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Abstract: The phase space for the equation %% +Au=Lu,c +b is decomposed
into the sum Y=Y1+Y2 of two T(t)-invariant subspaces, where T(t) is the
corresponding semigroup of solutions, L is a linear operator and Uit deno-
tes the deviation of u in advance. Also a nonlinear generalization
%*Awf(t,uw(t)) of the above problem is treated.
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§ 1. Introduction and results
The paper extends the results of J. Milota [Mil to the problems with
1Y
into two T(t)-invariant subspaces is established. This decomposition can be
applied in investigation of the asymptotic stability. Some ideas of [Mil have

deviating argument in advance. A decomposition of the phase space Y=Y

beer? used. The results obtained in the linear problem are similar to those
by [Mil provided the norm of L is small.

Solving the nonlinear parabolic functional differential equation,the
existence and unigqueness of the solution have been proved (see Theorem 5).
A result of [5) has been extended from functional ODE to the parabolic prob-
lems.

Moreover, under the monotonicity assumptions on f, restrictions con-
cerning the growth assumptions can be removed. In that case we apply some
techniques from the theory of partially ordered Banach spaces.

In the péper some examples are given which illustrate the special be-
haviour of solutions to the problem with advanced argument.
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The theory of semigroups, the original Banach space X, the power spaces
X* and the estimates from [Mi] and [ He] are used.

§ 2. Assumptions and denotations

Suppose that X is a Banach space and A is a sectorial operator in X (for
the definition see [Hel or [Mi]). Let Re 6(A)>0 and let « & (0,1). Denote
X% the fractional Banach space of X, following [Hel terminology. .

Let 7>0. Let Y= {ye C((-00,0),X%); O‘sggo) e¥® |y(e )| <@ and
e?%y(9) is a uniformly continuous function from (-2,0> to X*}. Clearly,
Y is a Banach space with the norm llleY=sup eroly(e)lw . Let b>0 and let
L:Y—> X be a continuous linear operator. Further we assume that there ex-
ists a constant Ce > 0 such that the following estimates hold for each
t &(0,a0):

CVNIT Rl P e

t .. = - B
(A2) "Lm‘f’(t-s) %-a(t s)dséq, where 0£q<1 and L is the norm
of the operator L.

The first assumption takes always place (see [Hel).
Let Z= {ug C((U,a:),X");casyga)lu(t)L<w} and let INulll iﬂ%.m)l“(t)lm for

each ueZ. (Z,R-W ) is a Banach space. If u&C((-®,00),X%), we denote
ut(O )=u(t+@) for each 06 (-®,a).

Definition of a mild solution. Let heY be an initial function. We con-
sider the equation

(E) %ut_ +M=L(ut+b) (the equation with the deviation)
together with the initial condition

(Co) u°=h on the interval (-oo,0).

.

Any solution u in the space C((-00,),X*)n Z of the integral equation
-At ® -A(t-s)
(E1) u(t)=e™"h(0)+ J'e L(ug,, )ds,

which satisfies the initial condition (Co), is said to be a mild solution to
the initial problem (E,Co).

§ 3.

Existence theorem 1. Let heY. Then under the assumptiors given above
there exists a unique mild solution of the problem (E,Co) in the class of
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|e I‘—bounded continuous functions.

Proof. Let S;= 4x&Z; x is a continuous extension of the function h}.
Clearly, S is a closed subset of the Banach space Z. We shall consider the
operator T: Sl—b S, which is defined for each tZ0, by Tx(t)-e'Ath(0)¢

+ jo‘te'A(t'S)L(xs‘_b)ds.

since | Tx(t)|, &Ce 3 |n(0) ], +[‘a./‘;te'a(t's)(t-s)'dlLll gl ds£C, || +
+C AL Lte'a(t'S)(t—s)' ds(ihlly +W x¥), T maps S, into S,. Further

T (T, =1 LA vy dasl, &

<luic,, [ $e7a(t-8) (4 _5)~% libe; -x I & q Ml -x, U -

Hence IllT(xl-xz)II % q lel-lel and by the Banach fixed point theorem
there exists a unique solution of (El) in Sl'
The question arises, when the milq solution is a strong one.

