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ON SATURATED ALMOST DISJOINT FAMILIES
A. HAJNAL, I. JUHASZ and L. SOUKUP

Abstract: An almost disjoint family Ac 1XJ%¥is called saturated if e-
very subset of X not covered by finitely many elements of contains some
member of A . We show that in the model obtained by iteratively adding @y

dominating reals to V the following statement is true: On every infinite set
there is a saturated almost disjoint family. The question whether this sta-
tement is true in ZFC, cr even in L, remains open. 3

wrods: Almost disjoint family, saturated family.
Classification: 0305, O3E35 ~

.

Given a set X and a collection R of subsets of X we denote by I4 the
ideal on X generated by .AUIX?II, i.e. the members of I4 are the sets that
can be almost covered by finitely many elements of A . As is usual, we w ite

o *
IA-P(X)\IA.

Definition. An almost disjoint family Ac [X1¥ is called saturated if A
retines I} , i.e. if for every set Ha& I there is some A ¢ A with AcH.
The main result of this note may now be formulated as follows:

Theorem. If P is the partial order that adds iteratively @, dominat-
ing reals to V, then the following statement (%) holds in Vs

(%) For every infinite set X there is a saturated almost disjoint fa-
mily e IX3%.

The proof of this result is based on several lemmas to be given below.
We shall use D to denote the standard notion of forcing that adds a dominat-
ing real, i.e. a function r: @ —~ @ such that r(n)>f(n) for a}l but finite-
ly many n e @ whenever f €“wn V, cf. 13).

Lewma 1. Let Ac[X]® be almost disjoint and H&I) ,A,HsV. Then in
V0, there is a set S [H1®such that |SnA| < for each A€ A ,i.e. AufSt
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is almost disjoint.

Proof. If there are only finitely many A €A with [AnH|=co , say
Ao""'An’ then clearly every set Se«IH\ U A1] works, even in V.

Otherwise let -{A :n6w? be distinct members of A such that IA NH|=
=c forallne cw . Slnce the A s are almost disjoint, the sets
B AN H N U4A, i< nd
are disjoint and infinite. Let us write
B ‘[an,i:i cw}
for eachne w.
All this was done in V, but now we claim that the set

S= San,r(n):n e wlelHI¥

defimed in VD is as required. Indeed, for each me w we clearly have
ISnA lem<

since A nB =@ whenever n> m. If, on the other hand, A & ﬂ\{A :n € @} then
let us consmer the function fA €“w NV defined as follows:

£, (n)=max {13@:3 ,i® A,

that is well-defined because IAnB | < ex. But r dominates fA, hence we cle-
\
arly have [AnS| < w. <

Lemma 2. (Cf. [6) or [7], Lemma 5.) If W is an extension of V that con
tains a new real then in W there is an almost disjoint family B¢ [w]%
which refines [w3)®n V.

Actually, we only need this result in the case where w=v”. In order to
make this note self-contained we give a proof for this special case. First
recall that D consists of pairs {p,f?> where p is a strictly increasing map
of a natural number into w and f e % . {p,t24<q,h) iff p>q, f(n) 2
Z h(n) for each natural number, n, and for each k @ dom(p)\ dom(q) we have
p(k)>h(k) The generic dominating function will be denoted by r. Next we
fix ‘a partition {A :n< Wiof w into @ -many infinite pieces in V.

We choose in V a bijection' g between [w1*® and w . Then for each
X a tw]"’nv let us consider the set X® defined as follows:

- " ’ .
X* = {min(Xnr Ag(”‘n)).n <wt
We claim that
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B= {X*¥:X € [w1®AV} is as required.

A standard density argument shows that whenever X,A @[ w]“‘nv’we have
Xnr"A%@. Thus X* is an infinite subset of X. To show that J3 is almost dis
Jjoint it is sufficient to observe that Xnn#Ynn implies |X*n YX|&n for
each X,Y & Lawl®nV. This completes the proof of the special case.

Let us denote by 02 the notion of forcing that adds, iteratively, two do
minating reals to V.
(Formally, DZ=D‘5, where D names in V the poset in V° that adds a dominating
real.) Lemmas 1 and 2 then easily imply the next result.

D

Lemma 3. Let Ac [X1® be almost disjoint, then in VD2 there exists a
family B c [X1® such that

(1) A uB is almost disjoint, .

