x_j^{'}$ by $x_j^{''}=x_j^{'}-b_{2j}x_1^{'}$, j>3 we get $H_1(x_2^{'},x_j^{''})=0$; denoting by U_2 the matrix whose j-th column is $x_j^{''}$, $j=1,\ldots,n,x_1^{''}=x_1$, $x_2^{''}=x_2^{'}$, we get $H\sim J(a)\perp H'$. The invariance of the index follows from the fact that the index of J(a) is zero.

LEMMA 2: 1. $J \perp E_1 \sim J(1) \perp E_1$

2.
$$J(a)\perp J(b)\sim J_{(2)}$$
 or $J\perp J(1)$

according to whether a and b are both even or not.

PROOF: Let $H=J(1)\perp E_1$ and let us denote by e_j the j-tb column of E_n . If U has column e_1 , e_2+e_3 , $e_3\text{-}e_1$, we get that tU H $U=J(2)\perp E_1$. Now from

 ${}^{t}UJ(a) U = J(a+2\lambda), U = \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix}$

we get $J(a) \sim J(0)$ or J(1) according to whether a is even or odd. Consequently it remains only to study the case where a and b are both odd , i.e. ,

$$J(a) \perp J(b) \sim J(1) \perp J(1)$$
;

here we consider the column of U to be e_1 , e_2 , $e_2 + e_4$, $e_3 - e_1$ to get

$${}^{t}UHU \sim J(2) \downarrow J(1) \sim J \perp J(1)$$
. q.e.d.

LEMMA 3: $H = J(1) \perp V \sim J \perp E_m$, if V is positive definite m by m with m > 4.

PROOF: In any case H represents 1, i.e., there exists x primitive such that Q(x)=1; extending x to an unimodular matrix U we may assume that $H=(b_{ij})$ and $b_{11}=1$. Now replacing x_j by $x_j-b_{i1}x_1$ we get

$$H(x_i, x_1) = 0, j > 1;$$

hence by lemmas 1 and 2

$$H \sim E_1 \perp V' \sim E_1 \perp J(a) \perp V'' \sim E_1 \perp J(1) \perp V''$$
.

We can repeat the process as long as m > 4; in the case m = 4 we have

$$H \sim E_1 \perp J(1) \perp V'$$
,

V' being 3 by 3, hence $V' \sim E_3$.

q.e.d.

LEMMA 4: If $H = J \perp V$, V odd and definite, then $H \sim J \perp E_m$ provided that $m \geq 4$.

PROOF: Clearly H represents 1, and as is the above lemma

$$H \sim E_1 \perp H' \sim E_1 \perp J(a) \perp V' \sim E_m \perp J$$

q.e.d.

Before proceeding we would like to remark that he hypothesis $m \ge 4$ can be easily removed due to a very simple proof [3] theorem, which states that if $n \le 5$ and H is indefinite, then H represents zero non trivially.

PROOF OF THEOREM 2: By applying lemmas 1 and 2 several times we arrive to $H \sim J_{(q)} \perp J(a) \perp V$, with H and V having the same index $\mu \geqslant 4$. If V is indefinite, then as $n=2s+\mu$ we must have $s\neq 0$, hence $n\geqslant 6$ and the process can be repeated. Hence may assume V to be definite. If V is odd, then lemmas 3 and 4 implies $V \sim E_{\mu}$. If V is even and A even, i.e., A even, we are done. If A is odd we have

$$J(a) \perp V \sim J(1) \perp V \sim J \perp E_m$$

by lemma 3.

q.e.d.

We would like to remark that the even case in theorem 2 is stated as in [3], which after had proved the odd case, its proof becomes simple. In [3], it is proved that H odd implies that $H \sim E_p \perp (-E_q)$. The statement of theorem 2 will clearly follow from $E_1 \perp (-E_1) \sim J(1)$ and from lemma 2.

3. Closing this note we shall prove the following:

THEOREM 3: There exist an unimodular matrix $U_{\epsilon}M_n(Z)$ such that

$${}^{t}UU = V = (v_{ij})$$
, $V \equiv J_{(q)} \perp A \mod 2$,

where A = J(1) or E_1 according to whether n is even or odd. If n is even (resp. odd) we can choose U such that v_{n-1} , n-1 = n (resp. $v_m = n$) and $V \sim V \perp J(1)$ modulo 2^a where $a = ord_2(n)$.

