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SOME NON-MAXIMAL ARITHMETIC GROUPS

by
Nelo D. ALLAN

Let k be a non-finite Dedekind domain, and 0~ be
the ring of its integers. We shall assume that the ring
R =0/(2) 1is finite. Let us denote by Mn(k) ( resp.
Mn(;r)) the ring of all n by n matrices with entries
in k (resp. inlﬁf), and Gln(k) its group of units.
We denote by SQn(k) the subgroup of Gin(k) whose ele-
ments g have determinant, det g, equal to one. Let
He Mn(/y) be a symmetric matrix, i.e., H = fH where

H denotes the transpose matrix of H. We let G =
s0(H) = {g & st_(x)| beHg = H}, and we let Gy = GMM_().
We want to exhibit certain H for which Ggz is not
maximal in G, in the sense that there exists a sub~

group A of G such that A contains Q6V properly and
[a:Gg] is finite.

1. Preliminaries. Let L be an order in Mn(k); we
shall denote by Lij the fractional ideal generated by
all the (i,j)—entries of all the elements of L3 we

shall write

11 In
L = . : .
Lnl LN Lnn

We shall say that L is a direct summand if as an g-mo-
dule L is a direct sum of Li.e.. where e.. are

i % ij
the units of Mn('k).
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It is well known that in our case the maximal orders
in Mn(k) are conjugate to the ones which are direct su-

_ _ o gyl
mmands and Lmr1 = Lij = €y iy £ n, and L, =4y ,

—_ U, i,j # n, for some fractional ideal ‘@ of Kk,
ie@e gy

Y. SR 40'/1"
L) = | o oee e ot

AL eee A1

L

If L is one of such orders, then by looking at the ex-
pansion of g—l, g € Sén(k), we see that L Il SZn(k) is
a group. Consequently if G c an(k), then A= G N L is
a group.

For our purposes we shall assume 4 to be integral.

Rmr s~ ns

surable to G, ,i.e., Al G, has finite index in

both G,o- and A .

(1)

we consider the subgroup A @) = { & € Go|g=E mod 17(.}.

Proof: We shall follow Ramanathan’s proof . First

The index [g.: O(@W) is finite because it is at most
by

the order of the group Gin(R), which is clearly finite.
Suppose that g, g’ A and that a(gij - glJ) is divi-
sible by @2 for all (i,j), i.e., g=g+V, V=
(vi,j) and vijz-o modulo W for all (i,j)s; hence

1@;‘ = E + g-lv, and it is easy to see that g-lV €

g
Mn(»c"). Consequently g—lg' € GoIlA . Now there is
only finitely many classes L modulo zULZ, hence on-
1y finitely many classes A modulo A Go , i.e.,
[6: AN G.] is finite. Next as G2 Al Go D A(@), it
follows that [Go_s AN G,e] is finite. q.e.d.
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2. MAIN RESULT. We shall use the block notation

for the matrices and write
- ()
O W

where V is r by r and W is s by 8, T + s =nj
such H we shall denote sometimes by V. W. If z;,“‘lz s
)f‘ prime, A a positive integer, we say that H is
'ttd-even, if for any integral 4 bv n matrix x,
1-'JcH_xEO(modulo fz*). (As }',&IZ, to say that H
is ff‘—even is equivalent to say that f:." divides all

the diagonal entries of H, where H = (hij)’ since mod

2, and a fortiori modulo rff‘ " tXHXEx:]Z.hll +  eee +
2 , .
xh .) We shall denote by J(a), a g, the matrix

0 1

(1 aJ ‘
We may assume that Zfa , otherwise we can replace J(a)
by tsr(a)s = J(a + 20) = J(0) where

A

a ==2\y, A E&: under such replacement, the maximality
or not of Gy, for H=VlJ(a), is not affected.

LEMMA 2. Let G = SO(H), H=vVliJd(a). If V is

RN~~~

14.“ -even, and ‘f:“‘ra, then the ¢-ring generated by

Gy in Mn(k) is contained in the order L(}‘)‘

Proof: Since GgcC Mn(ﬂ’), it suffices to prove

that for all j =1, ..., n~1, ‘a,lgnj. If we write

.. [A )

C DbJ
A being n-2 by. n-2 and D being 2 by 2, then

gEG& as
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boHg = E implies that CAVA + °CJ(a)C = V and PBVB +
1;DJ(a.)D = J(a). Let us write V = (vij): now V is

F‘,‘-even, so that #lvii for all i=1, ...y n-2. Let
us write C = (xl""’xn—Z)’ where x. are the column

vectors of C, and similarly D = (yl,yz). We have

t t ;
( AVA)JJ + IJJ(a)xj = V.. 9 d = 1, coey n—2,

JJ

$ .
(*mB) ;, + tij(a)yj = 6,8 37152, 81,0, b,,= 1.

12 25"

Consequently if 2z = Xys weey X 59 ¥p oo then

tzJ(a)zaO (modulo 10,‘* Ye

Writting V.- t(zl,zz), this implies that

2 o
22,2, + az,=0 (modulo T )
or

2 X
azzgo (modulo 41 ),

and as ttxd"fa, thus (tz.lzz. This means precisely that the

last row of C is divisible by 11. , as well as the en-—
try (2,1) of D.
g.e.d.

