

Werk

Titel: Una nota sobre el numero de soluciones de ecuaciones con coeficientes matriciales...

Autor: Albis Gonzalez, Victor S.

Jahr: 1969

PURL: https://resolver.sub.uni-goettingen.de/purl?320387429_0003|log11

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNA NOTA SOBRE EL NUMERO DE SOLUCIONES DE ECUACIONES CON COEFICIENTES MATRICIALES

por

Víctor S. ALBIS GONZALEZ

Consideremos el anillo

$$A = \{ \begin{pmatrix} \lambda & \alpha \\ 0 & \lambda \end{pmatrix} \in \mathfrak{M}_{2}(\mathbf{F}_{p}) ; \alpha, \lambda \in \mathbf{F}_{p} \}$$

donde F_p designa el cuerpo Z/(p). Es claro que A_p es un anillo conmutativo finito con elemento unidad. Sean ahora $A_p[t]$ el anillo de los polinomios en la indeterminada t con coeficientes en A_p y $f(t) = \sum_{k=0}^n a_k t^k \epsilon A_p[t] \quad , \quad a = \begin{bmatrix} \lambda_k & \alpha_k \\ 0 & \lambda_k \end{bmatrix} \quad , \quad .$

$$f(t) = \sum_{k=0}^{n} a_k t^k \in A_p[t] , a = \begin{bmatrix} \lambda_k & \alpha_k \\ 0 & \lambda_k \end{bmatrix} ,$$

un polinomio de grado n. Usando el siguiente teorema [1]

TEOREMA 1.- Sean B un anillo conmutativo finito con elemento unidad y kun cuerpo finito. Sea $\mu: B \to k$ un epimorfismo de anillos y $N = card \ [ker_{\mu}]$. Entonces, si $f(t) = \sum_{k=0}^{n} a_k t^k$ es tal que $a_k \notin ker_{\mu}$, para algún $k=0,1,\ldots,n$, f(t) tiene a lo más n N raíces distintas o no en B.

TEOREMA 2.- Sea $f(t) = \sum_{k=0}^{n} a_k t^k \epsilon A_p[t]$ un polinomio de grado n tal que $\lambda_k \neq o$ para algún $k = 0, 1, \ldots, n$. Entonces f(t) tiene a lo más pn raíces de la forma

$$\begin{pmatrix} \lambda & \alpha \\ 0 & \lambda \end{pmatrix}$$

Demostración: La aplicación $\mu: A_p \to F_p$ definida por

$$\begin{pmatrix} \lambda & a \\ 0 & \lambda \end{pmatrix} \longmapsto \lambda$$

es un epimorfismo ; como

$$\mu = \left\{ \begin{bmatrix} 0 & \alpha \\ 0 & 0 \end{bmatrix} ; \lambda \in \mathbf{F}_{p} \right\}$$

y card $[ker \mu] = p$, resulta el teorema 2.

Por otra parte, consideremos el polinomio

$$f(t) = \sum_{k=0}^{n} \begin{pmatrix} \lambda_k & \alpha_k \\ 0 & \lambda_k \end{pmatrix} \cdot t^k \in A_p[t]$$

Es fácil comprobar que

$$\begin{pmatrix} \lambda & \alpha \\ 0 & \lambda \end{pmatrix} \epsilon A_{p}$$

 $\begin{pmatrix} \lambda & \alpha \\ 0 & \lambda \end{pmatrix} \epsilon A_p$ es una raíz de f(t) si y sólo si $b(\lambda) = 0$ y $\alpha b^*(\lambda) + g(\lambda) = 0$, donde $g(t) = \sum_{k=0}^n \alpha_k t^k$ y $b(t) = \sum_{k=0}^n \lambda_k t^k$. Ahora bien existen a lo más n valores de λ en F_p tales que $b(\lambda) = 0$, a menos que b(t) = 0. Así mismo α está determinado de manera única por λ a menos que $b^*(\lambda) = 0$. Esto muestra que la cota p^n sirve para todos los polino mios $f(t) \in A_p[t]$.

Dado un polinomio $f(t) \in A_p[t]$ no hay que pensar que todas sus raíces en $\mathcal{W}_2(P_p)$ pertenecen a A_p . Por ejemplo,

$$f(t) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} t^2 \epsilon A_p[t]$$

tiene como raíz en $\mathcal{W}_{h}(F_{h})$ a

$$\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} .$$

Sería interesante investigar bajo qué condiciones $f(t) \in A_p[t]$ tiene todas sus raíces en A_{p} . Quiero agradecer aquí al profesor R. Mac Rae algunas sugerencias que han mejorado la presentación de esta nota.

REFERENCIAS

[1]. V. ALBIS, "A certain class of rings and the number of roots of polynomials with coefficients in these rings", (to appear)

Departamento de Matemáticas y Estadística Universidad Nacional de Colombia Bogotá, Colombia, S. A. (Recibido en abril de 1969)