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Introduction. Let S,T be theories, S&T, and let ™ be a class of formu-
las of T. S is I' -conservative over T if for each y & I" , provability of y
in S implies provability of y in T. In particular, if ¢ is a T formula then
¢ is said to be ['-conservative over T if the theory (T+g) is T-conserva-

tive over. T."Partial conservativity" means " [" -conservativity for some I"".
The first nontrivial example of partial conservativity was exhibited by Krei-
sel [62]; the first systematic paper on partial conservativity is Guaspari
[76] (containing also results by Solovay). Then various people contributed,
among them Lindstrom, Smorynski and the present author (see references). A
recent work is Bennet [86]. These papers typically discuss partial conservati-
vity over theories in the language of arithmetic containing PA (Peano arithme
tic); but equally typically, contain a remark saying tha*t the assumptions on
the underlying theory are in fact too strong and a weaker theory would suffi-
ce. One of the advantages of former theories is that for such a theory T, in-
terpretability of (T+@) in T is equivalent to Tl'l—conservativity of (T+g)
over T and thus results on interpretability can be.obtained as corollaries.
Here we work systematically with theories containing ’121 (i.e. arithmetic
with induction restricted to = l-formulas) but having possibly a richer lan-
guage. One basic difference of fragments 13X ~ from the whole PA is that they
are finitely axiomatizable. As we shall see, this does not affect much proper
ties of partial conservativity but does affect properties of interpretabili-

ty. For positive results on interpretability we shall heavily use a result
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due o Pudldk (formulated below) and its strengtheaning. A second obatacle is
the fact that over a weak theory like IEI,E " formulas are not closed un-
der bounded universal quantification: but it turns out that this can be eas-
ily overcame. The result of our investigation is a sysiematic treatment aof
partial conservativity over theories containing 121 and of its relation to
interpretability. We shall give only very sketchy hints on proofs; full
proofs are contained in a Czech typescript not for publication; the proafs
will also be incorparated in a forthcaming book. The paper is organized as
follows: § 1 contains preliminaries, § 2 discusses prominent examples (Gudel ‘s
and Rosser ‘s formulas), § 3 presents general theorems on partial conservativi
ty, § 4 contains applications to interpretability and § S elaborates a clas-
sification of independent El sentences.

§ 1. Preliminaries. We say “interpretation" meaning "relative interpre-
tation with absolute equality" (cf. Tarski, Mostowski, Rabinson (53)). First
recall the old result on interpretability for PA and similar theories.

1.1. Theorem (Orey, Héjek, Guaspari). Let S, T be axiomatized theories
in the language of PA and let SRT2PA. Then the following are equivalent:

(i) S is interpretable in T,

(ii) Sis Tl'l—comervative over T,

(iii) for each k, Ty Cons'k,

(iv) there is a binumeration @ of S in T such that T Cong .

(Similarly for S2T27F in the language of ZF and in genaral for S2T whera
T contains PA and proves induction for all T-formulas.)

See Orey U611, Hdjek [72]), Guaspari (76).

The following lemma is easy but basic for our considerations.

1.2. Lewma. Let () be a F -formula (whase frea veriables are x and
possibly others. There is a Z"-formla y(y) such that

(1) (VK IE, r v 3 (Vx£K) @(x),

(2) IZ; r () = (Ixay)P ().

Proof. Trivial for A=0. For nX1 and @ (x) = (3 Wes(x,u) let y(y) be
(3 5)(Seq(s) & (Vx &y)et(x,(s) ).

1.3. Notation. The formula y(y) from the previcus lemms will be denot-
ed [(Vx£y)o 0OT* " ar simply [(¥ x 4y)@ 0O)¥ | Dually, for each T~
formla @(x) we have a TT -formula y(y) (denoted by [(3 x‘y)g;(x)J*-n'"r
such that
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(Vk)IEl r yk) = (Ix£k) @(x),
IZ, r (Axzy) ex) = wly).

1.4. Discussion and definition (proofs from true formulas; herbrandian
proofs). It is well known that in IZI we may define partial truth predica-
tes: for each n we have a & - truth gefinition for all 2n sentences satis-
fying the usual Tarski s conditions and similarly for Tl instead of X . If
T is Zn or TTn then Tr‘,(;() means the corresponding truth predicate;
IZ,+9 = Tr (g) for each g € T . We make the following definition (y is
a proof of x from a true IM-formula):

Prin(x,y) = (3z2£y)(z 6 P &Tr (2)&Pri(z—> x,y)).

