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classes of indiscernibles for minimal momads. Further we prove the existence
of a minimal monad of a special character and using it we show six equiva-
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1n this paper we are interestéd in a relation between relative definabi-
1lity and distance of natural numbers. This relationship is important especi-
ally when one supposes the existence of infinitely large definable natural
numbers. For our investigations 'there are very convenient minimal monads
which have some properties analogous to the properties of classes of indis-
cernibles.

We introduce and examine the notion €< <\ A of great distance bet-
ween o , 3 which expresses the fact that (3 cannot be reached from o by
any definable function transforming FN into FN. Six equivalents of this featu-
re are given. The most interesting are the following ones:

There are an endomorphic universe A with standard extension and » £ [3
such that o ,yv€ ExA(FN) and a.eExMTJ(FN).

There is an endomorphic universe A such that for each function f €A we
have

f'FNSFN wmp f(e0) < @.

Let us remind now several facts from [E-K).

Let ‘“’1’ “ be monads in {%‘ (i.e. classes of'decunposition of V ac-

: L] :
cording to a3 ). We say that @, {'é} (v, iff there is a function Fe Sd{c'i
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such that F"ﬂfﬁ.
The ordering {é‘ on monads is similar to Rudin-Keisler s ordering on

ultrafilters (monads correspond with ultrafilters on the ring of Sd‘
ses by a one-one correspondence).

A monad g (in {5 ) is minimal in {21 It each function & Sq 4 is
either constant or one-one mapping on -

In further considerations we shall limit ourselves to infinite monads.
Moreover, we shall assume that they are subclasses of N, where we have natu-
ral ordering " < ". This restriction is not substantial since there exists
F& Sd, such that F is a one-one mapping of N onto V (see [V]).

For an easier typing we shall, through the whole paper, use for elements
of N also small Latin letters, e.g. x «Bef is an abbreviation for x&BDefnN.
This convention does not refer to the notation of set-definable functions and
subsets of N.

When writing F:A—» B we bear in mind that F is a function such that
F'ASB (i.e. we do not ask for dom(F)-A).

clas-
cl

§ 1. At first we prove tmt-madswmtbenivimdintotwpaﬂsby
any definable element, i.e. that all elements of a monad have "the same posi-
tion" with respect to the elements of Def.

Definition. Let X be a class. Me shall call the class
12:(30.7¢X) B 6 w4 7Ya convex hull of X and denote Crh(X).
Lomma 1. Let (& N) be a monad in oy - Then Crh(@) nbefy 3=

Proof. Let xccm(p)nmf{e} - Then there are t,u g @ such that t<x<
<u - a contradiction with the fact that the elements of a monad fulfil the
same formulas.

Theorem 1. Let @ be a moned in co; . Then
(a) (¥x) [x<Cm(¢t)-0(336M4e])x<a<pr)],
(b) (Vx)[x>Coh(ga) = (3 aalefe 3 )nh(m)<cacx).

Proof: We shall prove (a), the assertion (b) can be proved analogmsly.
Take x<Cnh( ).

Let @= ﬂ{xn;nsFN}, where §X_;n€FNT is a descending sequence (in &)
n!classasfden (see [VD). For X we shall ask moreover: -in(xml) >

Z min(X). (I min(X,,, )-min(x), we put X=X - {min(x_ )} and
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= n{in;n‘ FNE.) We would like to prove:
[¢8) (3n¢FN)-in(Xn)>x;
i.e. we shuw that {Xn;nsFN} is cofinal with @ . Denote a_=min(X ) for every
n€&FN. Let us prolong the sequence -(an;niFN}. Then we can easily prove that
€3] (35)(V1)[FN<7<[3-’&‘.((~J-
To this end we shall construct a descending sequence {ﬂn;nﬁ FN} such that
pi>FN for every i FN and

(V& (i< J<l-’o-l==) a

Ooviously, it is enough to choose f3; like this: Let B3; be the maximal elem-
ent such that for each P

i<y<f, = A€ X;.
But then there is such B¥ that FN < A<, for all i&FN. Hence (2) is val-
id.

a xi).

Thus, for each 4 , it is true that e @ . Let aE be the smallest
element of the prolonged sequence for which af > x holds. For proving (1) it
is sufficient to show now that there exists k&FN such that €=k (i.e. that
the index of ac is finite). From the construction of af we know, however,
that af_l< x which implies f—lEFin (in the opposite case we abtain af—]‘
€ @& which contradicts (2)); therefore f‘ Fin. Thus a is the required ele-
ment from Def‘c] fulfilling (a).