Thsoru 2. Let h(0) be an element of X**® for some & > 0 and let
ef h(®) be Holder continuous in (-c0,0). Then the mild solution of (E,C )
is a strong one.

Proof. We shall apply Th. 3.2.2 in [Hel. Put £(s)=Lx Clearly,

s+b”
_/'§J If(s)lxds<w tor each @ > 0, because £:{0,00) — X is a continuous
)

function. Further, we have to show that f is locally Holder continuous. This
follows from the following two statements:

(1) #%h(@) is a Holder continuous function;
(ii) x(t) as a mild solution is a Holder continuous function in (O,w)
We have

IxCtys0-xCt) |, -|(e'Ak-I)e 1h<0)| o Leton .

at

o M0 ix dsl 4] ,L bdsl‘&t:k‘e lIh(a)l
-a(t,-s)

TG, , f (tl-s)""‘ 1 asaLnchnpy s Hx B+

+ALICIRK, + B x )G, f, ot

(ii) takes place.

(t,+k-5) s £ Kk © +K1(t1)k¥" , so that

h(®) is a locally Holder continuous function on (-, 0} because J h(®)
is Holder continuous. This also implies that the map 8 —» X_ . @S a map from
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{0,00) ‘into Y is locally Holder continuous and thus f£(s)= Lxs+b is locally
Holder continuous, too.

Apriori estimates for the mild solutions and some properties of those
. solutions

1) Continuous dependence of solutions on the initial condition. Let the
solution Xy correspond to ¢ and Xp to qu Then we have (Il X)X, I =
£ (Cl+q)lic¢1 ?2"\("" mxl-xzm from where it follows s

(1 W xl-lell£ qu_ |q1- qzﬂy
and Clbl
(2) ﬂxtlly.‘.--i:q—ﬂc;Yll

Now we shall consider the operator T(t):Y —» Y, which is defined for
each t 30 as follows:

If u(t) is a mild solution of the equation (E) with the initial function
@ecY, then T(t) g , similarly as in [Mi] will mean u, €Y. On the basis of
(2), it is clear that so defined T(t) is a semigroup of the class C The
assumption on the uniform continuity of efeq(e) is needed in the proof of
]éiﬂoT(‘t)cf % . For the operator L=0 we denote this semigroup by S(t), simi-

larly as in [Mil.

2) The solution x(t) is bounded on the interval {d",c0) for each >0
also in the space ¥ such that £€> 0 and o¢+ £ <1, and locally Holder
continuous as a function of s e {d, @) into X%

3 |u(s)L<+z‘|e-Asqu)l *|f B-A(S—l‘)Lur+b 1‘| ‘Ce-as -z|¢(0)Lc+
+C£ e'a(s ")(5 r)“-‘ul_“( (] C;u +Mlu )dréCJ-el 9’(0)| +Cf e-a(s-r)(s )&
-driLil(1+ .I..._) nqu

»

@) lutsd-u(s)| g =I™-DeM (0] +] e e ).

o Lupdr| +| J‘N!;-A(sm-r)Lu er‘é thees 4t @@, +

0 [} e o)™ ¢ gon nu|(1+ Lhagl,

~ o
< [ B B (TET) Nl 45 htecohtscth ™) gl

Now we shall consider the problem, when T(t)-S(t):Y —>Y, is a compact
operator. A similar lemma as in [Mil is true:
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Lemma 1. If A has a compact resolvent, then the operater T(t)-S5(t):
:Y —>Y is compact for each t>0. =

Proof. We have

(5) ((T(t)—S(t))ga)(m’-t):_[Jxe'A(""S)Lusmds for each e (0,tY
where u is a mild solution of (E) with U P and ((T(t)—S(t))?)(rc -t)=0
for each ® & (-00,-0 >

Let, now, ¢ €Y be a sequence of bounded elements of Y. We shall show
that we can extract a subsequence from this sequence such that (T(t)—S('c))x;rzn
converges in Y.

