

# Werk

**Titel:** Some non-maximal arithmetic groups

Autor: Allan, N.

Jahr: 1968

**PURL:** https://resolver.sub.uni-goettingen.de/purl?320387429\_0002|log12

## **Kontakt/Contact**

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen Revista Colombiana de Matemáticas Volumen II,1968, págs.21-28

### SOME NON-MAXIMAL ARITHMETIC GROUPS

b.y

### Nelo D. ALLAN

Let k be a non-finite Dedekind domain, and p be the ring of its integers. We shall assume that the ring R = p/(2) is finite. Let us denote by  $M_n(k)$  (resp.  $M_n(p)$ ) the ring of all n by n matrices with entries in k (resp. in p), and  $Gl_n(k)$  its group of units. We denote by  $Sl_n(k)$  the subgroup of  $Gl_n(k)$  whose elements g have determinant, det g, equal to one. Let  $H \in M_n(p)$  be a symmetric matrix, i.e.,  $H = {}^tH$  where  ${}^tH$  denotes the transpose matrix of H. We let  $G = SO(H) = \{g \in Sl_n(k) \mid {}^tgHg = H\}$ , and we let  $G_p = G\cap M_n(p)$ . We want to exhibit certain H for which  $G_p$  is not maximal in G, in the sense that there exists a subgroup  $\Delta$  of G such that  $\Delta$  contains  $G_p$  properly and  $[\Delta:G_p]$  is finite.

l. Preliminaries. Let L be an order in  $M_n(k)$ ; we shall denote by L the fractional ideal generated by all the (i,j)-entries of all the elements of L; we shall write

$$L = \begin{pmatrix} L_{11} & \cdots & L_{1n} \\ \vdots & & \vdots \\ L_{n1} & \cdots & L_{nn} \end{pmatrix} .$$

We shall say that L is a direct summand if as an y-module L is a direct sum of  $L_{ij}e_{ij}$  where  $e_{ij}$  are the units of  $M_n(k)$ .

It is well known that in our case the maximal orders in  $M_n(k)$  are conjugate to the ones which are direct summands and  $L_{nn} = L_{ij} = \mathcal{C}$ ,  $i,j \neq n$ , and  $L_{in} = \mathcal{U}^{-1}$ ,  $L_{nj} = \mathcal{U}$ ,  $i,j \neq n$ , for some fractional ideal  $\mathcal{U}$  of k, i.e.,

$$L = L(\mathcal{U}) = \begin{pmatrix} \mathcal{O} & \dots & \mathcal{O} & \mathcal{O}^{-1} \\ \mathcal{O} & \dots & \mathcal{O} & \mathcal{O}^{-1} \\ \mathcal{O} & \dots & \mathcal{O} & \mathcal{O} \end{pmatrix}$$

If L is one of such orders, then by looking at the expansion of  $g^{-1}$ ,  $g \in Sl_n(k)$ , we see that L  $|| Sl_n(k)$  is a group. Consequently if  $G \subset Sl_n(k)$ , then  $\Delta = G \cap L$  is a group.

For our purposes we shall assume on to be integral.

LEMMA 1. If  $R = \delta/\alpha$  is finite, then  $\Delta$  is commensurable to  $G_{\delta}$ , i.e.,  $\Delta \cap G_{\delta}$  has finite index in both  $G_{\delta}$  and  $\Delta$ .

