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Abstract: Some procedures of estimation and prediction based on Kalman
filter in multivariate time series models of the type ARMA are suggested in
the paper. Cases of multivariate time series with missing observations and
with components known till various time periods are also considered. Numeri-
cal simulations demonstrate some of the results. .
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I. Introduction. Kalman filtering [61,[7] can be used as a very practic-
al instrument for the adaptive estimation and prediction of time series not
only in technical applications but also for shorter (e.g. economic) time seri-
es (see e.g. [11,[11]). As far as Kalman filtering in time series analysis is
concerned, some authors prefer to construct, by means of the Kalman filter,
the (exact) likelihood function of the time series models (see [41,08],[12]
and others). However, in this paper the Kalman filter provides directly the
recursive estimation and prediction formulas which are optimal in the sense
of the least squares principle.

After the recapitulation of the classical results we suggest some estima-
tion and prediction procedures for multivariate ARMA models. Moreover, it is
shown how to modify these procedures when some components of observations are
missing or when we know the particular components of the multivariate time se-
ries till various time periods.

We shall apply the Kalman filter in the context of the following discrete
linear dynamic system
(1.1) Xta1® G exet M
(1.2) Y MpXitvys
where (1.1) is the state equation and (1.2) is the observation equation of the
system. Here X is the (vector) state variable of the type (mt,l) at time t;
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y; is the (vector) observation of the type (nt,l) at t; @t, Pt’Mt are matri-
ces of the type (mt+l’mt)’ (mt+1,qt+1), (nt,mt), respectively (ét is the
state transition matrix or system matrix, FE is the input matrix and Mt is
the observation matrix at t); w; and vy are random vectors of the type (qt,l)
and (nt,l) fulfilling

E(wt)=0, E(vt)=0,

var(wt)=nt, var(vt)=Rt,

cov(ws,wt)=0, cov(vs,vt)=0, s¥t,

cov(ws,vt)=0

with variance matrices Q and Ry of the type (qt,qt) and (nt,nt) at t. Moreo-
ver, the initial value L of the state variable is assumed to fulfil

cov(xo,wt)=0, cov(xo,vt)=0.

If Yt denries the (n1+...+nt)—dimensional Hilbert space spanned by the
components ct the random vectors YseeesVy then the Kalman filter produces re-
X P : at at
cursively the orthogonal projections Xg and Xii1 of X4 and Xt41 into Yt toge-
ther with the matrices
t_ ot at, - t ~t ot ,
Pt—E(xt—xt)(xt—xt) s Pt+1’E(xt+1—xt+l)(xt*1 Xt+1) .

The filter can be written in the form

(1.3) DRET RIS

LA Pror &4PE 94 My, T

(1.5) Rk G MBED,

(1.6) PE=(1-kMOPEL,

where

.7 Ke=Py Mt Insr )7 <plurR;!

The matrix MtP:_lMt'+Rt is supposed to be regular (i.e. positively defini-
te) in the first expression (1.7) and the matrix Rt is supposed to be regular
in the second expression (1.7) for Kt (moreover, the regularity of Rt also gu-
arantees the regularity of MtPE—1M£+Rt)' The derivation of (1.3) - (1.7) is
given e.g. in [5, p. 201) or [10, p. 807) with the only exception that the
dimensions of ali vectors and matrices in the system (1.1) and (1.2) are con-
sidered to be constant in time. However, the proof can be extended to our case
with changing dimensions (see [91).