THHOREM 1. Let V be $”-even and let $*fa. Sup-

S~

pose that we can find in & a unit i and an ele-
ment b such that (ba/2) lies in 1{4 but is not
integral and 92 +by =1. Then G, is not maxi-
mal in G, in the sense explained before.

Proof: As ¢//(2) is finite, we have /&/ﬁ_ finite
and A= L(cjz) 1 G is commensurable to Ggp . It suffi-
ces to show that () contains G, properly. We consi-
der g-En_z.Lg with
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i yl-‘ a.b/2
g’ =
o v J
Clearly g € L(*L), and it is easy to see that
tg‘J(a)g’ = J(aby-kq%) = J(a(bq + p2)) = J(a).

Therefore g € L(1L) NG and g ¢ ny.
q.e.d.

N NN~~~

WeM (#) and det W is a unit, and let o €

vﬁu . Let us assume also the existence of ? and
b like in the theorem . If H = Wl cJ(a), then

GAY is not maximal.

Proof: First of all, we observe that if det H # O

then g € SO(H) if and only if tg € SO(H-l), for as
gl eso®, P¢lHgt = H if and only if gH lg =
H_l. Now the mapping g ~— tg maps subgroups onto

subgroups, and preserves Iintegrality of matrices and
indices; hence SO(HLY is not maximal if and only if
SO(H-llbz is not maximal., Now H * = W lL c_lJ(a)-l .
or cH-l = cw—ll J(a)—l. As before our situation does
not change if we replace J(a.)“1 by J(O)J(a)_lJ(O) =
J(-a). Hence S0(H), is not maximal if and only if
SO(H"), is not maximal where H° = oi L J(-a). Fina-
lly it is easy to see that cW-l is «@?—even, conse-
quently SO(H’)d, is not maximal. Therefore, SO(HLy
is not maximal.
q.e.d.

3. APPLICATIONS. We shall look first into the ca~-

se where k 1is a dyadic local field with residue class

field having more than two elements. We observe the fol-
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lowing trivial lemma.

LEMMA 3. Let 1» be the prime of & and let (2) =
Yf, a>4. If ace %,, then the equation
2

X +ax +1=20

is always solvable in p, and its solution is a u-

nit.

Proofs: In A?/%. our equation become * -1=0
By Hensel’s lemma x° + ax - 1 = 0O is always solvable
in 4, a€ f, and its solution does not lie in < .

ge.e.d.

Now we discuss the unramified case:

THEOREM 2. If k is an unramified dyadic Field,

then G, is not maximal in G for H = VicJ(e)
if

a) V is even, 2Te and c = 1.
b) V is unimodular, ¢ = 2 and ZTE.

Proofs We first observe that in theorem 1 we can
take Db ={1— % and x =p. It remains to show that we
can always choose q such that Zfb. Now A&%ﬁ is a
finite dimensional vector space over the prime field,
hence its 8TouP of units has odd order, i.e., if

12# 1(modulo 2), then f'é 1(modulo 2).
qg.e.d,

N~ s i~

Gy is not maximal in G, for H = vici(a), if

a) V is nl-even, c¢ =1, a = enf, € unit and
> A>p >O.

b) V is unimodular, c = nx , a =€gnP, € unit
and % > A>p > 0.
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Proofs In order to verify our assertion we find a
solution ¢ of ¥+ P 1y 21 and set b= x?Ft
and B= x in the proof of theorem 1, in the ocase
where o > p+ 1. In the case where d=p+ 1, we consi-
der the equation x° + bx = 1, b=g"n, x =9 where
n is & unit such that ‘ﬁT fi-q. It is always possible
to find such unit because »0/71 has more than two ele-
ments. The case b) follows from the corollary and
from a).

q.e.d.

Now we shall study some consequences for the case

k is an algebraic number field.

THEOREM 4. Suppose that 2 is unramified in k and

that there exists a unit DZE,G’ such that /g# i
(modulo 2). Then G, is not maximal in G for H =

VJ.cJ(a) in the following cases:

a) V is even, c¢ =1, a = unit.

b) V is unimodular, ¢ = 2, a = unit.

Proof: Clearly the case b) follows from a) by coro-
llary of theorem 1. Next we observe that we can sharpen
lemma 2, to get the 4 -ring generated by G contained
in L(2); as V 1is even, we can work all congruences
of that lemma modulo 2, and from the last congruence
azg =0(modulo 2) we get that 2,2 0(modulo 2), because
if 11|2, then zTé. Hence 2|gnj, j#n, for all g =
(gij) € qo,. Now in the proof of theorem 1 it suffices
to take b =#-p, x =10 ,and it is easily seen that
ab is relatively prime to 2.

q.6.d.

COROLLARY. li k is_a quadratic number field with

NN N~~~
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discriminant a, a=5(modulo 8), and if the basic

unit of k is w=(m + n{a)/2, myn being odd inte-

gers, then we have the same conclusion as in theorem

4.

Proof: For W -W= - m or VYa and in both cases
21’00-1:— we

We close this note observing that our last corollary

applies to the case where
a = -3,5,13,21,29,53, 61, 69, 77, 85, 93.
(see table 1, (2)).
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ERBATAs Lines 12 and 13, page 23, should read: " 2, and a_
% 2 2
fortiori modulo &%, TEX=x h,) + eoo + X h , whers

X = (11,...,xn).)"
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