For further considerations it is useful to take the following notation:
Def N=DefnN, % Def N=Def N-FN

and analogously for Det‘c} .

If we suppose that infinitely large definable numbers exist, then they
can separate monads. It is therefore useful to examine elements which are ve-
ry far (in natural ordering) one from the other. A characterization of "great
distance" gives the following definition.

Definition. Let a,b <®Def N. We say that b is much greater than a with
respect to FN (notation a <<FNb) iff

3) (VFe Sd )(F:FN —> FN = F(a)<b).

‘Notice that, for *Def N=§, a << P
describes the distance determined by all definable functions.
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Very often, when working with functions from FN into FN, it is conve-
nient to suppose that they are non-descending. Such a "trick" Jjustifies the‘
next lemma.

Lemma 2. There is a sequence of non-descending 5(:1(J functions {Fi;ie
€ FN} such that
1) (Vie FN)(dom(F;)=N&F :FN—> FN).’
2) For each Sd0 function G:FN = FN there is ch{Fi;iGFN3 such that
G(et) & Fk(oc) for every o¢ € dom(G).
Proof. Let us enumerate all Sd, functions from FN into FN by {Gi;ieFN}-
Put, for every o & N,

(4) Fi(os )=max(i¥£ G:j'(otﬂ.)).

Then fFi;i¢ FN$ is the required sequence.

The next theorem asserts that each monad which comes into consideration
intersects segments determined by the points which are very far one from the
other. '

Theorem 2. Let a,b< ®Def N, a <<\ and let @, be such a monad that
@O (N®Def N)sf@. Then @nla,b)$@ (where [a,bl ={x;a&x€&bp).

Proof. Let A be a set-definable class, ga'.E A&N. We shall define a
function G on N as follows:
(5) (Y t&N)G(t)=min {A-1[min(A-(t+1))] +1]3 -

Realize that for setting G(t) we find, roughly speaking, the "first" element
of A which is over t and then G(t) is the "second one with the same property".

Obviously G:FN —> FN, G 5Sd0 . From Lemma 2 it follows that there is
i & FN such that-Fi(t)>G(t) for every te FN. Furthermore, for all neafN, we
have

(6) [n,Fi(MInA#g.
Let ¥, be the largest element such that every less element fulfils (6); i.e.
(Vg = 4.) [ ,Fi()lnA%D.

Then T,eDlef and it is infinite. Therefore a < ‘A (since a<®Def N) and (6)
for a holds. Thus [a,Fi(a))nA#ﬂ. Suppose f =ﬂ{An;ncFN}, where
iAn;nC FNY is a descending sequence pf Sd 5 classes. Then (note that “m s A)

- 694 -



. for each i&FN we have [a,b]ln Ai# @, which - due to the prolongation (see
iLV]) - completes the proof. '

Remarks. Definition of <<
reformulated into "parametric version" and proved analogously.

FN? Lemma 2 and the previous theorem can be

It follows from compactness of equivalences of indiscernibility that
there are monads whose intersection with segments determined by points which
are not very distant, is non-empty; hence the large distance is not a neces-
sary condition.

In the next paragraph we show that each two different points of minimal
monads are very far from each other.

Theorem 2 can be generalized also in another direction, as will be shown
later. Before this we introduce a new notion and prove several assertions.

Definition. Let x¢Def{c} . Then we shall denote the class
N-L Cnh(Def§c} n x)uCnh(Def{c} n (N-x))

Int‘c} (x) and call it an interval of x (with respect to the parameter c).
Notice that Int‘c‘ (x) is the class of all natural numbers which have
"the same position" w.r.t. Def‘c} as x has.
From the definition it follows immediately:
Lemma 3. Let x,yQDef{c} , then the followirg holds:
a) xelnte 400,
b) Int‘ic}(x)qslnt{c;(y): X4y,
C) X‘%l y =» Int‘d (X)=Int{c‘ (Y)y
d) Int;qq3 (x)=Crh(Int (o3 (x))=Crh( @ g a3 (x))-

Further we shall deal with a generalization of the minimal cut (i.e. FN).