The relations (1.3), (1.4) are the prediction steps and (1.5) - (1.7) are
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the correction steps of the Kalman filtering algorithm. If connecting these
two steps one can obviously write

(1.8) x, +K

~ A
Ren1® BeXpen Oy My 8459
(1.9) Py =T Me ) (@4Py &4+ Pelpy T

_ . ’ . . . . _1
(1.10) Ky 1 =(@ 4Py @yr PyQypy Py IMy (DR & a0 ) MM Ry )

. gl
FraMealia
where we put for simplicity
t
(1.11) Xy= Qt, +=P¢-

If the system matrix & and the observation matrix M are constant in time
then the orthogonal projection QLk of LS into Yt has the form

(1.12) =3kt k2o :

t+k

so that the prediction ?Lk of Yiek at time t can be written as

at kAt
(1.13) Y™ Mxt+k—M@

2. Adaptive parameter estimation in time series models by Kalman filter.
First we remind briefly the adaptive parameter estimation results (see e.g.
[3, p. 61)) in the classical linear regression model of the form

(2.1) yy=xibr ey,

where Xt:(xl treeo%p, t)' is the (r,1) vector of regressors at time t, b=
(bl’ -5b )' is the (r 1) vector of regression parameters and ¢, is the re-
51dual at t1me t such that E( et) =0, var( et) &2 , cov(s €4 )=0 for s#t
(8 250 is the further unknown parameter of the model).

In this case the state space representation (1.1) and (1.2) suitable for
the adaptive estimation of the parameters b can be written as

(2.2) bt+1=bt’

(2.3) X,b,+ &

Y%t &g
where xt'bt’ Vi %4 c}t=I, F‘t=0, Mt=xt', Qt=0’ Rt=62. Now the relations (1.8)
and (1.9) using (1.10) have the form

(2.8) b —b +872%p

tel o141 Vg1 X010t

(2.5) P P

1Pt a1 Pe¥ean 6 2y te xea %o
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Since the parameter 62 is unknown one can put

-e2
(2.6) Vi= 7P,

and rewrite (2.4) and (2.5) to the form

A A

B )
(2.7) PPtV X1 Va1 4010

- * _l :
(2.8) Vi ™V O VX #1T VX X, Ve

which are the formulas of the recursive least squares method for the model

(2.1). As far as the adaptive estimation of the parameter 6’2 is concerned
one can obtain using the relation

2.1 ¢ “AL2
9 T a4 (yyxiby)

the adaptive formula (see [3, p. 781)

2 _ 1 e SO =1 oo~
2.9) 8L - gzl P8t O VX 1D 7 (g, xy, B,02].

The matrix

A
22
(2.10) Pe=8t Vi

can be taken as the estimate of the variance matrix of 3,“1. If there is no
apriori information on the parameters one can choose the initial values of the
estimates at time to’ e.g., as

-1, A2
(2.11) B, =0, v, c11, §2 =
t0 ’ tO tO ’

where c is a small positive constant (see [31).
In the following text adaptive estimation formulas are suggested for some
multivariate time series models.

2.1. Estimation in multivariate AR process. Let us consider an n-dimen-
sional AR(p) model of the form

(2.12) ¥4 ¢1yt-1+' vot ¢pyt-p+ €4s
where q;l,..., Qp are (n,n) matrices of parameters and {-z,t'& is an n-dimension-

al white noise, i.e. E( zt)=0, var( 'at)= = >0, cov( e at)=0 for s+t. Let
us denote

vec Ql y1;-1 0 y’;-p 0
_ vec & _ - -
b = 2 y Xy = Vi1 Yi-p
vec ép 0 Yi_1 0 ,yLP /
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where the operation vec & arranges the rows of a matrix $ to a column vector.
The dimension of the vector b is (nzp,l) and the matrix Xt is (n,nzp).
The adaptive estimation formulas for the system
(2.13) by,17b¢s
(2.14) y4Xiby+ €4

analogous to (2.4), (2.5) and (2.9) are

~ —l\ . ~ _1 A
(2.15) Bea1 PP Xt Zp ar X Peds
B . . o M |
(2.16) P o1 Pt PiXea1 Kea1P¥ean* =) XeurPes
2 A A 3
(2.17) 2, 1= —5 Ltnp) b3 & * V14108010 Vpa1 X1 Prey) -

t+1-n“p

Reuark 1. In the formulas (2.15) and (2.16) for bt+1
mate :Et from time t is used. One can improve this procedure calculating at

and Pt 1 the esti-

time t+1 auxiliary values

A
b, B PE X e T Vg X4s164)s

P PP a1 XearPi¥ea

and then the final values for time t+1

+ Zt ) Xt+1Pt

4 ~
B BePea Xt ol O X Be)s

. ~ _l
P PP Koo Preer® Eyap Xta1

A _ 1 ) n .
= B (D) &g K B8 Vg %8510 ).

