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ON THE MULTIPLE BIRKHOFF RECURRENCE THEOREM IN DYNAMICS
Bohuslav BALCAR, Pavel KALASEK and Scott W. WILLIAMSD)

Abstract: We prove the following extension of the Furstenberg-Weiss
Multiple Birkhoff Recurrence Theorem: If the weight of a compact space X is
less than p and if ¥ is a countable commuting set of maps from X to X,

then [X,¥] has a multiple recurrent point. We also show that even for com-
pact connected first countable spaces, the previous result is false if the
weight is lifted.
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§ 0. Introduction. In this paper space means compact Hausdorff topolo-
gical space. When X is a space, C(X,X) denotes the semigroup under composi-
tion of all continuous functions from X into X. A family ¢ ©C(X,X) is said
to be commuting whenever V¥f,g ¢ & , fog=gof.

For us, a (dynamical) system will be a pair [X, 1, where X+@ is a
space and @4 ¥<C(X,X). In the case ¥= {f}, the system IX, <] denoted by
[X,£] is traditionally called a discrete (dynamical) system.

A point xgX is said to be multiple recurrent in the system [X,¥] pro-
vided that for each neighbourhood U of x, and for each finite set G € ¥,

there is an n&N (the positive integers) such that ¥geG, g"(x)eU. In the
discrete system case, a multiple recurrent point is exactly that which is u-
sually called a recurrent point. It is G. Birkhoff’'s theorem that each disc-

rete system has a recurrent point (see [Bi] or [Ful,p. 20). H. Furstenberg
and B. Weiss have proved the Multiple Birkhoff Recurrence Theorem (MBR).
If X is a compact metric space and if  is finite and commuting, then [X, <]
has a multiple recurrent point (see FW ).

The main result shows the possibilities how to extend the MBR.

1) Partially supported by N.S.F. Grant R 118239633
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In 2.3 we prove the following:
For a compact space X with w(X)¢ p and a countable commuting subset
4q C(X,X) there is a multiple recurrent point in the system [X, & 1.

We also present an exemple (3.1) showing that some restrictions to the
space X are necessary even for finite ¢ . Nevertheless, we obtain (2.5) a
slightly wesker result true for all systems [X, ¥1 with ¥ comuting.

Notation: < =Nu{o}. When X is a set, |X| denotes the cardinality of
X. When X is a space, the weight of X,w(X) is the minimum cardinality of an
open base for the topology of X. A family D of non-empty open sets of a spa-
ce X is called a 9r-base provided that each non-empty open set contains a
member of D. The well known cerdinal characteristic p concerns families of
subsets of <.

pmin §1A]: A & [@1° NA'sLwl%or each tinite A'% A and
VB e [wl3AaA) [B-A|= 3.
Equivalently, p is the minimum cardinality possessed by a neighbourhood base
of a non-empty nowhere dense subset of Bed- @ .It is F. Hausdorff’s classic-
al result that p @), . Very important for us is Bell’s Theorem [Be]:
Each compact separable space X cannot be covered by less than p nowhere den-
se subsets.

§ 1. Preliminaries on minimal sets and systems. Suppose [X,¥] is a sy-
stem. A set ASX is said to be invariant in [X,%) provided that A is non-em-
pty and for each f @ & is f[A]&A.

A set M&X is said to be minimal in the system [X, ¥J provided it is a
minimal element in the partially ordered, by inclusion, set of all closed
invariant sets. When X is minimal in [X, ¥, then [X, ¥] is said to be a mi-
nimal system. Suppose & &C(X,X) is arbitrary, then %) denotes the set of
all g&C(X,X) such that g is the composition of finitely many members of ¥,
s0 (¥> is a semigroup under composition.

Although we do not in general assume (as Furstenberg) that ¢ is either
commuting or finite, the proofs of each of the following lemmas are either
similar to the discrete system case and/or straightforward - so they are par-
tially left to the reader (note that compactness is only necessary in 1.1 (i)
and 1.2 (iii)).