By (5) it suffices to show that there exists a subsequence of the sequ-

-Akz-s)
Lun,s+

C(0,t) ,X*). This will be shown as follows:

z
ence of mappings ¢ — _I; e bds, which converges in the space

I. The sequence of mappings from<O0,t» into X< *

T _A@-
'r—-»_é e Ae 5)Lun’smds is equicontinuous.

II. For each ©&<0,t? there exists a subsequence of %, such that
> PR
fo E—A(‘l:—s)Lun s+bd5 converges in X7,

From I, II the compactness follows.
To prove I we consider

w+h-Alr+h-s) e 1D
lfo e Lun,s+bd"_-{> e

% 1295
-Ah ~-A(x-5) +7 _Ale+h-s)
4 | fo (e™™'-De Lun,s+bdslo‘. +| '[: e Lun’s+bds|‘ g
from where the equicontinuity by (2) follows.
Further,

T -A(e-s), . T _a(x-s) .
| fo e S Lun,s+deL¢+s£C¢+t_ fo e (v -s) (N} "un,s+b”Yds£

Cl+q

T -alr-s) —a-¢
G, ) e (z-5) " *ds(y1

Yo My £C.

From this inequality as well as from ti-. ( ‘mpactness of the embedding

X %, X% the statement II follows.

The compactness of the operator A is a sufficient but not necessary con-
dition (even when the right-hand side of the equation (E) is different from
0), for the operator T(t)-S(t) to be compact, as the following example
" shows.

Example 1. Let X=L2(—oo,a>). Let Au-—uxx+u and D(A)=W§(R). According to
[Hel A is a sectorial operator, 6(A)=<1l,®), «=1/2 and X1/2='W%(R)=)(" 5
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Hence the operator A has no compact resolvent. Let us take the equation. (E),
where L:C&-b+ (3,0>,X*) —» X is a linear and continuous operator, for some
fixed (3> 0 such that -b+@ <0. Further we suppose that there exists a sequ-
ence Lr' for r=1,2,..., such that:

(1) each L :C(K-b+ (3,0, W%“(-r,r))——b X is a continuous and linear
operator, ’
(ii) L rL=*0 for r—>o00 in the space [C(<-b+/3,0%,X%),X].

Since W% (-o0,0) is continuously embedded into WZ“( -r,r), it is clear
that L :C((-b+ 3,0, X¥) —> X is also linear and contmuous for each refl,2,

Hence, we consider ,the problem

g—: - uxx=Lut+b-u(t); u(0)=u°, where u € X1/2=w%(R).

We can extend the initial function to the interval (-ep,0) as a const-
ant function. We shall show that under (i) and (ii) T(t)-S(t):Y—> Y is a
compact operator for each t>0.

We have to prove the statements I and II from the previous proof under
the assumption that the sequence %, in Y is bounded.

The statement I has been already shown in the previous proof.

Now we prove the statement II: First we shall show that for each r e
€ £1,2,...,% there exists a subsequence of < such that the corresponding
u (s) converge in the space w (-r,r) for each s €<ﬂ t+b?, uniformly with
respect to s. Choose an arbltrary, but flxed r>0. On the basis (4) we have:

(6) u, are equ1cont1nuous as the mappings from <{/3,t+b> into X% c»
va (-r,r).
Further, (3) gives us that lun(S)Lua‘ Klig lly and so !”n(S)]wZﬁZséC

for each s e {3,t+b). Hence ’ /

M lu_(s)l 4C for each s €{3,t+b> .
N w22 p r

As wg’“z"(-r,r) c'cvw%(-r,r), from (6) and (7) the existence of a subsequen-

ce u, uniformly converging in the space w;(—r,r) with respect to s follows.

