

Werk

Label: Article **Jahr:** 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0028|log7

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 28.1 (1987)

\· .

ON WEAKLY UNIFORMLY ROTUND SPACES J. HAMHALTER

Abstract: If X is a Banach space whose dual is weakly uniformly rotund and $(V_n)_{n=1}^\infty$ is a sequence of subspaces of X* whose characters tend to one, then $\int_{-\infty}^\infty V_n = \{0\}$. A weakly sequentially complete Banach space whose dual is weakly uniformly rotund is reflexive.

 $\underline{\text{Ke}\bar{\text{y}} \text{ words}}\colon$ Weakly uniformly rotund spaces, character of subspace.

Classification: 46B20, 46B10

1. <u>Introduction</u>. We shall consider weakly uniformly rotund spaces (in symbol WUR). I. Singer proved in [5] that if X^{**} is not smooth, then X^{*} contains no closed proper subspace of the character one. We obtain an analogous result (Theorem 2.1) for a space X whose dual is WUR. We shall also deal with the reflexivity of the WUR space.

Let us recall some notions and basic results. We consider only real Banach spaces. Let X be a Banach space. Its topological dual and its second topological dual are denoted by X* and X** respectively. The symbols B(X), S(X) mean the closed unit ball and the unit sphere around the origin in X. The canonical embedding of X into X** is denoted by Q. The value of $x^* \in X^*$ at $x \in X$ is denoted by $\langle x^*, x \rangle$. Let $f \in S(X^*)$. The function $\sigma'(X, f)$: $:\langle 0, 2 \rangle \longrightarrow \langle 0, 1 \rangle$ defined by

 $\sigma'(x,f)(\epsilon) = \inf \{1 - \frac{\|x+y\|}{2}; \|x\| = 1, \|y\| = 1, |f(x-y)| \ge \epsilon \}$

is called the modulus of weak convexity in the direction f. A Banach space X, respectively its dual X^* , is said to be weakly uniformly rotund (in short WUR), respectively weakly* uniformly rotund (in short W*UR) if for every $e \in (0,2)$ the following holds:

 $I(X,f)(\epsilon)>0$ for every $f \in S(X^*)$,

respectively $d(X^{\#},Q(x))(\xi)>0$ for every $x \in S(X)$.

Given a y $\in X$, the function $\rho(X,y):\langle 0, \alpha \rangle \longrightarrow \langle 0, \infty \rangle$ defined by

$$\rho(x,y)(\tau) = \sup \left\{ \frac{\|x+z\|}{2} + \frac{\|x-z\|}{2} - 1; x \in S(x), z = \tau y \right\}$$

is called the modulus of smoothness in the direction y. A Banach space X is said to be uniformly Gateaux smooth if

$$\lim_{\tau \to 0+} \frac{\mathcal{P}(X,y)(\tau)}{\tau} = 0 \text{ for every } y \in S(X).$$

Let us recall the following well known results.

Theorem 1.1. If X is WUR, then every $x^{**} \in X^{**}$ is a sequential weak* limit of elements of Q(X).

<u>Theorem 1.2</u> ([2]). Let X be a Banach space. The following conditions are equivalent:

- (i) X is WUR
- (ii) X* is uniformly Gateaux smooth
- (iii) X** is W*UR

Theorem 1.3 ([2]). Let X be a Banach space. The following conditions are equivalent:

- (i) X is uniformly Gâteaux smooth
- (ii) X* is W*UR

2. Banach spaces whose dual is WUR. We introduce the following notions (see e.g. [4]). Let X be a Banach space and let V be a linear subspace of X*. The number $r(V) = \sup \{ \infty \ge 0; B(V) \text{ is weakly* dense in } \infty B(X) \}$ is called the character of V. Let us suppose that V is weakly* dense in X and let P be the projection on $Q(X) + V^{\perp}$ defined by P(z+y) = z for every $z \in Q(X)$, $y \in V^{\perp}$. Then ([4]) $r(V) = \frac{1}{uP^{\perp}}$.

