

Werk

Label: Article **Jahr:** 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0028|log76

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 28,4(1987)

ON SATURATED ALMOST DISJOINT FAMILIES

A. HAJNAL, I. JUHÁSZ and L. SOUKUP

<u>Mostract:</u> An almost disjoint family $\mathcal{A} \subset \mathbb{N} \mathbb{N}^{\omega}$ is called <u>saturated</u> if every subset of X not covered by finitely many elements of \mathcal{A} contains some member of \mathcal{A} . We show that in the model obtained by iteratively adding ω_1 dominating reals to V the following statement is true: On every infinite set there is a saturated almost disjoint family. The question whether this statement is true in ZFC, or even in L, remains open.

Key wrods: Almost disjoint family, saturated family.

Classification: 03E05, 03E35

Given a set X and a collection $\mathcal A$ of subsets of X we denote by $I_{\mathcal A}$ the ideal on X generated by $\mathcal A \cup I \times J^1$, i.e. the members of $I_{\mathcal A}$ are the sets that can be almost covered by finitely many elements of $\mathcal A$. As is usual, we exite

$$I_A^* = P(X) \setminus I_A$$
.

Definition. An almost disjoint family $\mathcal{A} \subset [X]^{\omega}$ is called saturated if \mathcal{A} refines $I_{\mathcal{A}}^{+}$, i.e. if for every set $H \in I_{\mathcal{A}}^{+}$ there is some $A \in \mathcal{A}$ with AcH. The main result of this note may now be formulated as follows:

Theorem. If P is the partial order that adds iteratively ω_1 dominating reals to V, then the following statement (**) holds in V^P :

(*) For every infinite set X there is a saturated almost disjoint family AciX^ω .

The proof of this result is based on several lemmas to be given below. We shall use 0 to denote the standard notion of forcing that adds a dominating real, i.e. a function $r: \omega \to \omega$ such that r(n) > f(n) for all but finitely many $n \in \omega$ whenever $f \in {}^{\omega} \omega \cap V$, cf. [3].

Lemma 1. Let $\mathcal{A}_{\mathcal{L}}[X]^{\omega}$ be almost disjoint and $\mathsf{Hel}_{\mathcal{A}}^{\uparrow}$, $\mathcal{A}_{\mathcal{A}},\mathsf{HeV}$. Then in V^{D} , there is a set $\mathsf{Se}[\mathsf{H}]^{\omega}$ such that $|\mathsf{So}_{\mathsf{A}}| < \omega$ for each $\mathsf{A} \in \mathcal{A}_{\mathsf{A}}$, i.e. $\mathsf{A}_{\mathsf{U}}\{\mathsf{S}\}$

is almost disjoint.

Proof. If there are only finitely many $A \in \mathcal{A}$ with $|A \cap H| = \omega$, say A_0, \ldots, A_n , then clearly every set $S \in IH \setminus \bigcup_{i=0}^n A_i]^{\omega}$ works, even in V.

Otherwise let $\{A_n: n \in \omega\}$ be distinct members of $\mathcal A$ such that $|A_n \cap H| = \omega$ for all $n \in \omega$. Since the A_n s are almost disjoint, the sets

are disjoint and infinite. Let us write

$$B_{n} = \{a_{n,i} : i \in \omega\}$$

for each n € ω.

All this was done in V, but now we claim that the set

defined in v^D is as required. Indeed, for each m ε ω we clearly have

since $A_m \cap B_n = \emptyset$ whenever n > m. If, on the other hand, $A \in \mathcal{A} \setminus \{A_n : n \in \omega\}$ then let us consider the function $f_A \in \mathcal{A} \cup A$ V defined as follows:

$$f_A(n)=\max \{i \in \omega: a_{n,i} \in A \}$$
,

that is well-defined because $|A\cap B_n|<\omega$. But r dominates f_A , hence we clearly have $|A\cap S|<\omega$. \dashv

Lemma 2. (Cf. [6] or [7], Lemma 5.) If W is an extension of V that con tains a new real then in W there is an almost disjoint family $\mathfrak{B} \subset [\omega]^{\omega}$ which refines $[\omega]^{\omega} \cap V$.

Actually, we only need this result in the case where W=V D . In order to make this note self-contained we give a proof for this special case. First recall that D consists of pairs $\langle p,f \rangle$ where p is a strictly increasing map of a natural number into ω and f $\varepsilon^{\omega}\omega$. $\langle p,f \rangle \leq \langle q,h \rangle$ iff p>q, $f(n) \geq h(n)$ for each natural number, n, and for each k ε dom(p) \ dom(q) we have p(k) > h(k). The generic dominating function will be denoted by r. Next we fix a partition $\{A_n: n < \omega\}$ of ω into ω -many infinite pieces in V.