PROOF: We shall proceed by induction on n. If n=1, $V=E_1$, and if n=2 we can take.

$$U = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad V = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

Assume the assertion true for all k < n. Let us treat the case where n is odd. We write $E_n = E_{n-1} \perp E_1 \sim V' \perp E_1$, $V = (v_{ij}) = {}^t U' U'$, where U' is chosen by induction and $v_{n-2,n-2} = n-1$, $V' \equiv J_{(q)} \perp J(1) \mod 2$. Let us denote by e_{ij} the unit matrices in $M_n(Z)$, and let $W = E_n + e_{n-2}$, $n+e_n$, $n-1+e_{n-3}$, n-1. We claim

that $V={}^tWHW={}^tUU$, $U=(U'\perp E_1)W$ satisfies the first part our assertions. Let w_j be the j-th column of W, $w_j=e_j$, j>n-2, $w_{n-1}=e_{n-2}+e_{n-1}+e_n$, $w_n=e_{n-2}+e_n$. We have that $v_{ij}=H(w_i$, $w_j)\equiv 0$ modulo 2 for these values of (i,j). Hence $V\equiv J_{(q)}\perp B$, where B is 3 by 3, $B=(b_{ij})$ and

$$b_{ij} = H(w_{n+3-i}, w_{n+3-j})$$
 , $i, j = 1, 2, 3$.

Clearly

$$\begin{array}{l} b_{11} = \mathbf{H}(w_{n-2} \ , \ w_{n-2}) = b_{n-2,n-2} = n-1 \ , \\ b_{12} = \mathbf{H}(w_{n-2} \ , \ w_{n-1}) = b_{n-2,n-2} + b_{n,n-2} \equiv (n-1) + v_{n-1,n-2} \equiv 1 \quad modulo \ 2 \\ b_{22} = \mathbf{H}(w_{n-1} \ , \ w_{n-2}) = b_{n-2,n-2} + b_{n-1,n-1} + b_{nn} \equiv 1 + v'_{n-1,n-1} \equiv 0 \quad mod \ 2 \\ b_{33} = \mathbf{H}(w_n \ , \ w_n) = b_{n-2,n-2} + b_{nn} + 2b_{n-2} \ , n = n-1 + 1 = n \\ b_{13} = \mathbf{H}(w_{n-2} \ , \ w_n) = b_{n-2,n-2} + b_{n,n-2} = n-1 \\ b_{23} = \mathbf{H}(w_n \ , \ w_{n-1}) = b_{n-2,n-2} + 2b_{n-2,n} + b_{nn} + b_{n-1,n-2} \\ \equiv 1 + v'_{n-1,n-2} \equiv 0 \quad mod \ 2 . \end{array}$$

Therefore $B \equiv J \perp E$, $mod\ 2$. If n is even we take $W = E_n + e_{n-n-1}$, then $V = {}^tWHW = (v_{ij})$, $H = V' \perp E_1$, $V' = (v'_{ij})$, with $v_{ij} = v'_{ij}$ $1 \leqslant i$, $j \leqslant n-1$, with exception of $v_{n-1,n-1} = v'_{n-1,n-1} + 1 = n$, $v_{nj} = 0$. If $j \leqslant n-2$, $v_{n-1,n} = v_{nn} = 1$. Next we observe that if we replace the j-th column of V by its sum with a multiple $a_{\ell} Z$ of the i-th column, $i \neq j$, and repeat the same operation with the respective rows, then this is equivalent to replace V by ${}^t(E + ae_{ij})$, $V(E + ae_{ij})$. We now apply those operations to make the entries in the (n-1)-th row and column equal to zero, with exception of the two last ones; this is possible because the last column of V is $e_{n-1} + e_n$ and all we do is to use the above operation with 1 = 1, ..., n-2, j = n and $a = v_{ijn-1}$. In the new matrix the (n-1)-th column is $ne_{n-1} + e_n$ and the n-th is $v_{1,n-1}e_1 + \cdots + v_{n-2,n-1} + e_{n-2} + e_{n-1} + e_n$. Next we repeat the same operation, but with j = n-1 instead; we get for the n-th column of the new matrix $e_{n-1} + e_n$ and for the (n-1)-th column

 $(\neg nv_{1,\,n-1}) \ e_1 + \cdot \cdot \cdot + (\neg nv_{n-2,\,n-1}) e_{n-2} + ne_{n-1} + e_n \ ,$ and this yields the splitting modulo $\ 2^a$.

q.e.d.

REFERENCES

- 1. N. ALLAN, A note on the Arithmetic of the Orthogonal group, Anais da Academia
 Brasileira de Ciencias, Vol. 39, 1969.
- 2. O. T. O'MEARA, Introduction to Quadratic Forms, Academic Press, 1963.
- 3. J. P. SERRE, Formes bilinéaires symetriques entières a discriminant ± 1, Séminaire Cartan, 61 / 62, exposé 14.

Departamento de Matemáticas y Estadística Universidad Nacional de Colombia Bogotá, Colombia S. A. (Recibido en febrero de 1969)