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RANDOM FUNCTIONAL-DIFFERENTIAL INCLUSTONS WITH
NONCONVEX RIGHT HAND SIBE IN A BANACH SPACE

Nikolaos S. PAPAGEORGIBY *7**

Abstract: In this paper we prove the existence of random solutions for
stochastic functional-differential inclusions defined in a separable Banach
space and with an orientor field which is nonconvex valusd, lower semiconti-
nuous and satisfies a compactness type hypothesis involving the Hausdorff
measure of noncompactness. The proof is based on the "measurable selection
method" which makes use of an earlier deterministic result that we proved.
Our theorem extends the earlier results by Deimling, Ito, Ladde-Lakshmikant-
ham and Nowak.
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1. Introduction. In this note we prove the existence of random solu-
tions for a class nf random functional-differential inclusions with a non-
convex valued orien*or field defined in a separable Banach space.

The study of random generalized equations started with the work of Cas-
taing [ 2] and since then there have been developed two basic approaches to
the subject. The first is the so called "measurable selection approach", in
which for each fixed value of ‘the randem psrameter @ we solve the correspon-
ding deterministic problem and then from all those solutions through a suit-
able measurable selection thsorem we choose one that depends measurably in
« . This approach was used by Deimling £4) (for single valued differential
equations in R™) and by the author [13]) (for functional-differential equati-
ons in Banach spaces). The second approach is the "random fixed point appro-
ach" and proceeds to the solution of the problem through the use of an appro-
priate random fixed point theorem. This method was adopted by Itoh [7] (for
single valued differential equations), by Nowak T 10] and Papageorgiou [ 113,
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[12] (for differential inclusions in R" and a separable Banach space respec-
tively) and by Phan Van Cuong [15) (for integral inclusions).

In this note we follow the first approach. Based on an earlier result
proved by the author [14], we prove the existence of random solutions for
the stochastic problem. This way we extend the earlier results on random dif-
ferential equations (single valued and generalized) obtained by Deimling 4 ,
Ladde-Lakshmikantham [8] and Nowak [10].

2. Preliminaries. Throughout this note (.Q.,E,(‘.) is a probability spa-
ce and X is a separable Banach space. Also by Pf(X) we will denote the family
of nonempty, closed subsets of X and by Pk(X) the family of nonempty, compact
subsets of X. A multifunction F:fL—> P_.(X) is said to be measurable if and
only if for all ye X, w —»d(y,F(w))=inf {ly-xl:xeF(w)) is measurable By
S we w111 denote the set of all integrable selectors of F(- ) i.e. S

{fu X):f(w)eF(w) w-a.e.}.

If Y, Z are Hausdorff topological spaces and G:Y — 22\{% we say that
G(+ ) is lower semicontinuous (1.s.c.) if and only if for all UgZ open,

G (U)=4yeY:G(y)n Us@.

Let Pb(X) be the family of bounded subsets of X. The Hausdorff (ball)
measure of noncompactness ﬂ:Pb(X)-*R+ is defined by:

B(B)=inf {r>0: B can be covered by finitely many balls of radius rf.

Finally, a function w: [0,b]X R, — R, is said to be a Kamke function
if: (1) t—> w(t,r) is measurable, (2) r —> w(t,r) is continuous.
(3) |w(t,r)| & @(t) a.e. and (4) w = 0 is the only solution of the integ-
ral inequality u(t)éf:w(s,u(s))ds, u(0)=0.

3. The existence theorem. Let T= [0,b], T = [-r,0], T= [-r,b] (r,b>0)
and as already stated X is a separable Banach space.

If x: [-r,b)J—X is a function, then for te [0,b], Xyt [-r,0] = X de-
notes the past history of the function from time instant -r until the present
time i.e. xt(s)=x(t+s), sel[-r,0].

Consider the following functional-differential inclusion defined on X:

x(t)eF(t,xt) a.e.on T
(x)
x(u)=xo(u) u 5T0
where X, € C(T ,X). By a solution of (x ) we understand an absolutely continu-
ous functlon x :T — X that satisfies (x). In [14] the author, among other
things, proved the following existence theorem concerning (x ).
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Theorem 1 [14): If F:TxC(TO,X)"" Pk(X) is a multifunction s.t.

(1) (t,y)—> F(t,y) is measurable,

(2) for all teT, y —>F(t,y) is l.s.c.,

(3) |F(t,y)|&a(t)+b(t)lyly, a.e. with a(+),b(e)e L,
(4) for every BeC(To,X) nonempty and bounded we have:

((F(t,8))£w(t, B(B)) a.e. where w(+,+) is a Kamke function,

therf® (x ) admits a solution.

Here we will consider the following random version of (#& ), with the
random parameter belonging in a probability space. So we have the following
multivalued Cauchy problem:

x(w,t)e Flw,t,x(w,t)) @xA-a.e.
(*x)

x(w,w)=x (e,u) for all (co,u) e A=T .
where A is the Lebesgue measure on T. By a random solution of (%) we un-
derstand a stochastic process x: .Q.x?—-» X with absol.utely continuous reali-
zations s.t. for w-almost all wel, x(w ,+) solves the corresponding de-
terministic functional-differential inclusion.