Pis

In the case of a multivariate AR(p) model we can also proceed in the fol-
lowing way using the state space representation for particular components of
the process. The model (2.12) can be rewritten to the form

(2-18) oy SrYeg* o+ QY pt B

where @0 is a lower triangular matrix with unities on the main diagonal and
an n-dimensional white noise {etk has a diagonal variance matrix
62 0
var( ey) = 5
0 6 f

Then it holds for particular components of (2.18)
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€8 (), "

1,t° F117Y1,t1% " Bin Vn,t-pt Bt
(o) (1) (p)
-5y +& Yq 4. +...§50 _+E
aqey Z¥ YA 21 Y1,t-1 Yn,t-p* 2,1
: (1) ( )
Yo 4o (o) _(0) + y +...+@'P
M= =Py ¢ o " PoonetVnel, b oL VLl PonYn, t-p* & ¢

where @ (f;?(l)) j,k=1,...,n; i=0,1,...,p

The particular relationships of (2.19) have the following state space re-
presentation for i=1,...,n

(2.20) bnt+i+1=bnt+i’
(2.21) Zntsi nt+iPnteiVntsi’
where
(1) €D) (p) (p) (0) () 1) (p)
b_(q’ll""’g,ln"' ’q’ll’ ln’qZI’qZI’ ’q2n" ’(?21’ To
(p) (0) (o) 1) €L (P Py -
cﬁZn""’(:"nl e Cj’n,n—l’g’nl 2 %an e %ol o Sn )
Znt+i™i, b0 Vntei® Gt
xnt+i=(0""’0’_yl,t"'"_yi-l,t’yl,t—l""’yn,t—l’""yl,t-p""’yn,t-p’o""
L0,
_pg2
var(vny, )=6§
(the number of zero components in the vector Xnt i follows from the i-th rela-
tionship of (2.19)). The adaptive estimation formulas are for i=l,...,n
~ A -2 . ~
(2:22) BpgyiDntei-1*Patei*nte1 € Cntei XnteiPnteio1)2
42 -1 -
(2.23) Pnt+1 nt+i-1"Pntsi-1 nt+1[xnt+1 nt+i-1%nt+i* n(t—1)+i] xnt+ipnt+i-1,
2 s A 2
2.28) 82 =l [(tnp-i- 1982, AL i L

2.2. Estimation in multivariate ARMA process. Let us consider an n-dimen-
sional ARMA (p,q) model of the form
(2.25) Y= &Yy g+t prt—p

where cbl,...,g:p, el,...,eq are (n,n) matrices of parameters and {6t} has
- 554 -
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the same form as in (2.12). Let us denote

vgc@l
b= vecd>p )
ve.et:O1
2)
vec 8,
. . Al
Y10 0 Yi-p’ 0 | & 0
A * &
Xy Y1 ... Yi-p t-1 .es
A . fLAe
0 Vi1 0 Yiplo €1
A s !
CH 0
cee z )
ét_q
: .41
0 £
A A A
€=y Xiby-

The dimension of the vector b is (nz(p+q),1) and the matrix /)Zt is (n,nz(p+q)).
The adaptive estimation formulas for the system

(2.26) b b

t+170t?

