

Werk

Titel: On comparsion of seminorms on a barrel

Autor: Nieto, I. José

Jahr: 1968

PURL: https://resolver.sub.uni-goettingen.de/purl?320387429_0002|log34

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Revista Colombiana de Matemáticas Volumen II, 1.968. Páginas 124-128.

ON COMPARISON OF SEMINORMS ON A BARREL

BY

José I. Nieto

Let E be a real or complex vector space, $\{p_{a}\}$, $\{p_{a}\}$, two families of seminorms and $\{p_{a}\}$, $\{p_{a}\}$, the locally convex topologies on E defined by $\{p_{a}\}$ and $\{q_{a}\}$, respectively. We take from [3] the following.

<u>DEFINITION</u>. $\{q_{\alpha}\}$ is said to be stronger than $\{p_{\alpha}\}$ on a subset S of E if the topology induced by $\mathcal{C}\{q_{\alpha}\}$ on S is stronger than the one induced by $\mathcal{C}\{p_{\alpha}\}$.

It is well known that if the family $\{q_{\beta}\}$ is filtrating, i.e. for each finite subfamily $q_{\beta_{\alpha}},\ldots,q_{\beta_{n}}$ there exists $q_{\beta}\in\{q_{\beta}\}$ such that

$$\sup \left\{q_{\beta_i}(x)\right\} \leqslant q(x) \quad \text{for all } x \in E,$$
 i = 1, ..., n

then a necessary and sufficient condition for $q_{\mathcal{B}}$ to be stronger than $p_{\mathcal{A}}$ on E is that for any given $p_{\mathcal{A}}$ there exist $q_{\mathcal{B}}$ and a positive constant M such that

(1)
$$p_{\alpha}(x) \leq Mq_{\beta}(x)$$
 for all $x \in E$.

It his note we would like to announce a theorem which not only contains the previous result but also, among others, a lemma due to J. Lions (Lemma 2.9 in [6]) and a lemma of J. Dixmier [2]. Detailed proofs of our results will appear else-

where in a forthcoming publication.

THEOREM. Let $\{p_{\alpha}\}$ and $\{q_{\beta}\}$ be two families of seminorms on E, with $\{q_{\beta}\}$ filtrating. Further, assume that $S \subset E$ is a subset of the form $S = \{x \mid \Pi(x) \leq 1\}$, where Π is a seminorm on E. Then the following statements are equivalent:

- a) $\{q_{\mathcal{O}}\}$ is stronger than $\{p_{\mathcal{O}}\}$ on S;
- b) To each $\xi > 0$ and p_{α} there correspond q_{β} and $\eta > 0$ such that for $x \in S$ q_{β} $(x) \le q$ implies $p_{\alpha}(x) \le \xi$;
- c) Given $\xi > 0$ and p_{α} there exist q_{β} and a positive constant K such that

(2)
$$p_{\alpha}(x) \leq \varepsilon \prod (x) + Kq_{\beta}(x)$$
 for all $x \in E$.

Consequences of the previous theorem (assuming $\{q_{\beta}\}$ filtrating).

- I. $\{q_{\beta}\}$ is stroger than $\{p_{\alpha}\}$ on E if and only if (1) holds.
- II. Let E be a topological vector space and S a barrel in E with Minkowski functional $\overline{\Pi}$. Then a necessary and sufficient condition for $\{q_{\beta}\}$ to be stroger than $\{p_{\gamma}\}$ on S is that (2) be valid.

- i) $A \subset B \subset C$
- ii) The imbeddings $i_{AB}: A \rightarrow B$ $i_{BC}: B \rightarrow C$

are continuous.

Taking in the theorem E = A, $\pi(x) = \|x\|_A$, $p(x) = \|x\|_B$ and $q(x) = \|x\|_C$ for $x \in A$, we obtain:

- III. The spaces B and C induce on S the same topology if and only if to each $\[mathcal{C}\]$ 0 there corresponds a positive constant K = K($\[mathcal{E}\]$) such that
- (3) $\|x\|_{B} \leqslant \varepsilon \|x\|_{A} + K\|x\|_{C}$ for all $x \in A$.
- IV. (Lions'Lemma). If the imbedding $i_{\mbox{AB}}$ is compact then the interpolation inequality (3) holds.