Now, step by step, we put r=1,2,... and we construct a subsequence of
&, such that the correspondmg u,
s &3, t+b) in the space W2( -r,r) for every r>0. (This does not imply the
convergence in W,(-@,c0).)

will converge uniformly with respect to

Let © > 0, 0< ~ <« t, be arbitrary and let % be such a subsequence
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constructed above that the corresponding subsequence u,, converges in
w%(—r,r) for each re{l,2,...3. Then

T _Alr-
[SO-T (g - g -0 & [ e T oo s +
+'[<;TE-A(‘E_S)(Lr'L)(un,s+b'um,s+b)dsLo =

v -
Ll c a(%S)(’t-s) dslu -u 1 +
£ sup L-r‘fg & n,s+b m,s+b C((-b+{5,0).W§¢(-t,l‘))

T A O e (VR o TR

n,s+b

£CysupliL il -u |

+ |lL_-LiIC,,
m C((p,t*-b),wgt-r,l‘)) e

where we have used (2).
Then to each £>0 there exists an r, such that IlLl_ L < %— s
0 2

To this T, there is an.ng such that for each n,m>n0:

3
|un—um|(c«ﬁ’t+b ,W?‘('royro))‘—cl supILEll.z'so that
I(S(t)—T(t))(cfn- ) (T-t)| < € for each n,m>n,. Hence S(t)-T(t);

¥ —> Y is certainly a compact operator.

An example of an operator L satisfying the conditions (i), (ii) above,
is the operator [Lu](x)=a(x)ux(0,x), where a(x) is a continuous function

defined on (-eo,50) such that lim a(x)=0. Then we can *“cke (Ltu)(x)=

X =00
P is a sequence of continuous functions such that

supp arc(-r,r) and al__:,*a on (-o0,00).

=8r(x)ux(0,x), where a

An estimate for the essential spectrum of the operator L under the as-
sumption that T(t)-S(t) is compact, is the following one:
.

(8) 6, (T(1)) 4Ce™MN(@ YT,
For the proof see [Mil, who estimated | 6‘(5(1:))l£-Ce'min(a’r)t and since

S(t) here and in (Mi] have the same meaning, we have that G‘es(T(t))=
= Ggg(S(+T(1)-5(1))= 6o (S(1)), by [4.1, Mi] .

Now, we shall deal with the relation between &(B)- e'es(B) and
6(T(t))- SBS(T(t)), where B is the infinitesimal generator of the semigroup
T(t).

We shall extend the result of [Mi, Lemma 2] to our case.
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Lemma 2.
(1) IfBy=Ag , then 02Re A2 -7 and T(t)g-e™ where ¢(6)=e*%y
for © & 0 and deD(A) and d solves the characteristic equation

(9)  Ag(0)+A(0)=ePL(e*® (0)).

(ii) If 02Re A2-7 and (9) has a nontrivial solution, then A € Pg(B)
(point spectrum of the operator B).
(ii1) If mePe(T,t)) and @ #0, then there exists at least one A
such that A & Pg(B) and et @~ and there are at most finitely many such
" Proof.
(1) In the same way as in | [Mil we can show that @ (€ )=e?9(0) and hen-
ce Re Az -y and [T(t)q](ﬂ)—e %(0). By the boundedness of T(t)g this im-
plies that Red 4 0. Further the function 2(s)=Lu_, -L(¢"**™*® g (0))-

a“""”L(e @(0)) is locally Holder continuous on the interval <:0,00) into
X and so u(t)= [T(t)@l(0) is a strong solution from where e’“q(o)c D(A) for
each t>0. This implies @(0)s D(A) and for each-t>0 it is true that
% + Au=Lut+b .
From this it follows that Je’tq(0)+e*ta 9(0)-L(e ™Dy (0)). Hence
Aq (0)+Ax(0)=¢ (e *Og(0)).

(t1) Analogously as in [Mi).

(iii) By [Hi, Phi), similerly as in [Mil, as the semigroupsof C, are
the semigroups of the class A, the existence of such a A already follows.
We shall show by contradiction that to each w0 ‘there exist only finitely
many 2 6 Pg(B) such that €= e .

Let there exist to some «#$0 infinitely many such A néPs(B) so that

2t -1 i217k
e'n=g . Then A =t""log u+ wherek is an integer. Hence | A Icon-

verge to ©© , whereby Re an =Re .7& for each 8y, Ny Sifice A is a sectorial
i 1 2

operator, from certsin Ny all an bele: to the resolvent set of the operator
-A. Thus we can take

8,2 1o TN L "G
by (9), where d, are the eigenvectors. We can normalize them in such a way

that Iu"l‘= Ile“"‘q‘l, m1 and then

- b 3 . l n” al I ]
1=§a B = WYAIA linL n &leLhLic le ke
LR ) Ad+A) e T Lle d)l anll- 2l j e
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where the estimate from [Mi] was used. The right-hand side poes to 0, and
this gives the contradiction.