Proof: We shall follow Ramanathan's proof (1). First we consider the subgroup  $\Delta(u) = \{g \in G_{\alpha} | g \equiv E \mod u\}$ . The index  $[G_{\alpha}: \Delta(u)]$  is finite because it is at most the order of the group  $Gl_{n}(R)$ , which is clearly finite. Suppose that  $g, g' \in \Delta$  and that  $u(g_{ij} - g'_{ij})$  is divisible by  $u^{2}$  for all (i,j), i.e., g' = g + V,  $V = (v_{ij})$  and  $v_{ij} \equiv 0$  modulo u for all (i,j); hence  $g^{-1}g' = E + g^{-1}V$ , and it is easy to see that  $g^{-1}V \in M_{n}(c)$ . Consequently  $g^{-1}g' \in G_{\alpha} \cap \Delta$ . Now there is only finitely many classes u modulo  $u^{2}$ , hence only finitely many classes u modulo  $u \in M$ . Hence only finitely many classes u modulo  $u \in M$ . Hence only finitely many classes u modulo  $u \in M$ . Hence only finitely many classes u modulo  $u \in M$ . Hence only finitely many classes u modulo  $u \in M$ . Hence only finitely many classes u modulo  $u \in M$ . Hence only finitely many classes u modulo  $u \in M$ . Hence only finitely many classes u modulo u for u is finite. Next as u follows that u follows that u for u is finite.

2. MAIN RESULT. We shall use the block notation for the matrices and write

$$H = \begin{pmatrix} V & O \\ O & W \end{pmatrix},$$

where V is r by r and W is s by s, r + s = n; such H we shall denote sometimes by VIW. If  $p^{\alpha}|_2$ , prime, A a positive integer, we say that H is  $p^{\alpha}$ -even, if for any integral 1 by n matrix x, this  $\equiv 0 \pmod{p^{\alpha}}$ . (As  $p^{\alpha}|_2$ , to say that H is  $p^{\alpha}$ -even is equivalent to say that  $p^{\alpha}$  divides all the diagonal entries of H, where  $H = (h_{ij})$ , since mod 2, and a fortiori modulo  $p^{\alpha}$ , the matrix  $p^{\alpha}$  and  $p^{\alpha}$ .) We shall denote by  $p^{\alpha}$ , the matrix

$$\begin{pmatrix} 0 & 1 \\ 1 & a \end{pmatrix} .$$

We may assume that 2 / a, otherwise we can replace J(a) by  ${}^tSJ(a)S = J(a + 2\lambda) = J(0)$  where

$$S = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$$

a =-2 $\lambda$ ,  $\lambda \in \mathcal{S}$ : under such replacement, the maximality or not of  $G_{\mathcal{S}}$ , for  $H = V \perp J(a)$ , is not affected.

LEMMA 2. Let G = SO(H),  $H = V \perp J(a)$ . If  $V = I \leq I$   $A = I \leq I$  A = I  $A = I \leq I$  A = I  $A = I \leq I$  A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A = I A =

Proof: Since  $G_{\mathcal{C}} \subset M_n(\mathcal{S})$ , it suffices to prove that for all  $j=1,\ldots,n-1$ ,  $\mu|_{g_{nj}}$ . If we write  $g \in G_{\mathcal{C}}$  as

$$g = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

A being n-2 by n-2 and D being 2 by 2, then

tgHg = H implies that  ${}^tAVA + {}^tCJ(a)C = V$  and  ${}^tBVB + {}^tDJ(a)D = J(a)$ . Let us write  $V = (v_{ij})$ ; now V is  $p^a$ -even, so that  $p^a|_{v_{ii}}$  for all i = 1, ..., n-2. Let us write  $C = (x_1, ..., x_{n-2})$ , where  $x_j$  are the column vectors of C, and similarly  $D = (y_1, y_2)$ . We have

$$(^{t}AVA)_{jj} + {^{t}x_{j}J(a)x_{j}} = v_{jj}, \quad j = 1, ..., n-2,$$
 $(^{t}BVB)_{jj} + {^{t}y_{j}J(a)y_{j}} = \delta_{j2}a, \quad j=1,2, \delta_{12}=0, \delta_{22}=1.$ 

Consequently if  $z = x_1, \dots, x_{n-2}, y_1$ , then

$$t_{zJ(a)z\equiv 0}$$
 (modulo  $\mu^{d}$ ).