NOTE 1. We show with a concrete example that i_{AB}^{AB} does not have to be compact for (3) to be valid.

V. Suppose that there exist constants M > 0, u > 0, v > 0 such that.

(4)
$$\|x\|_{B} \leqslant M\|x\|_{A}^{u} \|x\|_{B}^{v}$$
 for all $x \in A$

Then (3) holds.

Let $H^S = H^S(R^n)$ (s real) be the Sobolev space of all tempered distributions $\mathscr D$ such that

$$\|\varphi\|_{s} = \left(\int_{\mathbb{R}^{n}} (1 + |\xi|^{2}) |\hat{\varphi}(\xi)|^{2} d\xi\right)^{\frac{1}{2}} < \infty,$$

where \widehat{arphi} denotes the Fourier transform of arphi . Then we have:

- VI. Suppose that s,t,r, are real numbers such that s>t>rThen to each &>0 there corresponds a positive constant K = K (&, s, t, r) such that
- (5) $\|\varphi\|_{t} \leqslant \epsilon \|\psi\|_{s} + K \|\psi\|_{r}$ for all $\psi \in H^{s} \subset H^{t} \subset H^{r}$

NOTE 2. The inequality (5) has been known only for the spaces $H^{\mathbf{S}}(\Omega)$ (or the spaces $H^{\mathbf{S}}(\Omega)$), where s is a nonnegative integer and Ω a bounded domain of $R^{\mathbf{N}}$ with amooth boundary (see for example[1]). For these spaces $H^{\mathbf{S}}(R^{\mathbf{N}})$, however, the situation is different due to the fact that Relich's theorem no longer holds.

- VII. Let E be a normed space with norm $\| \|$, and \mathbb{A} , \mathbb{B} linear operators with domains of definition $D(\mathbb{A})$, $D(\mathbb{B})$, respectively, such that $D(\mathbb{A}) \subset D(\mathbb{B})$. If \mathbb{B} is closable and \mathbb{A} compact, then to each $\mathbb{E} > 0$ there corresponds a positive constant $K = K(\mathbb{E})$ such that
- (6) $\|\mathcal{D}_{\mathbf{x}}\| \le \|\mathcal{A}_{\mathbf{x}}\| + K \|\mathbf{x}\|$ for all $\mathbf{x} \in D(\mathcal{A}) \subset D(\mathcal{B})$
- NOTE 3. The inequality (6) is known to play a role in perturbation theory. See [4], in particular the corollary to Theorem V.3.7.
- VIII. (Dixmier's lemms). Let E be a normed space, E' its topological dual and M₁, M₂ two linear subspaces of E' its topological dual and M₁, M₂ two linear subspaces of with closures M₁, M₂ in the norm topology of E'. Then the weak topologies $\sigma(E, M_1)$, $\sigma(E, M_2)$ coincide on the unit ball in E if and only if M₁ = M₂.
- NOTE 4. We point out that from V it follows that inequalities of type (3) hold for all families of Banach spaces which from a <u>scale</u> as in 5. Finally the author wishes to express his gratitude to Professor Henri G. Garnir for valuable suggestions.

REFERENCES

- 1 Agmon, S., Lectures on elliptic boundary value problems. Van Nostrand (Mathematical Studies, No.2). Princeton, N.J. (1.965).
- 2 Dixmier, J., Sur un théorema de Banach. Duke Math. J., 15 (1.948), P.P. 1057-1071.
- Garnir, H., De Wilde, M.- Schmetz, J., Espaces Linéaires a seminorms. Book to appear (Preprint: Université de Liege, Institut de Mathématique, 1.964, 1.965).
- 4 Goldberg, S., Unbounded linear operators. Theory and applications. McGraw Hill (Series in Higher Mathe-

matics), New York (1.966)

5 Krein, S.G. Petunin, Yu, I., Scales of Banach spaces. Uspehi Mat. Nauk, Vol. 21, 2 (128) (1.966), P.P 89-168.

(English translation: Russian Mathematical Surveys, Vol. 21. No 2,1966, P.P 85-159).

6 Magenes, E. Stampacchia, G., I problemi al contorno per le equazioni differenziali di tipo ellitico Annali della Scuola Norm. Sup. Pisa, Serie III, Vol. 12, P.P 247-357 (1.958).

University of Mainz, Germany, and University of Maryland.