Corollary 1. Clearly, the space Nk(A B)= {x,(J\I-B) x=0} is T(t)-inva-
riant and N (A,B)c N €, T(D).

Theorem 3. Let T()-S(t):Y —Y be a compact operator. Then to each
€ > 0 the set Pg(B)nG, where G=42 6 C;Re A 2 -min(a,y )+£ ¥, contains fi-
nitely many points only. Moreover, all these points are of the finite multi-
plicity.

Proof. First we show by contradiction that the set M=Py(B)n G is iscla-
ted. Let there exist a sequence fhnGM such that .Zn converges to A,ﬂn*.ﬂm

An t A, t
for ndm. Thene € Ps(T(t)) according to Lemma 2. Thus 8 converges to

eMe ~IT(t)). Moreover, e 6, (T(t)) for each t>0. At the same time
Re A2 -win(a, )+ £ which uphes that |e tl?e"““"(a’7)t¢£t and hence
Ce~mn(a,7)t reﬁt —min(a,ar)het

But this does not hold for sufficiently great t. Thus, the set M is cer-
tainly isolated in G ant it has no point of accumulation. :

If there were infinitely many p s J\naM, the sequence .ﬂn should be
unbounded. Thus, since ReA is bounded for A, €M, the set M should have Jln
with unbounded imaginary part. Then there would exist a seguermce dn such
that

1= Hd &, =|ea"b} A2 1o e )14 %—% )

where the right-hand side again tends to zero. That is a contradiction.
Now, we shall show that all points of the point spectrum B in the set G

are of the finite multiplicity. This follows from Corollary 1 and from the

fact that the value e‘u is for ‘sufficiently great t a normal point of the o-

perator T(t).

Corollary 2. If S(t)-T(t):Y~»Y is under the assumptions above a com-
pact operator and ReA < 0 for each solution of the characteristic equation
(9); then 0 is an asymptotically stable solution to (E) in this class of

' mild, |- | o~ bounded solutions of the equation (E), and

IT(t)] & Ce ™t tor some o > 0.

Proof. The proof is based on the estimate for the essential spectrum
and on the fact that
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. sup {1]a|; QePG-(T(t))I _esup Re Pe(B).t, At, where 4< 0.
Thus IT(t)Ié.C(d"l)e g . where 0<d‘1<m1n{-a,m1n(a,?)§.

Corollary 3. Let T(t)-S(t):Y—>Y be a compact operator. Then the fol-
lowing statements are true:

Y can be decomposed into the sum Y= Y1+Y2 such that:
(i) The spectrum of BIY contains the finitely many eigenvalues of the
1

finite multiplicity, whereby Re A=0 for A e é‘(BIY ¥
1

(ii) Yl’ Y2 are T(t)-invariant.
(iii) The zero solution is asymptotically stable for T(t)lY .
2
(iv) Y1 ¢ D(B) and BIY is a continuous linear operator generating a
1

group which is an extension of T(t)lY in [Mi, Cor. 2).
1
Proof. The proof is similar to that one of the corresponding theorem
in [Mil.
Example 2. Let us take X=L2(0,:rr), X288, aus-u, D(A)=Wn W2 ang
the problern d +Au= Lu,c b5 Yo —h

We shall consider the assumption A2, that means, let us calculate C
of this operator.

1/2

A
Let us take ucw;nwg, u= Z b sin nx. Then
2
2 -n“t
Ae'Atu Zﬂn e b sin nx, from where we have

IAI/Z -At l2 4 2 2"! tlbn sin nxlfz'

Now, Re 6 (A)> o, where d’<1 After some calculations we get that

IAI/Ze'MuIL & ( -—(—)-)1/2 -1/2 "’Htl IL for each ueD(A) and by the den-

sity of D(A) in X, also for all ueX. Thus,

1/2 1/2
IL|< {22) 5..((11'/‘2' 1 for some d’e (0,1).