Definition. Let XEDef{c} such that (VtsDef{c}) teX=(3ueX) u2t.

Then X is called a cut.
We shall work only with cuts which have not the largest element - we de-
note them ©-

Lemma 4. For each cut ® there is o¢ @ N such that 9=Def‘°‘ Nnot ;
such a cut we denote e (aL).

Proof. Since @ & Def{c} » @ is a countable class and therefore there
is an increasing sequence {xie Def 1c1 ;1€ FN¥ which is cofinal with p :
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We prolong this sequence in such a way that the monotony will be preserved.
Let {y1,1¢ FN} be an énumeration of all elements from (Def(c* -p). Let B;

be the largest index of the prolonged sequence such that xp <y; (for all

i
i@ FN). Then {ﬂi,itFN] is a non-increasing sequence. Because {13 ;i€ FN} is
countable, there exists 3 ¢ FN such that B =< [5 for every 1‘FN. Put e =

-xh , obviously ?(I) Def{c} N e

Further we shall take the following notation: Let x ¢ Def{C] , then we
put
ﬁc-’(x)d]ef{c‘ nx,

§{C3(x)=Def*c‘ N (N-x) .
Note that now

Intgey ()=N-[Cnh( @y () Vlnh( Pgey (D).

For an easier typing we shall use - when there is no danger of misunder-
standing - only [ instead of P{c}(x) and analogously @ instead of

F{c}(x)‘

Lemma 5. Let x‘De (e} XﬁSd{c} . Then the following properties are
equivalent:
1) X is cofinal with Pici®)

2) X is coincial with E{c}(x),
s
3) XhInt*c}(x)#U-

Proof. We prove only 1) = 3); for 2) = 3) it suffices to modify this
proof for the inverse ordering.

Suppose 1) holds. Since ©> ;'6 are countable, we can enumerate them. Let
P=1a;;i€FN}, -F = 4b;;i€FNE From 1) it follows that

(VJ&FN)( ﬁ T.a b])nX:}-ﬂ

But‘ m[ai,b] Intg o3 (x); he,.,ce 3) is valid.

For proving 3) = 1) assume that aeXnlinty 4 (x) and X is not cofinal
with e - Then there is 3 e ® such that there is no be(xn’:) . Put d=
=min(X-(8+1)). Then deX and d e © (since deDef; }) Moreover, a<d £
éa(<®) - which contradicts 4 1).

The notion of the property of points "to be very distant" introduced a-
bove will be established now for more general cuts, namely P and an analo-
gue to Theorem 2 will be proved.
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Definition. Let :Qﬁk!‘c‘ - a,!mc]}m‘c'(x‘)". We say thet b s muchy gre-
ater then a with respect to ﬂcl(") iff

(7) (¥fFe Sd"c.')(F: Q{c‘(x) — ?‘c}(x)#F(a)£b');,

notation a < < @g.3(0b ar only a<<rh, when tivere is mo danger of confu-
sion.
For proving the next theorem, we stall modify firstly Lemna 2.

Lemma 6. lLet @ be a mom-trivial cut om Deﬂ‘ﬁt-[.. Then there is a segue-
nce of non-descending m«ie‘l functions fFi;iﬁFN"ﬁ such that

1) (WieFN) (dﬂn(Fi):NiFi: P Vs

2) Faor each Sdgoy fumction 6: @—» @ there is F&tF siefi ¥ such that
G(u.)st(d-) for every o € dom(G).

Proof. Let {5, ;i€ v} be an enumeration of all Sdg g unctioms which
transform e into @ . Put
Wnen we prove that F:@—»@ for each i @FN,. ﬁhem{\Fi;j;c FN¥will be the pe-
quired sequence. Suppose, by comtratiction, tret there exists Fe{.‘Fi;-i €FNE
such that F"@ $ @ . Let a e @ and F(a) ¢ . Then (note that F(a)eDefp
there is b 6? such that F(a)>t. From our definitian mﬂtF.L;.ieFN‘isi‘.t fol—
lows that there are j&FM amh t &a such that 6.(t)>b.. Denote T the smallest
of elements for wrich G.(t)>b. Ten T & p (since Tedefy., ), but 6D
(because Ej(t')7ln and b @) - 3 comiradiction with G'j" o> .

Theores 3. Let a b @Imti(x), a‘<<v(»)u and let gu. be’ such a monad’ that
@ AImtOO#P. Then e mLa,bTawd.