Writting  $t = t(z_1, z_2)$ , this implies that

$$2z_1z_2 + az_2^2 \equiv 0 \pmod{n^{\alpha}}$$

or

$$az_2^2 = 0$$
 (modulo  $\phi^{\alpha}$ ),

and as  $\phi^a/a$ , thus  $\phi/z_2$ . This means precisely that the last row of C is divisible by  $\phi$ , as well as the entry (2,1) of D.

q.e.d.

THEOREM 1. Let V be  $h^d$ -even and let  $h^d$  a. Suppose that we can find in O a unit  $\eta$  and an element v but is not integral and v but v but v but v but v integral and v but v

Proof: As  $\mathscr{O}/(2)$  is finite, we have  $\mathscr{O}/p$  finite and  $\Delta = L(p) \cap G$  is commensurable to  $G_p$ . It suffices to show that  $\Delta$  contains  $G_p$  properly. We consider  $g = E_{n-2} \perp g'$  with

$$g' = \begin{pmatrix} \eta^{-1} & ab/2 \\ 0 & \eta \end{pmatrix}$$

Clearly  $g \in L(p)$ , and it is easy to see that  $t_{g'J(a)g'} = J(ab\gamma + \gamma^2 a) = J(a(b\gamma + \gamma^2)) = J(a)$ . Therefore  $g \in L(p) \cap G$  and  $g \notin G_{p'}$ .

q.e.d.

COROLLARY. Let W be any unimodular matrix, i.e;, W  $\in$  M<sub>n-2</sub>( $\sigma$ ) and det W is a unit, and let  $\sigma$   $\in$   $\mathcal{V}^{\times}$ . Let us assume also the existence of  $\sigma$  and  $\sigma$  b like in the theorem . If  $\sigma$   $\sigma$  is not maximal.

Proof: First of all, we observe that if  $\det H \neq 0$  then  $g \in SO(H)$  if and only if  $^tg \in SO(H^{-1})$ , for as  $g^{-1} \in SO(H)$ ,  $^tg^{-1}Hg^{-1} = H$  if and only if  $gH^{-1}g = H^{-1}$ . Now the mapping  $g \leadsto g$  maps subgroups onto subgroups, and preserves **integrality** of matrices and indices; hence  $SO(H)_{g}$  is not maximal if and only if  $SO(H^{-1})_{g}$  is not maximal. Now  $H^{-1} = W^{-1} \perp c^{-1}J(a)^{-1}$ , or  $cH^{-1} = cW^{-1} \perp J(a)^{-1}$ . As before our situation does not change if we replace  $J(a)^{-1}$  by  $J(O)J(a)^{-1}J(O) = J(-a)$ . Hence  $SO(H)_{g}$  is not maximal if and only if  $SO(H')_{g}$  is not maximal where  $H' = cW^{-1} \perp J(-a)$ . Finally it is easy to see that  $cW^{-1}$  is  $f^{2}$ -even, consequently  $SO(H')_{g}$  is not maximal. Therefore,  $SO(H)_{g}$  is not maximal.

q.e.d.

3. APPLICATIONS. We shall look first into the case where k is a dyadic local field with residue class field having more than two elements. We observe the fol-

lowing trivial lemma.

LEMMA 3. Let h be the prime of  $\mathcal{E}$  and let (2) =  $h^{a}$ ,  $a \ge 1$ . If  $a \in h$ , then the equation  $x^{2} + ax + 1 = 0$ 

is always solvable in f, and its solution is a unit.

Proof: In  $\mathcal{O}/h$  our equation become  $x^2 - 1 = 0$ . By Hensel's lemma  $x^2 + ax - 1 = 0$  is always solvable in  $\mathcal{O}$ ,  $a \in \mathcal{A}$ , and its solution does not lie in  $\mathcal{A}$ . q.e.d.

Now we discuss the unramified case:

THEOREM 2. If k is an unramified dyadic field, then G is not maximal in G for H = VicJ(E) if

- a) V is even, 2 = and c = 1.
- b) V is unimodular, c = 2 and  $2 \not = \epsilon$ .