Clearly, if ™ is Zn then Prfp is Zn in Iil: a trivial transformation
shows that if T is TT then Prfp is TT_ in IEI. Here Prf is the proof pre-
dicate for a given theory defined in "Hilbert style". We shall also use the
"Herbrand style" proof predicate HPrf investigated by Pudlak {85), but only
for finitely axiomatized theories T. In words, a herbrandian proof of @ in T
is a ptopositional proof of a disjunction of instances of the quantifier-free
part of He(AT—> @ ), where, for any y , He(y) is the purely existential
Herbrand form of ¢ - :
Similarly we define HPrf, for I’ being x  or "n'

Pr(x) and HPr(x) are provability predicates (usual and herbrandian);
clearly, IZ, (Vv x)(Pr(x) = HPr(x)). But this equivalence does not relati-
vize to definable cuts - see next definition.

1.5. Definition. (1) Let T2Q (Q is Robinson’s arithmetic). A formula
3(x) with one free variable defines a cut in T if T proves the following:

IO (¥x)(Ix) —» I(x+1)&(¥x,y)(y< x&I(x) = Hy)).

Note that if(T is PA then T (V¥x)J(x) for each such J; but this is not the
case for any fragment IX_ - there are cuts J such that (¥x)Hx) is unprov-
able. .

(2) A theory T20Q is sequential if it has coding of finite sequences
of arbitrary objects, i.e. has a predicate Seq and functions (s)_, Ih(s)
such that the following is provable in T: there is an empty sequence {of
length 0), the length of each sequence is a rwmber and for each seguence s of
a length x and an arbitrary object z there is a sequance s  of length x+l
prolonging s by z. (See Pudldk [ 85)). '

(3) ACA, is the usual (fully) conservative second order extension of
PA, i.e. ACAj has two sorts of variahles (rumbers and sets), axioms of PA
for numbers with the induction scheme replaced by a single axiom
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DeX&(V¥ x)(xeX—>» x+1g X) and with comprehension for all formulas contain-
ing no set quantifiers. (Note that ACAcJ is sequential; ACAO is related to PA
as GB to ZF.)

1.6. Theorem (Pudlék [851). (1) Let T be a consistent sequential theo-
ry, S a finitely axiomatized theory. S is interpretable in T iff there is a
definable cut J in T such that Tk HCon‘J(S), i.e. T proves that J does not con-
tain any herbrandian proof of the contradiction from S.

(2) 1In particular, if T is consistent, finitely axiomatizable and 5eciu—
ential then there is a definable cut J-in T such that TD-HCon‘](T).

(3) On the contrary, for such a T there is no cut J such that
TrCon’(T).

Point (2) can be strengthened as follows:

1.7. Theorem. Let T be finitely axiomatizable, sequential and let
Ti-Iil. Then there is a cut J in T such that

TH(Vu)(Trg (u) = Hoon((T+u))).
(Proof by ins’pection of Pudlék [85) - tedious.)

§ 2. Some prominent examples

2.1. We shall investigate the properties of Godel 's consistency formula
CcmT and Rosser 's formula 1 for T being either an extension of PA in the
same language or a finitely axiomatized extension of 121. (In the former ca-
se we assume a fixed Al binumeration of the axioms to be given; in the lat-
ter we work with the natural binumeration just listing the axioms.) Both
formulas may be constructed using either Prf or HPrf; for ConT this is imma-
terial (see above), but for the Rosser s formula (which we assume in Zl
form, i.e. saying "there is a proof y of my negation such that no z<y is a
proof of me") there may be differences: some results below hold only for the
Rosser s formula based on HPrf, say, the H-Rosser formula.

2.2. Convention: If T is a theory and ¢ a formula of T we say that g
is interpretable in T meaning that the theory (T+ ¢) is interpretable in T.

2.3. Theorem. Let Ti’IZ1 be consistent (and axiomatizable).

(1) Godel’s formula Con is not interpretable in T and its negation
-1Con is'interpretable in T.

(2) =Con is TTl conservative; Con is Zl—conservative iff T is 21-
sound (i.e. each provable Zl-formula is true in N).

(3) Rosser’s formula P is Tl'l—nonconservative; ap is El-conservative
- 682 -



iff T is Zl-sound. (The same holds for the H-Rosser formula.)
(4) If T is sequential and has induction for all formulas then neither
nor 1 is interpretable. (The same for H-Rosser formula.)
(5) But if T is sequential and finitely axiomatizable and @ is the H-
Rosser formula then both @ aqd @ are interpretable.