Proof. Far proving this assertiom it suffices to use Lemma 6 and modi-
fy the proof of Theorem 2. Analogously to (5) we chupse the class A and defi-
ne tie functiam G.

We have, however, to stuw thet G: g —» @ (an analogous- fact fior G in
the proof of Theorem 2 wes obvicus). Let u & @ ; then there exists v»u such
that ve A Take tie smallest of such elements - denote 'Lft‘vl. Thanvisp .
(AmInt(x)#0 since @ = A; but this implies that A is cofinel with @ - see
Lemma 5). Repeat rnuw this consideration for “starting peimt" Vi3 it brings
us to w e @ But ['.‘(ua)zw1 and conseguently G:. @ —» go.

when "checking" furthermore the pooof of Theorem 2, we obtain here. ins-
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tead of (6)
®) (Vpe@)(Vtep) [t;F;(1)InA+p.

If 4, is the greatest element for which (8) holds, we have that ¥, € Def-P.
Hence a<q, (since a <@®) and thus [a,Fi(a)JnA¢ﬂ. For completing this proof
it is enough to use the same arguments as in the proof of Theorem 2.

Remark. We know that if ®Def N=@, then FN=DefAN. When, however,
“pef N#@,a natural question arises: How do all elements under “®Def N and
reasonably definable look like? Such sort of considerations has brought us to
the following definition.

Definition. Let a‘Def{c] . We put

Detfey® (fad)= ix;(AFI(FeSd ey & Fip — o & x=F(a))};

we write here briefly only @ instead of Pjc3(a).
L]

When we compare this definition with the one of a <<$° b, we obtain imme-
diately that

e e
ag< baDEf-ic} ({ab)eb.

. hd

The next theorem asserts that under the same assumptions as in Theorem 3 -

there exists even an infinite set inside @ n [a,b). At first we prove, how-
ever, an auxiliary result.

Lemma 7. Let a<<_b, de [a,b]. Then either a<<

® q,d or d<<pb.

Proof. Evidently it suffices to verify that

PP P >0 —»p
d<Detf 7 (fah) = Def % (4d})‘uef{!:ﬂ ({ab),

Let Fe Sd{c‘ » F:® — ® . We have to show that there exists GeSd{ct , G:
:@—> @ such that G(a)=F(d). It follows from Lemma 6 that there are non-
descending Sdgey functions Gy, G, such that d‘Gl(a) and F(d)£ Gz(d). Then,

however, Gz(d)‘gz(sl(a)). Put now B=62 081.

Theorem 4. Let a,b & Int(x), a << %) b and @ be such a monad that
@ NInt(x)*@ (hence @ &Int(x)). Then there is m¢Fin such that m & wnla,bl.

. Proof. The monad @ is a gr-class and therefore it is revealed. Since
[a,b} is a set, ( n [a,b] is revealed, too. Hence it is sufficient to prove
that there is an infinite countable class C such that Cs & nla,bl For mak-
ing the proof shorter we show only that Cg (Ln{x;a<x<b'f. We shall const-
ruct the class C by means of Lemma 7 and Theorem 3.
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~
Let als @“n fx;a<x<b'§; we have that aa<<‘u(’()a1 or al<<9(x)b' Sup-
pose e.g. that a<<‘|,(x)a1 and apply again the above mentioned assertion,etc.
Thus we obtain a countable sequence {ai;icFN.} of elements from
@ nix;ac< x<b?t. Put C= {ai;ic FNE.

Remarks. When substituting @(x) by FN in Theorem 4, we have an analog-
ous generalization of Theorem 2.

Theorems 3 and 4 can be similarly proved also for their parametrical ver-
sion.

The following theorem speaks about monads generally, but its main signi-
ficance will not become evident before studying monads of indiscernibles. In
the forthcoming paper we show that if Ind is a monad of indiscernibles for
the language L and t&€Ind then tnInd is a monad of indiscernibles for L

3
Theorem 5 implies that the assumption t €Ind is a substantial one.

Theorem 5. Let @ be a monad. Then there are c, x such that
s s Y-}
y-hInt(c‘(x) is not a monad in (Z.

