

Werk

Label: Article Jahr: 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0028 | log69

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 28,3 (1987)

ON THE NUMBER OF COMPACT SUBSETS IN TOPOLOGICAL GROUPS O.T. ALAS

 ${\color{red} \textbf{Abstract:}} \quad \text{Results on the number of compact subsets in topological groups} \\ \text{are proved. Examples are provided.} \\$

<u>Key words:</u> Pseudocharacter, boundedness number, weak Lindelöf number.
<u>Classification:</u> 54A25

Notation and terminology. Let (G,τ) be a nondiscrete Hausdorff group, e be its neutral element and $\mathcal K$ denote the set of all compact subsets of G.

For any set X, |X| denotes the cardinality of X; and, for any topological space X, $\psi(X)$, $\chi(X)$, $\psi(X)$,

1. Number of compact subsets

Definition (due to I. Juhász). The boundedness number of (G, κ) - denoted by bo(G) - is the smallest infinite cardinal number κ such that for any open neighborhood V of e, there is a subset A of G, with $|A| \le \kappa$, so that V $\Delta = G$

Notice that this notion is different from total- β -boundedness introduced by Comfort in [3].

Theorem 1. The following inequalities hold $\psi(G) \leq |G| \leq |\mathcal{H}| \leq bo(G)^{\psi(G)}$.

Proof. There is a collection of open symmetric neighborhoods of e, $\mathcal V$, such that $\mid \mathcal V \mid = \psi(G)$ and $\bigcap \{V.V \mid V \in \mathcal V\} = \{e\}$. For each $V \in \mathcal V$ fix a subset A_V of G such that $V.A_V = G$ and $|A_V| \leq bo(G)$. Now the proof follows the one which appears in [1], since $\bigcap_{V \in \mathcal V} (\bigcup_{\mathbf x \in A_V} V\mathbf x.V\mathbf x) = \Delta$, the diagonal of $G \times G$,

Partially supported by CNPq.

 $|G| \leq bo(G)^{\psi(G)}$ and any compact subset of G has density not bigger than $\psi(G)$.

Remarks. 1) As a matter of fact, the proof above shows that the set of all closed subsets of G whose densities do not exceed $\psi(G)$ has cardinality not bigger than bo(G) $^{\psi(G)}$.

- 2) It is easy to see that bo(G) \leq wL(G) \leq c(G) (hence, bo(G) $^{\psi(G)}$ = =wL(G) $^{\psi(G)}$ =c(G) $^{\psi(G)}$) and w(G)=bo(G). χ (G).
- 3) If bo(G) is either a successor cardinal or a singular cardinal, then $o(G)^{bo(G)}=o(G)$, where o(G) denotes the number of open sets in G.

Corollary 1. If $bo(G) \le 2^{\psi(G)}$, then $\psi(G) \le |\mathcal{X}| \le 2^{\psi(G)}$.

Lemma. If K is a nonempty compact subset of G, then $\psi(K,G) \leq \psi(G)$.

Proof. Let $\mathcal V$ be a collection of symmetric open neighborhoods of e, closed under finite intersections. Furthermore we shall assume that $|\mathcal V|=\psi(G)$ and $\bigcap \{\operatorname{cl}(V)|V\in\mathcal V\}=\{\operatorname{e}\}$. Then $\bigcap \{V.K|V\in\mathcal V\}=K$; indeed, let $y\notin K$, then there is $V\in\mathcal V$ such that $Vy\cap K=\emptyset$ (otherwise, $Vy\cap K\ne\emptyset$, $\forall V\in\mathcal V$ and since K is compact, $\bigcap \{\operatorname{cl}(Vy)\cap K|V\in\mathcal V\}$ would be nonempty, which is impossible). But if $Vy\cap K=\emptyset$, then $y\notin V.K$.

Corollary 2. If $bo(G) \le 2^{\psi(G)}$ and there is a compact subset K of G such that $\psi(K,G) < \psi(G)$, then $|\mathcal{K}| = 2^{\psi(G)}$.

Proof. If there is a nonempty compact subset K of G such that $\psi(K,G) < \psi(G)$, then for each $x \in K$, $\psi(G) = \psi(x,G) \le \psi(x,K) \cdot \psi(K,G)$. It follows from Čech-Pospíšil´s theorem that $|K| \ge 2^{\psi(G)}$, hence $|\mathcal{X}| = 2^{\psi(G)}$.

Theorem 2. (GCH) If G is pseudocompact, then $|\mathcal{K}|^{\frac{2}{3}} = |\mathcal{K}|$.

Proof. Since G is infinite and pseudocompact, then $|G| \ge 2^{\frac{1}{5}}$. We may assume that if ∞ is a cardinal number such that $\infty \ge 2^{\frac{1}{5}}$, cf $(\infty) \ne \frac{1}{5}$, then $\infty = \infty$.

From Theorem 1 and since bo(G)= $\#_0$, either $|\mathcal{K}|=2^{\psi(G)}$ or $|G|=|\mathcal{K}|=\psi(G)$. In the first case there is nothing to prove; let us consider that $|G|=|\mathcal{K}|=\psi(G)$. From van Douwen's theorem 1.1 ([4]) if $\mathrm{cf}(|G|)=\#_0$, there is a cardinal #<|G|, such that $\psi(G)\leq \#(G)\leq 2^{\#_0}$. But $|G|\geq 2^{\#_0}$, hence $|G|=|\mathcal{K}|=2^{\#_0}$ and the proof is completed.

Lemma. If V is an open symmetric neighborhood of e and $\mathcal{K}(cl(V))$ denotes the set of all compact subsets of cl(V), then $|\mathcal{K}| = bo(G) |\mathcal{K}(cl(V))|$.