We have the following existence theorem concerning (k).

Theorem 2: If F:=T=C(T ,X)—> P (X) is a multifunction s.t.

(1) (ew,t,x) —>F(w,t,x) is measurable,

(2) for every (ew,t) e 2xT, x—> F(w,t,x) is l.s.c.,

3) |F(w,t,x)|&a(w,t)+b(ew,t)lxl,, axA-a.e. with a(s,.), b(s,e) e
etlcaxn,

(4) for every BGC(TO,X) nonempty and bounded we have:
B(F(w,t,B)2w(w,t, g (B)) wxA-a.e. where for every wel, w(w,:,*) is
a Kamke function.

(5) xo:nx TO-—-> X is measurable in @ , continuous in r&To

then (%) admits a random solution.

Proof: Consider the following functions:
p: AxTxo(T ) xL1x) = x

defined by

t
x(t)-x (@,0)- [ £(s)ds for te&T
p("&trx;f) & { 4
x(t)-x (w,t) for teT
and q: Q= C(?,X)nLl(X)—-bR defined by:
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_ 1
q(w,x,f)-d(f,s'_.(“’_’x.)).
From the above definitions, it is easy to see that:

w —» p(ew,t,x,f) is measurable and (t,x,f)—» p(w,t,x,f) is continuous
Therefore Lemma I11-14 of Castaing-Valadier [3) tells us that
(e, t,x,f) —» p(w,t,x,f) is measurable. Let {tm}nzl be dense in T and define
3(«>,x,f)=ﬂs:£l plw,t_,x,1). .
Clearly then (w,x,f) —» B(w,x,f) is jointly measurable.
On the other hand for q(s,«,+) we have:

a(w,x,)=d(f Sr(.. ,x-))=inf {i1-gh;: gGSF(a,‘ X
~mf{]’|f(s) 9(s)Nds: gnSF(a vx)} = f.;nf 181(s)-zkze Flw,s,x )} ds =
j a(£(s),F(w,s,x))ds.

Consider the map h:Tx C(?,x)—o?xc(ro,x) defined by:
h(s,x)=(5,x ) I
Clearly h(-,-) is continuous. Hence the map hy :(e2,8,x) ~> (), x »Sg ) is meas-

surable from Qx bx C(T X) into Q< T;«C(T sX). Furthermore since by hypothe
sis (1) F(-,+,*) is jointly measurable, for every y€ X we have that hy:
:(@,s,2) — d(y,F(ew,s,2)) is measurable. Then

hye h :(w,5,x) —> d(y,F(w,s,x ))

is measurable and since y — d(y,F{ w,s,x )) is continuous, we conclude that
(w,s,x) —> K1(s),F(ew,s,x )) is msutable. Thus from Fubini s theorem we
deduce that:

(@,x,f)— g(ew ,x,l)=d(f,52(‘\' ’x.))= ]"d(f(s),i'(u,s,xs))ds
is measurable. Now consider the multifunction
a 1
R:n-—»zC(T’X)’L x) defined by:
Rle)= {0, D€ BT, 0% 00 B(w,x, 1)-0, qfed,x,0)-0¢.

From Theorem 1 we know that for all we Q » R(w)B. Also using the
measurability of 3( s+»+) proved earlier, we get that:

BrR= 4(w,x,1) & (T, X0 L20:(x,2) € R(e) T €
o = < BT, 0m L00) Ex BT X0 BLEO))

Apply Thearem 3 of Saint-Beuve [16] to get 7; .ﬂ—-bC(I X) ard 22:
: Q! (X) both measurable s.t. (11(9) lz(u))sR(a) p-a.e.
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Set .'é\l(w)(t)=x(w,t). Clearly x,(-,+) is a Carathéodary function (i.e. me-
asurable in w , continuous in t). Also from Lemma 16 p. 196 of Dunford-
Schwartz {5) we know that there exists fe Ll(-QxT,X) s.t. t(m,-)=12(w)
M-a.e. Then

t
x(w,t):xu(m,ﬂ)* f‘ f(ew,s)ds -a.e. for all teT,
x(w,u)=xo(w,u) for u‘To .

Invoking Lemma 2.2.1 of Ladde-Lakshmikantham (8] we conclude that x(- )
is the desired random solution of (k x).
.E.D.

Remark: Our result extends Theorem 5.1 of Nowak [10], which to our
knowledge is the only other existence result for random differential inclu-
sions wich nonconvex orientor field existing in the literature. In his res-
ult Nowik had X=R" and F(w,t,x) was Hausdorff Lipschitz in the x-variable,

while the system had no memory (i.e. r=0). So our theorem is a significant
extension in several directions of the work of Nowak. Also Nowak s result
was a random version of an earlier deterministic result by Himmelberg-Van
Vleck [6]. Our theorem even in the absence of randomness (i.e. no <) depen-
dence) is more general than the resui. of Himmelberg-Van Vleck. Also it ge-
neralizes the finite dimensional deterministic results of Bressan [1] and
Lojasiewicz [ 9].
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