Proof. Since M & Fin, there isc s @ which is infinite, too. Then
( ‘%* is compact) there are x,yec, xsy such that x {é‘ y. Suppose x<y. For
proving Theorem 5 it suffices to find te nInt‘c‘(x) for which\
At _‘%‘ x) holds. Denote the smallest t-,:lement of c which is greater (in <)
than x by z. Obviously z € @ (since zec). Moreover, chnt{c’(x); for this
realize that x,y sInt{c‘(x)=Cnh(Int{CI(x)) - see Lemma 3. Hence
ze @ ninte ().

We show that =1 (z &%, (x). Suppose that z ‘%‘ x. From the construction
of z it follows that z is definable from x and c. This fact implies the exis-
tence of Sd{c) function F such that F(x)=z. Then, however, F(x) &%‘ x which
resulted in F(x)=x (see Theorem 1 from [C-K)) and hence z=x - a contradiction
with the definition of z. For completing the proof it is enough to put z=t.

§ 2. 1In the first theorem of this paragraph we prove that there exists
a minimal monad close over FN which, moreover, possesses the following proper-
ty: each set-definable function (with parameter c) either maps FN into FN or
transfers this monad over an infinitely large definable element.

At first we shall formulate an assertion which is an immediate consequ-
ence of Lemma 5.

Lemma 8. Let x& Def{c} be not cofinal with FN. Then there is k &« FN such
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that (x-k) AFN=8.

Theorem 6. There exists a minimal monad @ in the class X={et;FN <e <
<‘uu{dnx such that for every F& Sd ., F:N~+ N, there is Z&Sdy y,
Z 2 @, such that either (i) or (ii) takes place, where
(i) FPE :FN— FN,
(ii) F*S o FN-g.

Proof. For .M‘C‘H we have X=N-FN and c&Def. Then the assertion is
valid - see [-X], Theorem 11, and realize that (i) is true for esch F&5d .

Assume further “oa:{c‘uql. we shall construct a descending sequence
{xn;ntﬂﬁ with the following properties: :
1) (VnefN)x ¢ Defy 43
2) (¥Yn&FN)x, is cofinal with FN;
3 (VYG&){C‘) [YSN = (IneFN)(x SYvx &R-Y));
4) Let {Fn;n(FNl be an emwseration of all Sd‘c’ functions. Then F_ is eit-
her constant or a one-one mepping on LAY (for all neFN);
S) If -(yn;ncml is an enumeration of 'Det{c‘u, then x €y, (for allne
& FN);
6) Far each FkG{F";nGFNI either (i) or (ii) is true when we put z“k&l'

The sets x_ will be constructed by induction based on n.
At first take, arbitrarily, x,& "Det‘c,N; denote X,=x;ny,, where y; is
the first element of our enumeration of "lhf{c‘N. wWe shall investigate 91:;1"
ntk-(Fl), where F, is the first element M{Fn;ncrul

)54 ?l is not cotinal with FN, put x,=¥,-don(F,). Obviously x, possesses
each required property except 3), which will be examined later for all possi-
ble cases all at once.

For :l being cofinal with FN we shall examine the system of classes of
decomposition of %) according to the e -ivalence ambaF)(a)=F,(b). There are
two possibilities:

) (Atemg(F F M itha g, is cofinal with FN,

b) the negstion of a) holds.

In the case a) take te tg(F)) such that F1'"{tin%, is cofinal with FN.
Then evidently tcw{c‘ (realize for it that Flt Sd‘lcl and F'l' FNSDef{c"D).

Put i']:FIl’{tinfl; except 3) and 6) all congditions are valid.

Assuse further b). Then we can take ;'1 as the set of all smellest elem-
ents from classes of decomposition of Ql (according to Fl)' Obviously 1), &)
and 5) hold. We prove now 2) fer 'i'l. Suppose the contrary. Then there is k ¢FN
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such that (X -k)NFN=§ - see Lenma 8. Put ¢=-m(x ()5 then & & FN. Let fu-
rther w contam all classes of decomposition of xl (over F ) such that their
smallest elements belong to x —. Then for each z&w we have z 2 & ard hence
w is not cofinal with FN. lhe class ?1—- has, however, only a finite rumber
of elements from the decomposition. Thus at least one of them must be cofinal
with FN - a contradiction (we suppose that none is).