Proof. It is immediate that $|\mathcal{K}| \geq \text{bo}(G)$ and $|\mathcal{K}| \geq |\mathcal{K}(\text{cl}(V))|$: On the other hand, let B be a subset of G such that $\text{bo}(G) \geq |B|$ and V.B=G. For each nonempty finite subset F of B let \mathcal{K}_F denote the set of all compact subsets of G contained in V.F. The function from \mathcal{K}_F into $\text{TT}\{\mathcal{K}((\text{cl V})y)|y \in F\}$ which assigns to each K $\in \mathcal{K}_F$ the point $(\text{clVy} \cap K)_{y \in F}$ is injective. But $\mathcal{K} = \cup \{\mathcal{K}_F | \emptyset + F \in B\}$ finite} and $|\mathcal{K}(\text{cl Vy})| = |\mathcal{K}(\text{cl V})|$, hence $|\mathcal{K}| \leq \text{bo}(G) |\mathcal{K}(\text{cl V})|$, which completes the proof.

Remark. The GCH cannot be avoided in Theorem 2, since I. Juhász, under CH and using forcing arguments, obtained an HFD subgroup of {0,13} 1 , such that $|\mathcal{K}|^{\frac{\kappa}{10}} + |\mathcal{K}|$.

2 Fysenles

Example 1. ([5] or[2], page 1170.) Under $\mathfrak{K}_1=2^{\mathfrak{K}_0}$ and $\mathfrak{K}_2<2^{\mathfrak{K}_1}$ there is a hereditarily separable pseudocompact group G with $|G|=|\mathcal{K}|=|\mathfrak{K}_2|$ (which is not a power of 2, but $\mathfrak{K}_2^{\mathfrak{K}_0}=|\mathfrak{K}_2|$).

Example 2. Let G be the topological subgroup of $\{0,1\}^{\omega_1}$ whose members are the $(x_{\infty})_{\infty\in\omega_1}$ such that $\{\infty\in\omega_1|x_{\infty}=1\}$ is countable. G is countably compact, $\psi(G)=\mathcal{F}_1$, $|G|=2^{\kappa_0}$ and $|\mathcal{F}|=2^{\kappa_1}$. (Notice that the set $\{(x_{\infty})_{\infty\in\omega_1}\in G|x_{\infty}=1\}$ for at most one $\infty\in\omega_1$ is compact and has just one accumulation point.)

Example 3. Let us consider $\{0,1\}^{\omega_1}$ with the \mathbb{G}_{σ} -topology (each factor with the discrete topology). For each $\beta \in \omega_1$, let y_β be the point $(x_{\infty})_{\alpha \in \omega_1}$ such that $x_{\infty} = 1$, $\forall \infty < \beta$ and $x_{\infty} = 0$, otherwise. Denote by \mathbb{G} the topological subgroup generated by the y_β . Then $\mathrm{bo}(\mathbb{G}) = \mathcal{K}_0$ and $\mathrm{wL}(\mathbb{G}) = \mathcal{K}_1$. (Notice that no countable subcollection of $\{p_{\mathbb{F}_{\xi}}^{-1}(\{0\}) | \xi \in \omega_1\}$, where pr_{ξ} denotes the projection for each $\xi \in \omega_1$, has its union dense in \mathbb{G} .)

Example 4. Let ∞ be an infinite cardinal such that $\alpha^{0} = \infty$. Comfort proved that there is a dense countably compact subgroup G_{*} of $\{0,1\}^{2^{\infty}}$ such that $|G_{*}| = \infty$. Denoting by G the topological product group $\sum \times G_{*}$, where \sum denotes the subgroup of $\{0,1\}^{\infty}$ such that its elements have at most countably many coordinates different from 0, we have that $|G| = \infty$, $\psi(G) = \infty$ and $\psi(G) = |\mathcal{K}| = 2^{\infty}$. Notice that G is countably compact.

Example 5. Let α be an infinite cardinal number, whose cofinality is β and let $(\alpha_i)_{i \in \beta}$ be a strictly increasing family of cardinals such that $\alpha = \sup_{i \in \beta} \alpha_i$. For each $i \in \beta$ let G_i be a discrete topological group with $|G_i| = \alpha_i$. The topological product group $G = \bigcap_{i \in \beta} G_i$ has a boundedness number equal to α , $\gamma(G) = \beta$ and $|\mathcal{K}| = \alpha^{\beta}$.

References

- [1] O.T. ALAS: Inequalities with topological cardinal invariants, Collected papers dedicated to Prof. Edison Farah on the occasion of his retirement (1982), 91-97.
- [2] W.W. COMFORT: Topological groups, Handbook of set-theoretic topology, North-Holland, Amsterdam (1984), 1145-1263.
- [3] W.W. COMFORT and D.L. GRANT: Cardinal invariants, pseudocompactness and minimality: some recent advances in the topological theory of topological groups, Top. Proc. 6(1981), 227-265.
- [4] E. van DOUWEN: The weight of a pseudocompact (homogeneous) space whose cardinality has countable cofinality, Proc. Amer. Math. Soc. 80(1980), 678-682.
- [5] A. HAJNAL and I. JUHÁSZ: A separable normal topological group need not be Lindelöf, Gen. Top. Appl. 6(1976), 199–205.
- [6] I. JUHÁSZ: Cardinal functions in topology ten years later, Mathematical Centre Tracts 123, Amsterdam, (1980).

Instituto de Matemática e Estatística, Caixa Postal 20570 (Ag. IGUATEMI), Sao Paulo, Brazil

(Oblatum 31.3. 1987)