1/2 ’
i< B4 gt

Hence,

When dea‘ling with equations with advancing argument, we meet many dif-
ficulties. Consider the following example:
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Example 3.

& U,

u(t,0)=u(t,ar)=0,
u(0,x)=0 for each x& (0, ).
Clearly, this problem has for example these two solutions:
(1) =0,
(2) uy(t,x)=kt sin x.
However, under certain assumptions and in some classes, the uniqueness
takes place.

§ 4.

In the present section we study a nonlinear problem with a rather gene-
ral nonlinear deviation. Of course, to prove the existence of a solution it
is necessary to put stronger assumptions. We shall use the following assump-
tions and denotations:

A is a sectorial operator with Re 6(A)>0.

@ :<0,00) —>R is a continuous function.

heC((-,0%,X® is a uniformly continuous function.

vy :0,0) — (0,0) is a nondecreasing continuous function. (1)

F will mean the space C(<0,00),X*) with the norm W x lll=sup 7@—“

C=4yeC((-m0>X*),y be a bounded function in X*}is a Banach space with

the norm |lyll=‘ §tpw'0)|y(t)l“ 3

£140,00)<C —X is a continuous function.

uz(6)=u(z+s) for each O & 0.

We shell consider a mild solution of the problem (EZ’CO)'

(E2) g—‘;mu:f(t,uw(t)),

(€y) ugsh,
that means, a continuous solution of the integral equation
u(t)zeAth(o)+ j: e'A(t's)f(s,uQ(S))ds for each t>0
which satisfies the initial condition u0=h.

Solving (E2, CD) we shall assume (Bl - B5) where
(B1) f:e_a(t-s)(t-s)'dlf(s,o)des‘Ky(t) for each t20,

(82) |f(t,zl)-f(t,zz)|£n(t) Nz;-z,l for each t@a<0,00), where

n(t):<0,00) —>R is a continuous function.

+
®)  Jfy (t-5)"% e tn(s)ds is a y-bounded function on the interval
<0,00).
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(B4) Cy f (t-5) %678 (t5) gy sgn ' (s) y(w'(s))ds4q y(t) for each
tZ 0 where 0£q<1, co'(s)=max {0 ,es)§ and C. means the constant
from (A1).

Theorem 5. If Bl -B4 are satisfied then there exists a unique mild Y-
bounded solution of (E2, C,) on the interval<0,00).

Proof. The idea of the proof is due to £33, whereby the conditions here
are analogous to those in that paper. The proof is based ‘on the Banach fixed
point theorem.

Put 5= {y&F;y(0)=h(0)}, whereby we extend yeS, for @ £0 by y(@)=
=h(&). We deflne the operator T; Sl-—* S, as follows:

(Ty)(8)=h(@) for © 40,

(=A@ [ eAEDeis,y s for 120,
Now we show that T: Sl—’ S1 We have that
ITx(t)L‘aCe-atlh(O)hC Lot g) % p(s ¢ (s) 185 4Ce (o) +
+C, f e a(t-s)(y s)‘“lf(s 0)|ds+C, j" ~a(t-8) (4 oy~ % n(s)lx o
Acé“tlh(o)l «C, f -a(t=8) (4 5y~ p(s, 0)ds+g, f e 849D (o) % (s) (lnll+
+Mxltsgn w*(s)y (' (s))ds,
Thus there is a C>0 such that

[Tx(t) | & Cy(t) for 04t < oo .

T is a contraction. In fact,
[Tx;-Tx, (1) | 1 t
\}’(t) % - w(t—j f |e 1 Q)(S)) f(S X2 ds))Lt ds £

-« .-a(t-s)
—,V(—)'f C‘(t-s) a(t-s n(s) ‘xl () %2 Q)(S)n ds &
Ol fo Ge(t-8)" "e‘a(t n(a) W x;-x, Ml sgn s ()3 (@' (3))ds & allx oMl

-A(t—S)(f(s x

for 06t < 0o .

Thus llTxl-szll %q lel-xzﬂ .