Now we shall construct x,. If F is constant on X, it suffices to put
2-32'1 and all conditions except 3) are valid for x,. Assume further that F,
is one-one on xl. If F1 x1 is not cofinal with FN, there is k&€ FN such that
(Fj %,-<)NFN-B - see Lemma 8. Put x,=%) F T1%; it is evident that 1), 2), &),
5) are true. For 6) realize that now (11) tm ‘place.

Suppose F" )(1 is cofinal with FN. Without loss of generality we may think
that F (t)> t (othenuse we shall take F +1). The set x, will be constructed
by lndL stion; we demand, at the same mne. "25 xl. Let tl be such an element
that F..t;) is minimal in Fl ~l' Obviously t,€ FN (cofinality condition) and
F" (% o(t +1)) is cofinal with FN. Let t, be such an element that Fl(tz) is
mmxmal m F"(x —(t1+1)) etc. This set-definable construction will go until
a certain number m & N. When we put now x,= it ;7< 9}, we'have that 1),
2), 4) and 5) are fulfilled. Moreover -om our cnnstmctmn of x,, it fol-
lows that (i) comes (if te xanN, then i€ FN and therefore Fl(ti)GFN). Hen-
ce 6) is also true for Xy-

Analogously we can construct X3 from Xy X from X3, etc. The obtained
sequence {xn; ne FN} possesses all required properties except 3), which we
prove now. Let YeSd{c-‘, YsN and let Ty be its characteristic function.Then
xY=Fk, where Fk is the function from our eumeration which is on X ., either
one-one or constant. Since dun(a(Y)¢ Fin and rng( gY)= {0,1%, Ty has to be
constant on x, ;. If for each t&x , we have x,(1)=0, then %o SN-Y5 AN
the case 1Y(t) =1 we obtain x &Y. The sequence {x_ sn&FN} fulfils therefo-
re 3) and hence N{x ;n&FNY is a monad - let us denote it @ . Owing to 4)
¢ is a minimal monad.

For proving & & X it suffices to show that X n @ = @. Assume the cont-
rary; let ueX, te g . Then Int }(u)nlnt‘c}(t) =@. Construct p(c-’(u) and
9{3'('() Evidently @c. 3(u)=FN and Pgc }(t)#FN which implies the existence
of & ¢ PDef gV such that ece@, 3(t). Thenec<t, but & < (¢, therefore
there is k6 FN for which & < x - a contradiction with 2).

For completing the proof it remains to show that for each Fe Sd‘c}. F:
:N = N, there is f.lSd{c‘, % 2 @, such that either (i) or (ii) takes pla-
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ce. Obviously it is enough to find F €4§F nin € FN} for which F= Fk and put
z Xieel®

Remark. In a forthcoming paper we prove the consistency of the existen-
ce of a minimal monad @ in X such that for a certain Sd, function there is
nn Ze Sd,, % 2 @, with properties (i) or (ii).

There is a question: For what t there exists a'minimal monad inside
I"t{ci(t)' A partial solution gives the following theorem, which is a simple
consequence of Theorem 6.

Theorem 7. Let t‘Def{ plet there exist & € X= {g;FN< < "’Def{ c3 N3
and a non-descending Sd‘£ 1 functlon F:N—> N such that F(cc)elnt{ci(t)
Then there is a minimal monad » S Int }(t)

Proof. Firstly we show that we can assume dom(F)=N. If dom(F)=m, denote
o’ =max(m) and for all t >d put F(1)=F(J"). Let further dom(F) be a proper
class. If F is not defined in some o, put F(d")=F(3), where f3 is the smal-
lest of all elements from dom(F) which are larger than d".

Suppose now dom(F)=N. Evidently, F remains to be non-descending. This,
however, implies that F" Int_‘c‘(oc )=Int{ci(F(d)). Let & be a minimal monad
in X - it exists due to Theorem 6. Denote »=F"@ . Then » QInt{c (1) (if
3 € @ then Int }(ﬁ)-lnt{c.’(u.)-x and F(ﬁ)eInt{c-’(t)) The monad » can-
not be a trivial one, since t¢Def ic1 and hence Int{ 1(t) cannot be a single-
ton. As @ is minimal, F has to be one-one on 4 and hence » is minimal, too.

Next four theorems show an analogue of one property of classes of indis-
cernibles for minimal monads.