1.1. Lemma. Suppose (X, <] is a system. Then the following two statem-
ents are true:
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(i) If A€X is closed and invariant in[ X, <) then there is an MSA mi-
nimal in [X,Y].
(ii) M is minimal in [X, <) iff M is minimal in[X, {¥>1.

Suppose that (X ,:) is any semigroup. Let us call S @ &, syndetic in
= orovided there is a finite set F < Z such that for each g € X there s-
xists f&F so that f.geS.

1.2. Lemma. Suppose [X, <] is a system and M is a closed invariant set
in [X, <] . Then the following three statements are equivalent:
(i) M is a minimal set in [X,{$%¥>].
(ii) VY x&M, cl(ff(x):f &« <LDF)=M .
(iii) V¥xeM and for each non-empty open Ug M .
if a <> :2(x)&U is a syndetic set in <¥> . .

Proof. We show (ii) «®(iii).

(—») We claim that Uf™{UJ:f & < DM for each non-empty open set
U. when M -U{7U):t & <¥DX}48, then this set must be invariant. Therefo-
re from the compactness of M we get fl""’fk so that 251 f;]'[U]=M. For
g e{¥)and g(x)=y we obtain £, so that yg ISICUJ and finally fjog(x)eu, so
that 5= {f e < ¥> :£(x)a Ut is syndetic.

(e—) Let cl(42(x):f € <F>})$M. Then U=M-cl(§1(x):f & <FD}) is o-
pen, but §f € <P :f(x)e U} is syndetic, that means non-empty.

§ 2. The mein result. We shall use the following combinatorial fact o-
riginally published in [Ra] (also see [GRS], pp. 38-39). ¢

2.1. Lemma. (Gallai’s theorem) Suppose that ke N and suppose P is a

finite partition of wX. If EswX is finite, then 3P & ® , Ir e X,

3neN, such that YseE, r+n.seP.

2.2. Theorem. Suppose that [X, ) is a minimal system, X is 3eparable,
w(x) <p, and suppose < is commuting and |¢ |< p. Then the set of all multi-
ple recurrent points is a dense subset of X.

Proof: Let & denote the family of all non-empty open sets of X. Fix
6= { 9ys---18 & . For every B e B define
D(B,G)={V n&.k" g;n[V]:ntN,V¢ B and either
VGB or VnB=p}.
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To prove the following claim, we need only the assumption that [X, <] is min-
imal and ¢ is commuting.

Claim: D(B,G) is a Jr-base of X for each B & 93 . To see this, fix Be R
and suppose U € 8 is arbitrary.

Define V=BNU if BnU=@, otherwise define V=U if BnU=@. Pick up x €X.
Since [X,¥] is minimal, we can apply 1.1(ii) and 1.2(iii). Hence the set S=
= 40 & <¥:0(x)e V¥ is syndetic in the abelian semigroup <¥». Let F S < &)
be the associated finite set. For each fe& F define

1

v v
Pe= dv= <V1""’Vk> ewk:fogl °... ogkke St.

Then {Pf:fa Ft is a finite covering of wk, because S is syndetic in {¥>.
Now we apply BGallai’s theorem for the finite set E= {(J,l}k and therefore for
LJ
some f& F there is a veck and ne&N so that for each e=<e1,...,ek)s E;
v +ne v, +Ng,
teg' lo...egX Kes.

v V,
Denote h=t eg;le ... °g,", then for each i, o] eh&S. It megns that

h(x)& V and also g';(h(x))sv for each i=1,...,k. So h(x)aV ~, gI"LVl

A
and then V r-u:"l:\4 gin LV] is a non-empty open subset of U anu the claim is
proved.

To prove 2.2 let A< be a base for the topology of X such that |4 |<¢
< p. For each A @« A - {#} and finite G & ¥ put N(A,6)=X- UD(A,G). Accord-
ing to the claim, N(A,G) is nowhere dense. As X is separable and |<.f|<g, we
may apply Bell's Theorem to find an x & X- U{N(A,G):A & & ,6 &< is finite}.

So for each A @ A , A a neighbourhood of x and finite G & ¥ there exists
V&D(A,G) such that x&V and V& A. This implies that there exists neN such
that g"(x)e A for each peG.