(ii) B refines VnI;’.

Proof. First, by Lemma 1, we choose in VD for each He Vn I;' a set

SHe[H]“ for which AU{SH} is almost disjoint and put & = {SH:He VnIi{ :
Let € be a maximal almost disjoint subcollection of & . Then, for each

Se€ we may apply Lemma 2 (with VlJ instead of V, VD2 instead of W and S in-
stead of «) to obtain in V 2 an almost disjoint collection 3(S)c [S1 %
refining VDn [s1% . We claim that '
B -ULiR(s):5e €1

is as required. That (i) holds is obvious from the choice of ¥ and € .

To show (ii), consider any HeVnI:l . By the maximality of ¥ there .is
some S &€ with |SnSH|=w , but then we have a set Be& $3(5) with

BeSn SHc H,

which was to be shown.

We are now ready to give the proof of our main result.

Proof of the theorem. We may clearly consider P=Pa' as given by the fi-
nite support iteration 1
P
Py : & 03,0, : 0 <W Y, where V' =0 =0,

for each x< W .

To prove that (x) holds in V¥

it will clearly suffice to show it for
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for X eV. Now, given such an X, we define almost disjoirit families
P
.Ruc IX1“ with .R‘e v by induction on « & @, as follows.
We set .R.u=ﬂ and for every limit e we put ﬂ“= U{Ji,’ :fea? .Stan-
dard tricks (cf. e.g. [5] p.2B1) concerning the choices made in the succes-

sor steps will insure that A e v,

Now, if o =f3+1 and Jln has already been defined then we can apply

f_ 870
Lemma 3 to get a collection 9,,; vV©Tav such that leu .ﬂﬁc Ix1% s

P
almost disjoint and By refines v”m; . We then put Ay =Auu :ﬁﬂ .
s

Since Lemma 3 involves choices (e.g. of the family € e ¢), the tricks
we referred to above consist in making these choices "uniform" by fixing a
large enough cardinal ® and a well-ordering € of V(k ) before we start our
induction so that all the relevant sets we have to choose from, or rather na-
mes for them, already occur in V(w), and then every choice we have to make
will be the 4-least one.

If someone is not convinced by this argument, there is another way to
get around this difficulty that makes use of the fact that each f 1s CCC.
This makes sure that when (J!,,:(J e« } has been defined for a limit & ¢ @,

Pr @y

with A&V and (B )<@; for each e« then there is a ¥ (e )ew,

P’t ()
such that (Jl,,:ﬂe w)>e V , and in this case we may define

P
A= Uldg: et in v 7,

Having completed the induction, we set A - U{Ji.‘: A eai} and claim
that A is as required, i.e. it refines I-;L'

Thus let Hely and note first that there is a Kucm;’ with K& L7 as
well. Indeed, if

H-4A6A:|AnH|= w3

is finite then K may be chosen as any element of [H\U)?, Otherwise, let
{An:n e @lbe distinct members of ¥€, clearly then

K=UiA nH:n e w?

is as required. p
Next, since P is CCC, there is some o« & @, with KeV % Obviously, we

have then KQV“n I‘: as well. But then, by our construction, there is some
3

Ac.ﬂwlcﬂu with AcKeH, and our proof is complete.
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In [2) the following problem was raised: For what cardinals ¢ is there
@
an almost disjoint family AelwI%that refines [xd ! 2

Since, trivially, waalc I}' , we immediately get that every saturated
family has this property, and in our VP a saturated femily exists for each
% . In [4) it was shown that an almost disjoint A cI[w)™ refining

W

[kl !
wes shown that an almost disjoint A c %) refining 4X ¢ K : tip(X)& W’} ex-
ists for n=(2")m, n € W, in ZFC. Several similar problems are also dis-
cussed in [11. On the other hand it is still unknown whether a saturated
Aclwl¥exists in ZFC.

exists for n=2~ in ZFC and for every K < @, in L. In [1] it

To conclude, we note that our notion of forcing P is CCC with |p|=2%,
hence VP has the same cardinal arithmetic as V, moreover P is "mild" and thus
will not effect large cardinals. Thus the problem of producing a model in
which there is no saturated almost disjoint family on some set X looks very
hard.
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