Theorem 8. Let (4 be a minimal monad in {%! which is a semiset. Let
Fede, be such a function that F(t)<t for some (and hence every) t e “ -
Then either 1) or 2) is valid, where
1) (Vueu)(u<t=s ucF(t));

2) (deDefy J(Vtew) F(d)<t<d. '

Proof. Since F is defined on the minimal monad “ F is either constant
OT One-one on @ «

Suppose, at first, that F is constant on . Denote F(t) eforte (45
evidently e & Def{c} Construct F'l" {e}. Obviously F~ L iele Sd{ 3 and

©«s F 1" {et. Because ( is a semiset, there exists Te Defyoy such that

- * ~ -1" i . - _

€ > . Put d=max((F"" {e})n¥. Since e,edDef{c} ; FeSd{c} and F(d)=e,
’ - 702 -



we have d€Defy 4 . Moreover, MmSE (since E>m), € F'I"{e}, therefore
d » & . But F(d)=e=F(t)<t for each t € & . Hence F(d)<t<d and 2) is
fulfilled.

Let further F be one-one on ¢4 . We shall assume = 1)&=2). It foll-
ows from -12) that there exists t & @ such that F! p{c}(t)sp{c‘(t). Let

us fix such t. Put k=min(dom(F'1)) and define for each uZk a function H as
follows:

H(w)=max(FL" (us1) v fu+1}).

Obviously He Sd{c} is a non-descending function and H(u)>u for each uZk.
Define further a function G as follows:

6(0)=k & G(g +1)=H(G(7)),

i.e. G(y) is the y-th iteration of H when starting from k. Finally, put for
each uZk
F(u)=max(£9;6(y)<u}).

Then Te Sd-(c} and F is also a non-descending function. Denote o¢ =F(t). We
would like to prove that o¢ & Def{c} . In accordance with our assumption = 1)
we have that there is v € m such that v< t and F(t)& v. If we prove that
F(t)=F(v), we shall know that also F(v)= & and since a is a minimal monad,
this will imply that F is constant on @ and therefore F(t)= o¢c e DEf{c} .

Let us prove F(t)=F(v). Since F is a non-descending function, the inequ-
ality vt implies F(v)& F(t)= e¢ . For proving the converse ineguality we
shall show firstly that G(ee )< v..Suppose G(e¢ )2 v. From the construction of
o¢ it follows that G(ec )<t and G(ee+1)Z t. Denote F(v)=B . Then Gleg+l)2
Zzt implies G(3+1)Zv. But G(et -1)< v (since G(¢-1)<H'1(t)). Thus & > 32
Zo(-1 and hence f3 =o¢ -1. This is, however, a contradiction, since t, v be-
long to the same monad. Therefore G(ee )< v, which implies Flv) = e =F(t).
Hence F(v)=F(t)= et .

Since oc € Def{c} , also G(et)e Def{c‘ and at the samitime Glew)<t.
Obviously G(e¢ +1)¢Def{c , too, and from the 'definition of F we have
G(ot+1) >t. Remember now that G(e¢+1)=H(G(e¢)) and the fact that for H it is
true H"p‘ t:,5(1:) [ 9{0‘(1:) - see Lemma 6. We have proved here, however, that
H does Rot fulfil this inclusion - a contradiction.

Remark. Note that for the classes of indiscernibles 2) from the previous
theorem may be strengthened to the assertion "F is constant". In the forth-
coming paper we prove that it is consistent with AST that there exists a
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‘mamimal  momad ~ for which 2) canmot be substituted by "F is constant on -
how we stall present several modifications of Theorem £.

Mheorsm 9. et @e be a minimal momad in ‘%‘ which is a proper class.
Let F(:&n‘m‘ e such a fumction that F(t)<t for every t € @ . Then either
1) or 2) is valid, where
1) (Vue @lu<t =pu<F(t));
2) F is constant on -

Preof. Suppose that F is one-one on g4 . In this case realize that the
condition 2) fram Theorem 8 canmot come (since Bef{c‘< & and thus for each
f‘%! and each t&pge ™ {c‘(t) épqd(t) tolde - see Lemma 6) and pro-
ceed analogously as im the proof of this theorem.

Theerem 10. Let @& be a minimal wonad in &y which is a semiset. Let
FCM&:‘ be such a function that F(t)>t for one (and hence every) t € (. .
Then either 1) or 2) is valid, where

1) (Vv s &){vot=p v>F(t));
2) (delef  )(Vte ) d<t<F(a).