Comments on proofs. (1) For the first claim see Feferman {603 and Svej
dar [78); for the second see Feferman [60] where T2PA is assumed. The same
result can be proved:

(a) for T2 Bi using Low Basis Theorem (see Clote (B3]) and the corre-
sponding Low Arlthmetlzed Completeness Theorem,

(b) for T2 IZ finitely axiomatized using Second Godel ‘s mcomplete—
ness theorem and Pudlék s theorem 1.6 and

(¢) in full generality i.e. for any Tz TZ‘l using a version of Low Ba-
sis Theorem in 121 (see Héjek and Kugera Loo] ).

(2) The first claim is due to Kreisel [68] and is the first example of
non-trivial partial conservativity. Checking for T ;IZ1 is immediate. The
second claim is due to Smorynski [80J.

(3) First claim is due to Kreisel [62], second to Svejdar (unpublished)

(4) Follows easily from (3) and from 1.1.

(5) Pudlék’s theorem 1.6 gives an interpretation of (T+Sa) in (T+ap)
and vice versa.

Problem: does (5) also hold for the usual (non-herbrandian) Rosser for-
mula?

2.4. Corollary. If T is sequential and finitely axiomatized then there
is a TI, formula @ such that both ¢ and ng are interpretable in T. (For
PA and s1mlar theories there is no such @ .) In particular, if T is ACA
then (ACA +¢) is interpretable in ACA, but (PA+@) is not interpretable 1n
PA. Similarly for GB and ZF instead of ACAO and PA. First example of such a
@ was constructed by Solovay (unpublished, cf. Hdjek 181)).

§ 3. General theorems on partial conservativity. We shall present seve-
ral theorems on partial conservativity. Their proofs use various generaliza-
tions of Rosser s formula. In the whole section TBIS1 is a fixed consistent
axiomatized theory (and we assume a Al binumeration of T to be fixed).

3.1. Notation. (1) Let w(u), B(u) be two T-formulas, let A be
(3ues(u) and V be (3u) 3(u). (o6, B may contain parameters.) Following
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Guaspari we denote by A €V the formula
(3 u)loe (W& (Yv&u) B (V)

(there is a witness for e less than each witness for @8 ).
(2) £ 8 is T and p’ is the X formula naturally equivalent to 3
then D<®*T will denote the formula
(Au)(a Wk I(Yvau) A* (v)I*Z™)

(assuming that n is clear from the context). Similarly, A <*V is
(3 u)(a () RI(Yv<u) B* (V)I*Em)

3.2. Remark. We shall investigate selfreferential formulas satisfying
Te§ sA(‘!? )4"‘7(?)
or, more generally, for each k,
Tr§Ma 8 GF J<*v(§ R,
Observe that if e is X and B is TT_ then fisE inT.
(2 118, is QA uwet;(u) and ¥, is (V) B,(v) (i=1,2) then

(&IVA2)4(V1V Vz) means the formula saying "there is a witness for
o v &, less than each witness for ﬁlvﬁz“; similarly for <* instead of <.

3.3. Definition. (1) ¢ is hereditarily [M-conservative over T if, for
each Yo such that IIIG Toﬁ T, @ is T"-conservative over Ty -

(2) @ is doubly T-conservative over T if ¢ is M-conservative over T
and 9@ is -conservative over T (where I is the oual class of ).

We shall now formulate three general theorems on partial conservativity

3.4. Theorem. For each n1 there is (1) a hereditarily TT,-conserva-
tive In-sentenoe, (2) a hereditarily Zn—consetvative ﬂn—sentence, (3) a
doubly 'lTn-cmservative = -sentence (its negation is thus a doubly = con-
servative Tl'n-smteme).
Examples ( I is z., Ais ﬂn):

(1) § such that IX) i ¢ = Pr(2f )<*Pr(),

(2) (9§ ) such that IE; + § Pr(AF )<*Pr (F ),

(3) § such that IE |+ § & Pr (A F )<*Pry(f ).
If Tis E -sound we may take in (1)a § such that I rf= Pla(1 § ).

3.5. Theorem (on non-separability). Let I’ be X or 'l'l'n (nz1), Th be
the set of all theorems of T, Consv(I®) and hConsv({*) the set of all ™-con-
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servative and hereditarily F-conservative sentences respectively , NRef the
set of all the sentences non-refutable in T. Then cbviously
ThE hCansv( )€ Consv(F)e Consv(zl)nl‘.onsv(ﬂ’l)s Nref

and there is no set X such that
(1) Xis Al and TheX= NRef (classical!),
(2) X is T, and The XS Consv(T™),
(3) Xis X, axd hCansv( ) € XS NRef,
(8) X is =, r= Sl and hConsv(™)g XSConsv(Sl),
47y x isE,, 7 2 T¥; and hCons( F)€ Xs Consw(TE, ).