Now we shall prove an existence theorem in the partially ardered Banach
space X*. The. Tarski fixed point theorem is here of ne use, because X% i

general is na conditionally complete lattice, as e.g. w% does not. Instead
of the assumptions Bl - BS from the previous theorem, an assumption on the
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monotonicity of f as well as some special growth assumption of f are used.

Suppose that (X, &) is an ordered real Banach space (for the definition
see [He].

Let A:X —» X be a sectorial operator with the compact resolvent and let
(AL+A)” -1 be mcreasmg for all A such that Re a;a According to Exercise
6 in LHe, p.60], e~ At> 0 tor each t20.

Let £=£(x,y):{0,00)xC —> X bs a continupus function, where C and the
norm e+l have the same meaning as above.

The space X* and hence C((-an,o),x“‘ ) is again an ordered Banach space
with natural ordering in C.

Let two following assumptions hold:

(1) For each z;,2,6C, 7,42, implies f(s,z)&1(s,2,).

(ii) There is a continuous function tl:(u,oo)xc—-» X such that

‘lf(s,z)ﬂx‘max-{lfl(s,zl)|x, lfl(s,zz)|X§ for all z&L, z;£2£2,.
Definition. A continuous function ulzR-nb X% will be called a lower
solution (an upper splution) of the equation (E2) if it satisfies

Uy (D 2 Mu( f;5 e A t0a,u) s,
(ul(t)?_‘e u(0)+f -A(t- 6)f(s,ul’(.,(s))ds) for each t20.

Theorem 6. Let Uy and Uy, respectivaly, be a lower and an upper soluti-
on, respectively, of the equation (E2) such that uy (8 )=l hl(O) and u2(9)'
=h,(@) for each ©<0, where h;,h,&C, h (Q)Ahz(e) for each @ £0,

h (0)= h (0) & X**® for some € >0, for which cc+€ < 1.
Let h'&C be a functlon such that h (8 )4h' (@)% h2(9) for each 9 &£ 0.
" Then there exists . at least one mild solutmn of the problem
%% +Au-t(t,uo(t)),
uo=h
and such that ul(t)au(t)auz(t) for each t>0.

Proof. We shall define the mapping T:5,~§,, where Sl {yaC(K0,0),
X%); y(0)=h"(0)% such that: \
1) y is an extension of the function h’,
2) (Ty)(t)'e'Ath D)+ f B-A(t S)I(s.y (s))ds for each t20,
(Ty)(6)=h ‘@ for aach 940
Because e zO and f is increasing, the operafor T is increasing on Sl.
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Since Uy Uy, we r2|ave Tu]_éTg2 By hléh ‘h2 we have Tuzéu2 and u £
‘Tul Thus uléTu1 el u1 . &7 uzﬁTuzé uy.

If we denote Vn =" u;, then there ex1st u eC(K0,00),X%) and a subsequence
of v, (without loss of generality we denote this subsequence again as {v 3)
such that V., converges to u in the space C%0,T»,%%) for each Te (0,00). To
prove this we show two facts:

(i) To each T>0 there exists a C(T)>0 such that

lvo ()|, &C(T) for each te<0,T>.
(ii) {vn'& is on the interval {0,T? equicontinuous in X %.

Then from (i), (ii) and from the compact embedding X**® into X% the exist-
ence of a ueC(<0,T>,X*) and of the subsequence v, such that v, converges to
u in the space C(0,T>,X%) follows.

If we take, step by step, T~1 2,... and by the Cantor diagonalization
process we get the existence of such a subsequence that v, converges to u on
CK0,T2,X¥) for each Te (0,). Then for this sequence the following is true:

"Vn+1(t)=e-Ath'(0)+ f: e'A(t'S)f(s,vn’Q(s))ds for each t= 0.

We can take a limit, because

1) A w(s) converges to Uxs) in C for each se{0,00) and hence

(s, Y .cls )) converges to f(s uo(s)) for each se<0,0).

2) |(s, 'S ds))lxémax {Ifl(s sup o(s))IX’ lf (s ”2,6,(5))'X5 from where
|£(s, WV c.)(s)'X is a bounded function for s €<0,t).