Proof. iet F be constant on @ . Denote F(t)=e for each t ¢ @ . Const-
-
ruct £} fel; then this class is a non-empty Sd{ci class (since e éDet‘_{c‘

ang FeSdgy). Put dmin(F! fel). Then deDef; ; , d<t and F()=F(t)>t -
2) is valid.

Suppose further that F is one-one on & . Recall that also F-l is one-one
on @ and Y=F*@ is a minimal monad in {%’ . Moreover, Coh(g)=Coh(» ),
since F(t) and t are "likewise" situated with respect to Def{c! ; if

Inte 4 (F(1))4 Intg 1(t), then 2) holds. Now apply Theorem 8 on », F~! and F(t).

Theorem 11. Let st be a minimal monad in &-%7‘ which is a proper class.
Let Fe Sd{cl be such a function that F(t)> t for every t & « . Then

(Vv e @)vat=p v>F(t)).

Proof. Note, at first, that F cannot be constant on e (in the opposite
case we have F(t)(Def(c) for t & (4 » vhich is in contradiction with
t>Det{c1 and F(t)>t). 0

Hence F is one-one on & . Put G=F ~. Then G is also one-one on M and
G(t)<t for each t & @ . Denote P=F"@ ; then P is a minimal monad which_
is a proper class. Now apply Theorem 9 on G and  »

- 704 -



Especially, let us stress one consequence of the previous theorems for
minimal monads lying close behind FN.

Theorem 12. Let < *Def N be a minimal monad, x,y & (4 and x<y. Then

FN-FN
Def{c§ Exp)<y.

Proof. Suppose, at first, that "'Oef{c‘N=l. Then ¢ «Def and therefore
@ is a proper class. In this case it is sufficient to use Theorem 11.

If ”Def{ cy N8, we shall apply Theorem 10. Since we work with a func-
tion which maps FN into FN, the case 2) from this theoran cannot set in, the
case 1) is exactly what we want to prove here.

The last theorem which can be also reformulated into a parsmetric versi-
on, and its corollary describe several equivalent expressions of the. proper-
ty "to be very far one from the other".

Theorem 13. Let o¢ & X= {9 ,FN<m< ™Def NJ. Then for each 3~ the fol-
lowing are equivalent:
(1) <L 73
(1) (AReX(B< T La<Tefyey N).

Proof. (i) = (ii). Let a4 be the monad from Theorem 6. In accordance
with Theorem & there are x,y € g such that o <x<y< 3 (take X, y€m). We
would like to prove that for each Fe Sdo, F:N — N, we obtain F(y)>»x. From
the construction of @+ we know that there is X € Sdo such that @ & Z and
F"¥AFN=@ or FI Z :FN—>FN. In the first case we have that min(F"2> FN and
min(F"2) e Def. This implies min(F'¥) >X and therefore F"Z5X. Since ye e % X
and F(y)»X, we obtain F(y)> x. If F}:FN —> FN, we apply Theorem 8. The as-
sertion 2) from this theorem is now excluded, hence 1) has to take place. Put
now [ =y; we have then c'[)et{m>x > e o

(ii) == (i). We have to prove now that for each FeSd , F:FN —>FN we
have F(o) < 7 . In accordance with Lemma 6 we can suppose that F is a non-
descending function. Put B(t):min(F'luiu}), where u is the largest element
from rng(F) which is smaller or equal to t. Then G is also non-descending. We
have G(ﬂ)ouet‘m .and, since € X, at the same time G(B ) §FN (otherwise
F is constant). Hence G(B) > & and F(et) & B <+

Corollary. For « < (3 , L €X={7n ;FN<m< ®pet N}, the following are
equivalent:
1) &<<py (33 :
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2) (Je.u.A)(waEA(FN)< ), where e.u.A means an endomorphic universe A;

3) (3e.u.s.A) (mcExA(FN)- ), where e.u.s.A means e.u. with standard ex-
tension;

4) (Je.u.AX3IpsEp)w,re Ep(FN)& oo eEAm (FN));

5) (3e.u.s.A)3y %3 )eo, 76 ExAgFN)& o6& EAtg-J (FN));

6) (37)(¢<7‘ﬁ&o¢<°°oe£(,‘,; N);

7) (3e.u.AVEIGA)(L"FNSFN = f(ou)<(3).

Proof - see [C-T3.
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