3.6. Theorem (TI,-completeness). For each nZ1 and Pz}_'n or nn'mm
Consy( ') and hConsv( ) is TTz—cwplete'.

3.7. Resark. Theorem 3.4 was obtained for T2PA by Guaspari and Solo-
vay, se: bGuaspari [67}; their examples are more complicated than ours.
Theorem 3.5:

(1) is very classical, (2) seems to be new. (3) was first proved in the parti-
cular case T=2F, "= TFI, interpretability instead of partial conservativity

in Hajek L71}; Lindstrom (841 generaliz “or T2PA, the present generalizati
on is mine. (4) is contained (implicitly) in Lindstrom 184) for T2 PA.

Theozem 3.6:

For ¥=2F and = Wl (and interpretability) Solovay; his proof works for PA.

For PA, "= ﬂn and Cons see Hdjek £791, for PA, M= =,, and Consv see Quin-

sey [81}. In full generality but for T2PA see Lindstrom [841; generalization
to T2 ISI is mine.

We shall present two general fixed point theorems that form the main me-
ans of proofs of the preceding theorems.

3.8. Sheperdson-Seoryroki s fixed point theores. Let 3 , ¥ be =,
formulas.

(D Let IZ; - § = [Pr(3E ) v )< (Pr(f )w )] Then
(1) TrH§ ENL J<Y M N Y
(i) Trag iffINpY<F.

(2) wore generally, let, for i=1,2, 121X, let Pr; be the proof pre-
dicate based on a fixed A] binmeration of T,. Let

IZ| kg = [P (AF )vPry(3f Iv )< (Pry(§ JuPry(§ }vE)]. Then
(i) 71"§ it T, H§ it Nm <€ LN "
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A1) Ty FAf ffT,rf N YL,
For proofs see Shepherdson [60], Smorynski [80].

3.9. Lindstrom’s fixed point theorem. (Let T be as above.)
(1) Let x(y) be Z_ and let

IZ,F€ = Przn('i?)‘(*(a ) g (y). Then
(i) for each m, (T+§ Y g (m),

(ii) for each ISIS T,§T and each TTn—sentence x, (TO+§) t~af implies
T0+{'{(m)|m}|—ﬂ

(2) Let y(y) be TT_ and let
IZ-¢= (3)’)17(()')4*?1:"" (§). Then

(i) for each m, (T+‘|§ Yk oy (m),
(ii) for each Iilﬁ TOST and each = -sentence €, (T0+-1f)|- 6 implies
T0+-€'{(m)|mi 6.

For T2 PA see Lindstrom (84].

3.10. Remark. Both fixed point theorems may be parametrized (by repla-
cing G ,$, ¥, 1) by §(R), &), YK, %(y,K) respectively); details
are evident. Shepherdson-Smorynski theorem is used to prove 3.5 (1),(2) (and
is very useful at many other occasions); Lindstrom’s theorem is used for the
rest of 3.5 and for 3.4. The proof of 3.6 uses Lindstrom s theorem and the
following consequence of Shepherdson-Smorynski theorem: if X is a 21 set and
IEIETOS T, then there is a 2’1 formula &(x) and TTl formula av(x) such
that both & and ar numerate X both in TO and in Tl.

§ 4. Applications to interpretability. It follows from 1.1 and 3.6 that
if T is consistent sequential and has full induction then the set of all ®
interpretable in T (i.e. such that the theory (T+ %) is interpretable in T)
is a complete 'sz set. We focus our attention to finitely axiomatized theo-
ries containing Iil. Note that if.T is finitely axiomatizable then the set
IntpT of all @ interpretable in T is Zl.

4.1, Theorem. Let T be finitely axiomatized, TaIZ1 and let = S.nor
r-= ﬂn (n21). Then Consv( T)-Int Pt is non-empty and contains a {* —senten-
ce.

4.2. Remark. In particular, let T be ACA, and \"=1T1. We get a Sl-for-
mula @ which is TTl-conservative over ACA; but (ACA +®) is not interpret-
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able in ACA,. Since ¢ is Tl'l—conservative over ACAj it is Tl'l-conservative
over PA and thus (PA+¢) is interpretable in PA. Compare this with 2.4: we
had there a "1 formula such that (ACA +@) is interpretable in ACA, but
(PA+ @) is not in PA. Similarly for GB and ZF.