We choose in V a bijection g between $[\omega]^{<\omega}$ and ω . Then for each X a $[\omega]^{\omega}$ \(\Omega\) let us consider the set X* defined as follows:

$$X* = \{\min(X \cap r^{"}A_{g(X \cap n)}): n < \omega\},$$

We claim that

3 = {X*:X ∈ [ω] ωn V} is as required.

A standard density argument shows that whenever $X,A \in \Gamma \omega J^{\omega} \cap V$, we have $X \cap \Gamma^*A \neq \emptyset$. Thus X^* is an infinite subset of X. To show that \mathfrak{J}_3 is almost dis joint it is sufficient to observe that $X \cap n \neq Y \cap n$ implies $|X^* \cap Y^*| \leq n$ for each $X,Y \in \Gamma \omega J^{\omega} \cap V$. This completes the proof of the special case.

Let us denote by \mathbf{D}_2 the notion of forcing that adds, iteratively, two do minating reals to V.

(Formally, $D_2=D^*\bar{D}$, where \bar{D} names in V the poset in V^D that adds a dominating real.) Lemmas 1 and 2 then easily imply the next result.

Lemma 3. Let $\mathcal{A} \subset [X]^{\omega}$ be almost disjoint, then in V^{2} there exists a family $\mathfrak{A} \subset [X]^{\omega}$ such that

- (i) $\mathcal{A} \cup \mathcal{B}$ is almost disjoint,
- (ii) ℜ refines V∩I₄.

Proof. First, by Lemma 1, we choose in V^D for each $H \in V \cap I_{\mathcal{R}}^+$ a set $S_H \in [HJ]^{\omega}$ for which $\mathcal{A} \cup \{S_H\}$ is almost disjoint and put $\mathscr{G} = \{S_H : H \in V \cap I_{\mathcal{A}}^+\}$. Let \mathscr{C} be a maximal almost disjoint subcollection of \mathscr{G} . Then, for each $S \in \mathscr{C}$ we may apply Lemma 2 (with V^D instead of V, V^D instead of W and S instead of W) to obtain in V^D an almost disjoint collection $\mathfrak{F}(S) \subset [S]^{\omega}$ refining $V^D \cap [S]^{\omega}$. We claim that

is as required. That (i) holds is obvious from the choice of ${\mathscr G}$ and ${\mathscr C}$.

To show (ii), consider any H \in V \cap $I_{\mathcal{A}}^+$. By the maximality of $\mathscr C$ there is some S \in $\mathscr C$ with $|S \cap S_{\mathcal{H}}| = \omega$, but then we have a set B \in $\mathfrak B(S)$ with

which was to be shown.

We are now ready to give the proof of our main result.

Proof of the theorem. We may clearly consider P=P ω 1 as given by the finite support iteration

$$P_{\infty}: \infty \neq \omega_1, Q_{\infty}: \infty < \omega_1 >$$
, where $V^{P_{\infty}} \models Q_{\infty} = D_2$ for each $\infty < \omega_1$.

To prove that (\boldsymbol{x}) holds in \boldsymbol{v}^{P} it will clearly suffice to show it for

for X \in V. Now, given such an X, we define almost disjoint families $\mathcal{A}_{\infty} \subset \text{IX1}^{\omega}$ with $\mathcal{A}_{\infty} \subset \text{V}^{\omega}$ by induction on $\infty \subset \omega_1$ as follows.

We set $\mathcal{A}_{\sigma} = \emptyset$ and for every limit ∞ we put $\mathcal{A}_{\sigma} = U \{ \mathcal{A}_{\beta} : \beta \in \alpha \}$. Standard tricks (cf. e.g. [5] p.281) concerning the choices made in the successor steps will insure that $\mathcal{A}_{\sigma} \in V^{\mathcal{P}_{\sigma}}$.

Now, if $\alpha=\beta+1$ and \mathcal{A}_{β} has already been defined then we can apply Lemma 3 to get a collection $\mathcal{B}_{\beta} \subset V^{\alpha} = V^{\beta} \cap I^{+}_{\mathcal{A}_{\alpha}}$ such that $\mathcal{A}_{\beta} \cup \mathcal{B}_{\beta} \subset I \times I^{\alpha}$ is almost disjoint and \mathcal{B}_{β} refines $V^{\beta} \cap I^{+}_{\mathcal{A}_{\alpha}}$. We then put $\mathcal{A}_{\alpha} = \mathcal{A}_{\beta} \cup \mathcal{B}_{\beta}$.