2.3. Corollary. Suppose that X is a compact Hausdorff space with w(x)<
< p. If e C(X,X) is countable and commuting, then the system [X, %] has a
multiplé recurrent point.

Proof: From 1.1(i) take a minimal set M of [X, <3 . Then w(M)<p and
by 1.2(ii), M is separable. So 2.2 applies.

2.4. Corollary. (The Multiple Birkhoff Recurrence Theorem) Suppose X is
a compact metrizable space and Y€ C(X,X) is countable and commuting. Then
[X,¥1 has a multiple recurrent point.

Proof: Since p is an uncountable cardinal and w(X)& co , then 2.3
applies.
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Let us agree to call xe X multiple non-wandering in the system [X, ¥}
provided that for each neighbourhood U of x and for each finite 6 & <f,
Juel, 3neN, V£6G, £7(u)e U. This is a slight generalization of Birk-

hoff s notion of non-wandering point [Bil. From the claim of the proof 2.2
we obtain immediately

2.5. Theorem. Suppose that [X, ] is a minimal system, and & is commu-
ting. Then each point of X is a multiple non-wandering in [X, 1.

There is a much longer purely topological proof of 2.2 and 2.3 which ma-
kes no use of Gallai’s Theorem. In fact, Gallai’s Theorem can be obtained
(see [Fu)) as a corollary of the Multiple Birkhoff Recurrence Theorem.

§3. Example. Since the Birkhoff Recurrence Theorem, originally proved
for compact metric spaces, is true for each discrete system, one might con-
Jjecture that the same is the case for the Multiple Birkhoff Theorem. Howev-
er, we have the following counter-example.

3.1. Example. There is a compact connected first countable space X with
a homeomorphism h:X —» X such that [X,{h,h'lll has no multiple recurrent
points.

Ma:l‘rﬁZ, ©is a realt in the plane.

Proof: Let X be the annulus {re
If 1¢r<2, a basic neighbourhood of re2™® will have the form

{seb‘i? :0< |s-r|< & ¥ where g < min {r-1,2-r} .

2111 @

A basic neighbourhood of e will have the form, for ¢, 0 < &<1,

L ‘,ev{sezade :1&s<l+ed

where L, ¢ = {re®™® 14142, 0<6 -p<el.

A basic neighbourhood of Zez'ie will have the form, for ¢, 0<£&<1,

Re,0 U fse?™i€ ;o 8<s42} where Ry o= §re?™ie :14r&2, 0<p-0<¢el -

Obviously X is first countable. It is easy to show that X is compact and
connected. Now arbitrarily choose an irrational e¢c, O<ec <1 and define a ro-
tation h:X —» X by

h(reZ"ie):rez’d@*‘d-
Clearly, h is a homeomorphism. On the other hand if g < %, then V& ,FVne
eN,Vr, 16162 e el o, it N e® R, o -

Since for all real ® and Vn&N, 8@ +nev s @40 -nx{mod the integers) no
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point of X is multiple recurrent in [X,fh,h"13] .

Our example is the simplest of several exhibiting the faIlure, in gene-
ral, of the Multiple Birkhoff Recurrence Theorem. The first two authors of
this paper have a compact X, w(X)=2% with a homeomorphism h such that
[X,ih,hzil has no multiple recurrent point - this is especially interesting
in the light of the result [ES]:

If x is recurrent in a discrete system [X,f], then, ¥ne&N, x is recurrent in

the system [X,fnl. The third author jointly with J. Pelant have found a sys-

tem (X, ££,93] with £ and g commuting homeomorphism such that [X,f] and [X,g]
have no recurrent point in common. All of these examples will appear elsewhe-

re.

Question 1: Is it provable in ZFC that there is a system [X, ¥1 , ¥ fi-
nite and commuting and W(X)=Q.such that there is no multiple recurrent point

in[X,¥] ?

Question 2: Suppose X is the Cantor set. Is there a commuting $=CT(X,X
such that [X,%] has no multiple recurrent point?

S.W.W. wishes to thank Charles University (Prague) for its hospitality
during the completion of this manusript.
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