Proof: We first observe that in theorem 1 we can take  $b = \sqrt[4]{-} \eta$  and  $x = \eta$ . It remains to show that we can always choose  $\eta$  such that  $2\sqrt[4]{b}$ . Now  $\sqrt[4]{\mu}$  is a finite dimensional vector space over the prime field, hence its group of units has odd order, i.e., if  $\eta \neq 1 \pmod{2}$ , then  $\eta^2 \neq 1 \pmod{2}$ .

q.e.d.

THEOREM 3. Let k be a dyadic ramified field. Then  $G_{pr}$  is not maximal in  $G_{pr}$  if  $H = V \perp G_{pr}$  if

- a) V is  $\pi^{\lambda}$ -even, c = 1,  $a = \xi \pi^{\beta}$ ,  $\xi$  unit and  $\alpha > \lambda > \beta > 0$ .
- b) V is unimodular,  $c = \pi^{\lambda}$ ,  $a = \mathbf{E}\pi^{\beta}$ ,  $\mathbf{E}$  unit and  $\alpha > \lambda > \beta > 0$ .

Proof: In order to verify our assertion we find a solution  $\gamma$  of  $x^2 + \pi^{d-\beta-1}x = 1$  and set  $b = \pi^{d-\beta-1}$  and  $\gamma = x$  in the proof of theorem 1, in the case where  $\gamma = x$  in the case where  $\gamma = x$  where  $\gamma = x$  where  $\gamma = x$  is a unit such that  $\gamma = x$  is a unit such that  $\gamma = x$  is a unit such that  $\gamma = x$  has more than two elements. The case b) follows from the corollary and from a).

q.e.d.

Now we shall study some consequences for the case k is an algebraic number field.

THEOREM 4. Suppose that 2 is unramified in k and that there exists a unit  $\eta \in \mathscr{O}$  such that  $\psi \not\equiv 1$  (modulo 2). Then  $G_{\mathscr{O}}$  is not maximal in G for H = V1cJ(a) in the following cases:

- a) V is even, c = 1, a = unit.
- b) V is unimodular, c = 2, a = unit.

Proof: Clearly the case b) follows from a) by corollary of theorem 1. Next we observe that we can sharpen lemma 2, to get the  $\mathcal{H}$ -ring generated by G contained in L(2); as V is even, we can work all congruences of that lemma modulo 2, and from the last congruence az $_2^2 \equiv 0 \pmod{2}$  we get that  $z_2 \equiv 0 \pmod{2}$ , because if  $n \mid 2$ , then  $n \mid 2 \mid 2$ . Hence  $2 \mid g_{nj}$ ,  $j \neq n$ , for all  $g = (g_{ij}) \in G_{\mathcal{H}}$ . Now in the proof of theorem 1 it suffices to take  $b = \sqrt{1-\eta}$ ,  $x = \eta$ , and it is easily seen that ab is relatively prime to 2.

a.e.d.

COROLLARY. If k is a quadratic number field with

discriminant a,  $a = 5 \pmod{8}$ , and if the basic unit of k is  $\omega = (m + n\sqrt{a})/2$ , m,n being odd integers, then we have the same conclusion as in theorem 4.

Proof: For w' - w = -m or  $\sqrt{a}$  and in both cases 2 / w' - w.

We close this note observing that our last corollary applies to the case where

a = -3,5,13,21,29,53,61,69,77,85,93.(See table 1, (2)).

#### REFERENCES

- 1. K. RAMANATHAN, Discontinuos Groups F, Goeth. Nach. (1964), 145-164.
- 2. Z. BOREVICH, I. SHAFAREVICH, Number Theory, Academic Press, 1966, New York.

Departamento de Matemáticas y Estadística Universidad Nacional de Colombia (Recibido en febrero de 1968)

ERRATA: Lines 12 and 13, page 23, should read: "2, and a fortiori modulo  $\phi^{\alpha}$ , talk =  $x_1^2h_{11} + \cdots + x_n^2h_{nn}$ , where  $x = (x_1, \dots, x_n)$ .)"