The following theorem has been motivated by a result of Singer (see [51]).

Theorem 2.1. Let X be a Banach space whose dual is WUR. Let $(V_n)_{n=1}^\infty$ be a sequence of subspaces of X* such that $\lim_{n\to\infty} r(V_n)=1$. Then $\int_{n-1}^\infty V_n^1=\{0\}$.

Proof: Let us assume that the converse holds. We shall

derive a contradiction. Let us suppose that there is a sequence of subspaces $(V_n)_{n=1}^{ep}$ of X^* satisfying the following conditions:

 $\lim_{n\to\infty} r(V_n)=1 \text{ and there is } \Phi \in (\sqrt[n]{n}, V_n) \cap S(X^{**}).$

For each n \in N we find $f_n \in S(X^*)$, $x_n \in S(X)$, such that $\Phi(f_n) > \frac{1}{2}$, $f_n(x_n) > 1 - \frac{1}{n}$, $f_n \in X^* \vee V_n$. As $r(V_n)$ converges to one, we shall suppose that $r(V_n) > 0$ for all $n \in N$. It means that V_n is weakly * dense in X^* for any $n \in N$ and we can put $W_n = Q(X) \oplus V_n^1$. Let $P_n : W_n \longrightarrow W_n$ be the projection defined by

$$P_n(z+y)=z$$
 for every $z \in Q(X)$, $y \in V_n^{\perp}$.

Denote the canonical embedding of X* into X*** by $\mathbf{Q}_{\mathbf{X}^{f x}}$ and put

$$g_n = Q_{X*}(f_n)$$
 $\tilde{h}_n = r(V_n)(Q^{-1}P_n)^* f_n$ $n=1,2,...$

Let \mathbf{h}_n denote the norm preserving extension of $\overline{\mathbf{h}_n}$ from \mathbf{W}_n on the whole X**.

We have $\|g_n\| = \|f_n\| = 1$, because $Q_{\chi*}$ is an isometry and

 $\|h_n\| \leq r(V_n) \|(Q^{-1})^*\| \cdot \|P_n^*\| \cdot \|f_n\| = 1$, because

 $r(V_n) = \frac{1}{RPR} = \frac{1}{RPRR}$. We obtain that

$$\langle q(x_n), g_n \rangle = \langle q(x_n), q_{X^*}(f_n) \rangle = \langle f_n, q(x_n) \rangle = \langle x_n, f_n \rangle > 1 - \frac{1}{n}$$

and
$$\langle Q(x_n), h_n \rangle = r(V_n) \langle Q(x_n), (Q^{-1}P_n)^* f_n \rangle = r(V_n) \langle (Q^{-1}P_nQ)(x_n), f_n \rangle = r(V_n) \langle x_n, f_n \rangle = r(V_n) \langle (1 - \frac{1}{n}) \rangle$$

These inequalities imply that $\|g_n + h_n\| \longrightarrow 2$. Obviously,

$$\langle \Phi, g_n \rangle = \langle f_n, \Phi \rangle > \frac{1}{2} \text{ and } \langle \Phi, h_n \rangle = \mathbf{r}(V_n) \langle G^{-1}P_n \Phi, f_n \rangle = 0$$

 $=\mathbf{r}(\mathbf{v}_{\mathbf{n}})\langle 0,\mathbf{f}_{\mathbf{n}}\rangle =0.$

Therefore $(g_n - h_n)(\Phi) > \frac{1}{2}$ for all $n \in \mathbb{N}$. Hence X^{***} is not W^*UR and by Theorem 1.2 X^* is not WUR. This is a contradiction.

The assumption of the just proved theorem can be weakened a little. Namely, it suffices for X to be a subspace of another Banach space Y whose dual is WUR. Indeed, it is a routine matter that in this case X* has a dual WUR norm, too. Further, $X^{\perp \perp}$ is linearly isometric with $(Y^*/X^{\perp})^*$ and Y^*/X^{\perp} with X*. Therefore X^{**} is linearly isometric with $X^{\perp \perp}$. Consequently X is uniformly Gâteaux smooth and so X^* is WUR.