Since Lemma 3 involves choices (e.g. of the family $\mbox{\it CC}\mbox{\it S}$), the tricks we referred to above consist in making these choices "uniform" by fixing a large enough cardinal $\mbox{\it K}$ and a well-ordering $\mbox{\it C}$ of $\mbox{\it V}(\kappa)$ before we start our induction so that all the relevant sets we have to choose from, or rather names for them, already occur in $\mbox{\it V}(\kappa)$, and then every choice we have to make will be the $\mbox{\it C}$ -least one.

If someone is not convinced by this argument, there is another way to get around this difficulty that makes use of the fact that each P_{∞} is CCC. This makes sure that when $\langle A_{\beta}: \beta \in \infty \}$ has been defined for a limit $\alpha \in \omega_1$ with $A_{\beta} \in V^{P_{\gamma}(\beta)}$ and $\gamma(\beta) < \omega_1$ for each $\beta \in \infty$ then there is a $\gamma(\infty) \in \omega_1$ such that $\langle A_{\beta}: \beta \in \infty \rangle \in V^{P_{\gamma}(\infty)}$, and in this case we may define

Having completed the induction, we set $A = \cup \{A_{\alpha} : \alpha \in \alpha\}$ and claim that A is as required, i.e. it refines I_{α} .

Thus let $H \bullet I_{\mathcal{A}}^+$ and note first that there is a $K \bullet IH_{\mathcal{A}}^{\omega}$ with $K \bullet I_{\mathcal{A}}^+$ as well. Indeed, if

is finite then K may be chosen as any element of $[H \setminus U \mathcal{H}]^{\omega}$. Otherwise, let $\{A_n: n \in \omega\}$ be distinct members of \mathcal{H} , clearly then

is as required.

Next, since P is CCC, there is some $\infty \in \omega_1$ with $K \in V^{\infty}$. Obviously, we have then $K \in V^{\infty} \cap I_{\infty}^+$ as well. But then, by our construction, there is some $A \subset A_{\infty+1} \subset A$ with $A \subset K \subset H$, and our proof is complete.

In [2] the following problem was raised: For what cardinals κ is there an almost disjoint family $\mathcal{A}\subset (\kappa)^\omega$ that refines $[\kappa]^\omega$?

Since, trivially, $[\kappa]^{\omega_1} c I_A^+$, we immediately get that every saturated family has this property, and in our V^P a saturated family exists for each κ . In [4] it was shown that an almost disjoint $Ac[\kappa]^{\omega}$ refining $[\kappa]^{\omega_1}$ exists for $\kappa=2^{\omega}$ in ZFC and for every $\kappa<\omega_1$ in L. In [1] it was shown that an almost disjoint $Ac[\kappa]^{\omega}$ refining $\{xc\kappa: tip(x)\geq \omega^2\}$ exists for $\kappa=(2^{\omega})^{+1}$, $n\in\omega$, in ZFC. Several similar problems are also discussed in [1]. On the other hand it is still unknown whether a saturated $Ac[\kappa]^{\omega}$ exists in ZFC.

To conclude, we note that our notion of forcing P is CCC with $|P|=2^{\omega}$, hence V^P has the same cardinal arithmetic as V, moreover P is "mild" and thus will not effect large cardinals. Thus the problem of producing a model in which there is no saturated almost disjoint family on some set X looks very hard.

References

- [1] B. BALCAR, J. DOČKÁLKOVÁ, P. SIMON: Almost disjoint families of countable sets, Proc. Coll. Math. Soc. J. Bolyai 37. Finite and infinite sets, Eger, 1981.
- [2] A. HAJNAL: Some results and problems in set theory, Acta Math. Acad. Sci Hung. 11(1960), 277-298.
- [3] T. JECH: Set theory, Academic Press, 1978.
- [4] P. KOMJÁTH: Dense systems of almost-disjoint sets, Proc. Coll. Maht. Soc J. Bolyai 37. Finite and infinite sets, Eger, 1981.
- [5] K. KUNEN: Set theory, North Holland, 1980.
- [6] P. NYIKOS, J. PELANT, P. SIMON: private communication.
- [7] S.H. HECHLER: Generalizations of almost disjointness, c-sets, and the Baire number of AN-N, Gen. Top. and its Appl. 8(1978), 93-110.

Mathematical Institute of Hungarian Academy of Sciences, Reáltanoda n.13-15, Budanest V. Hungary

(Oblatum 12.8. 1987)