The first example of a 22 formula ¢ such that ZF+ ¢ is interpretable
in ZF but (GB+ ) is not in GB was constructed in Hdjek (71 under the as-
sumption of e -consistency; this assumption was removed in H4jek and H&jkova
[721. A Zl formula of the desired properties was first constructed by Solo-
vay.

4.3. We shall investigate the situation more closely. In the sequel let -
T be a finitely axiomatized consistent theory containing IZl. We focus our
attention to independent Z sentences. First observe that each indapendent
(nonprovable and nonrefutable} El sentence is false and trivially it ‘is
= l—nonconservatlve. For each such Sl sentence & we may ask

- whether € is T\'l—conservative,

- whether & is interpretable, 4

- whether 76 is interpretable.

The formula 76 is TT and hence T1 -nonconservative; if T is Zl—sound then
16 is Zl—conservatlve For 21—111 theories the Zl-conservatluty of 16
is a reasonable question but we shall not discuss it.

Our three questions admit eight combinations of answers, say, eight ty-
pes of independent Zl formulas.

4.4. Theorem. For each type, there is an independent Zl formula of
that type.

4.5. We shall describe examples in a rather uniform way. We shall use
formulas HPr and HPrz i.e. herbrandian provability and herbrandian provabi-
lity from a true zl sentence. Further we shall use a 21 formula Intp(x)
formally expressing (i.e. numerating- 1n—IS ) interpretability of a formula
in T. All examples have the form of a self—referential formula E such that

IZ) g = DQFI*VE)
where O (x) has one of the following forms:
HPr(x), HPL (x), HPr(x)wIntp(x), HPL. (x)wIntp(x).
5 =
7 (x) has one of the following forms:

HPr(x), HPr(x) vIntp(x).
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This gives eight possibilites thaf exactly give our eight examples. For
several claims it is immaterial whether we use Pr or Hpr; but for some claims
(using 1.7) it is not.

4.6. Theorem. (1) All eight examples are independent Il sentences.
(¢3) f is interpretable iff V does not contain Intp(x).

(3) =§ is interpretable iff A does not contain Intp(x).

a) g is T‘l-colservative iff A contains HPrzl(x).

The proof uses 1.6, 1.7, provability of Herbrand s theorem in IZI and
the following very important theorem (more precisely, its corollary 4.8):

4.7. Second Lindstrom’s fixed point theorem. Let T2IZE,, n,mz0, M=
b A=Tl’u. Let ¢ (x,y) be a P-formula, O(x,y) a A-formula.
Let

Trg= [P v@ngaT <A enEivaveg un.
Then
(1) for each m, (T+§) Qysme(f,y) — Bys&me (g ,y),
() for each m, (1) (Iy£Me (VT ) —> (IyeMe (£ .y),
(3) each [-sentence provable in (T+§£) is provable in T+{19(f ,m)|md,
(8) each l‘—sentence provable in (T+':f) is provable in Twhg(? ;) |md.
(5) The above remains true if Pr is replaced by HPr in all occurences.

4.8. Corallary. If (3y)®(x,y) defines a set X&NRef (of non-refutable
sentences) and (3y) @ (x,y) defines a set Y of non-refutable sentences then §
satisfies the following:

f is Tl’n-conservative, ~|§ is En-cmservative, f ¢ X, (—|§' )& Y.

4.9. Remark. Note that Lindstrom has 4.7 and 4.8 for T2PA. The genera-
lization of constructions of partially conservative sentences presented up to
now (from T2PA to T2 IZI) could make the reader think that everything gene-
ralizes smoothly. It is indeed remarkable that in most constructions the re-
placement of 4 by ¥ works. But there are some things that do not genera-
lize: for example, the implication

(BvV)—> ((B<VIv(VZA)

(provable in PA) does not immediately generalize to IEI using 4 . Another
example is'in Lindstrom [79): If T=PA and X &NRef then there is a 4, binue-
ration 4+ of PA such that (PA#-ll.':on_‘) is interpretable in PA but
(ACAoo-ucm'.) is not interpretable in ACA . It is not clear how to generalize
this from ACAO to any finitely axiomatizable T?IZI.
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Lindstrom's papers contain (for T2PA) various stronger and more detail-

ed theorems on partial conservativity. It has been our task to demonstrate
the possibility and ways of generalization to T2 1IE 1 on the most important
theorems rather than to cover everything.
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