This implies that

t __A(t-s) t _a(t-s) -

'fo s f(s,vnﬁ(s))dsL‘éf; e (t-8)77C, (s)ds.
By the Lebesgue theorem we have

u(t)=e'Ath(0)+ j;te'A(t's)f(s,%(s))ds for each t€<0,m).
We have to prove (i) and (ii) by the standard way:

-at
D) v (O &Ce™ IO |, o+ <

P t0) 105, o))y d54 0™ INCO)|

t
*Cere f e e

“C, j e 3(88)(4_g) % tpg maxtlf) (s,u; ey)ls 12y(s,u, xs)) [Fds& (b,
WD IV teovy, (D], 1D @) 4] [ (e A DA,

® _A(t+r-s) 1- .
'f(s’vn,ﬁ)(s)))dslu. 'L(“ ) S f(s’vnp(s))dsjz‘ C,® “'+02'z .
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where we have used that

|f(s,vn,0(s))|x£max 4 |f1(s’“1,m(s))IX’ |f1(s,u2’6‘s))|x} .

Remarks. 1. In the case of ordinary differential equations and hence
when X®=R and X* is a conditionally complete lattice, we could use the Tar-
ski fixed point theorem and omit the assumption (ii) of the theorem.

2. Also, in the general case, the assumption (ii) could be replaced by
various others, e.g. |f(s,z)|X6C(s), where C is a real continuous function,
or this assumption can be replaced by

If(s,z)lx‘ kl(s,lzll,lzzl), where k; is a real continuous function.
Then we should need neither an upper solution nor a lower solution. In this
case each sequence U, =" uy contains a subsequenbe converging tuv a solution.
3. Since in the theorem we have shown that there is a subsequence of
v, which is convergent in the space CK0,T>,X*) and since the sequence i

is nondecreasing, we have that the whole sequence v_ is convergent to “the

n
limit function, which is sup vy (t). Of course, this limit process could be

proceeded also with i u,.
The following examples illustrate the last theorem.
Example 4. We shall consider the problem
e -g—lt’- -u"=u(t+1/2)+u(-1/2)

u(0,t)=u(ar,t)=0

with the initial condition u,=0.
Hence f(t,u)=u(0)+u(-1-t), @ (t)=t+1/2 and f(t,ut+l/2)=u(t+1/2)+u(-1/2).
Then we can construct a lower solution u(t)=0 and an upper solution

uI(O )=-0. sin x for each @£0 and ul(t)=t sin x for each t=0.

Hence the assumptions of the previous theorem are fulfilled.

Example 5. We shall consider the problem

%{ U, =min { sm X u3(t 1)} +u(- 1/2), which can be written as gl: =
=f(t ut+1) where f(t,u)=4{min sm}x u’ ()% +u(-3/2-t).

It is easy to see that this function fulfils the assumptions of the pre-
vious theorem. X

Now, we can take u(t)=0 for all te (-oo,e) as a lower solution and
v(t)=20tetsin x for all t20, v(-1/2)=x sin x for some c >1.
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We extend v(t) into (-o0,-1/2) v(-1/2,0) such that v be a nonnegative conti-
nuous function on (-o,).

We shall show that v(t) is an upper solution of our problem and hence it
suffices to show that

vit)2 e Ao+ fot e A9) ning sin’x,8c3(s41)%e5 3 sin’x F ds+

t .
+C f’ e'A(t'S)sin X ds
so that

v(t)z-j;t e'A(t's>sin3x ds+c j;te'A(t's)ain x ds=3/4 L‘ e'(t'S)sin x ds-

t
- j: e'g(t"S)(sin 3x)/4 ds+c 4 e-(t'S)sln x ds=3/4(1-e )sin x+
t
+c(1-e"Hsin x-fo ¢ (t-8) 54&2‘- ds.

 From the fact that sin xZ-sin 3x for each x€€0,ar) it suffices to show
that
2ctetsinx=v(t)z(l-e't)sin x(1+c), thus 2ct etz (1-e¥)(14c)
for each t20.

But this is true for all sufficiently large ¢ (c »1). Hence the assumptions
of the previous theorem are fulfilled.
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