By the end of this note we shall deal with reflexivity of WUR spaces.

Lemma 2.2. Let X be a Banach space whose dual is WUR. Then X has no subspace which is isomorphic to \mathcal{L}_1 .

<u>Proof</u>: Assuming the converse, we derive a contradiction. Let Y be a subspace of X which is isomorphic to \mathcal{L}_1 . Then Y* is isomorphic to \mathcal{L}_{∞} and thus it has no equivalent WUR norm (see [2 p.120]). Hence there are $(f_n)_{n=1}^{\infty} \in S(Y^*), (g_n)_{n=1}^{\infty} \in S(Y^*), F \in Y^{**}$ and $\varepsilon > 0$ so that $\lim_{n \to \infty} \|f_n + g_n\|_{\varepsilon} = 2$, $|F(f_n - g_n)| > \varepsilon$ for all $n \in \mathbb{N}$. Let \overline{f}_n , \overline{g}_n be norm-preserving extensions of the functionals f_n , g_n from Y on the whole X and let I denote the embedding of Y into X. Then

$$\langle \overline{f}_{\mathsf{n}}^{} - \overline{\mathfrak{g}}_{\mathsf{n}}^{}, I^{**}(\mathsf{F}) \rangle = \langle I^{*}(\overline{f}_{\mathsf{n}}^{} - \overline{\mathfrak{g}}_{\mathsf{n}}^{}), \mathsf{F} \rangle = \langle f_{\mathsf{n}}^{} - g_{\mathsf{n}}^{}, \mathsf{F} \rangle$$

for all ne N.

Since X^* is WUR $\lim_{n\to\infty} F(f_n-g_n)=0$, which is a contradiction.

Theorem 2.3. Let X be a weakly sequentially complete Banach space. Then X is reflexive if either X or X* is WUR.

<u>Proof:</u> Let X be WUR and let $x^{**} \in S(X^{**})$. Using Theorem 1.1 we can find a sequence $(x_n)_{n=1}^{\infty} \subset X$ such that $\lim_{x \to \infty} Q(x_n) = x^{**}$ in the weak* topology. Then $(x_n)_{n=1}^{\infty}$ is a weak. Cauchy sequence and hence it converges weakly in X. Therefore $x^{**} \in Q(X)$ and so X is reflexive. Let $X^{\#}$ be WUR. Since the reflexivity of Banach spaces is separably determined we can assume that X is separable. According to Lemma 2.2 X has no subspace which is isomorphic to \mathcal{A}_1 . By [3], for every $x^{**} \in X^{**}$ there is a sequence $(x_n)_{n=1}^{\infty} \subset X$ such that $\lim_{x\to\infty} Q(x_n) = x^{**}$ in the weak* topology. Then, again, by the weak sequential completeness of X, $x^{**} \in Q(X)$, which completes the proof.

References

- [1] J. DIESTEL: Geometry of Banach spaces, Selected Topics, Lecture Notes in Mathematics 485, Springer-Verlag, Berlin 1975.
- [2] J.R. GILES: Uniformly weak differentiability of the norm and a condition of Vlasov, J. Austral. Math. Soc. 21 (1975), 393-409.
- [3] E. ODELL, P. ROSENTHAL: A double dual characterization of Banach spaces containing L₄, Israel Journal of Mathematics 20(1975), 375-384.
- [4] J. PETUNIN, A.N. PLIČKO: Teoria charakteristik podprostranstv i priloženija, Kiev 1980.

[5] I. SINGER: On the problem of non-reflexive second conjugate spaces, Bull. Austral. Math. Soc. 12(1975), 407-416.

Technical University of Prague, Electro-Engineering Department of Mathematics, Suchbátarova 2, 16627 Praha 6, Czechoslovakia

(Oblatum 6.12. 1985, revisum 18.9. 1986)

*

.

1