_A
(2.27) yXibyt €4
have the following form

Ab —A A A_4 A ~
(2.28) 101704 P11 X001 =5 Xy

_ A, A A, ~ _1/\
(2.29) Pt+1'Pt-PtXt+1(Xt+1Ptxt+1+ z’t ) xt+lPt }

S _ 1 2 & N A ~ A o
(2.30) Z,W,- m; {[t—n (p+q)] Zt +(yt+1~Xt+1bt+l)(yt+l_xt+lbt+l) § ]

A _ A ~
(.31 © i1 Y te1 X te1Pte1

Remark 2. The same improvement as in Remark 1 or the treatment of parti-
cular components from Section 2.1 is alao possible for the model ARMA.
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2.3. Estimation in multivariate AR process with missing observations.
Let us consider the model (2.12) and let only the components il,...,id
(léil< ...<idén) be at our disposal at time t. The indices il,...,id may
change in time so that one should write il(t)"“’id(t)(t)' If we preserve
the denotation from Section 2.1 and, moreover, denote St the matrix of the
type (d,n) which has unities in the positions (l,il),...,(d,id) and zeroes in
the remaining positions then one can modify the state space representation

(2.13) and (2.14) to the form

(2.32) by, =b,,
A

(2.33) zt=Mtbt+vt,

where
A

2¢75tYys V47Sy &y, M=S.X,,

AL A
yt—l 0 yt—p 0
X, = . oo A
$ Vi Yip ’
0 ’ 91;—1 0 Aé—p

A A
9¢X,By.
var(vy)=5, = St'.
Since the vector Zy is completely observable at time t, one can use the fol-
lowing adaptive estimation formulas

~ _A A‘, ~ " _1 ~ A
(2.38) by, by MEL (5, =t Sta1) (2441 ME104)s

PPN (G* p Dx $ o y-lox
(2.35) Pt+1-Pt PtMt+l(Mt+1PtMt+1+st+l£t St+l) Mt+lpt’

1 cy 2 2 Ax Dx O A Ox A .
(2.36) 2, - {It-n(pea)] 2 +(F, X2, B, DEF KX B, )73
¢ 1o psn) LR 25 I 75 b TS RS S R LIS

A

A Ox A
(231 Yy XE b

A " _ »\*
(2.38) Mt+1'st+lxt+l'

The vector ?t"‘ and the matrix f{ originate from the vector ?t and the
o

matrix Xt using the known components of Yi» Yio1o Yi_psee- in Qt’?’t—l’,)}t-Z" aret
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3. Prediction in time series models by Kalman filter. Besides its use in
the adaptive estimation the Kalman filter is convenient for the construction
of prediction in time series models.

3.1. Prediction in multivariate ARMA process. Let us consider an n-dimen-
sional model of the form
(3.1) Y= élyt—lh co épyt-p+ btq- @1 9t—1+' . .+6p_1 e‘t—p-l "
where @1,..., @p, 61,...,9p_1 are known (n,n) matrices and 1,3 has the sa-
me form as in (2.12) with a known variance matrix = . A more general
ARMA (p*,gq*) model can be transformed to the ARMA (p,p-1) in (3.1) by introdu-
cing zero parameter matrices if it is necessary. As far as the known parameter
matrices are concerned, e.g., they could be estimated from the observations
which we have at our disposal for the construction of prediction in the given
process.

a

The state space representation of the model (3.1) for the purpose of pre-
diction can be written in the form (1.1) and (1.2), where

X], a1 /0 0...0 tbp X1 ¢ ep_l
%) 141 I 0..0% ) X) ¢ . o,
G.2) : =1 3 : | B
A / /
p,t+l 0 o0...I bl . X5t I
(3.3) yt=(0...0 I)(xl,t’“”xp,t) y
i.e
X1t 0 0...0 <I>p \ ®,
X I 0...09% e
25t p-1; p-2
Xy= R / , P=Pe | ’
Xo 4 0 0.1 9, I

Mt=M=(0"'0 1), Wy= E't’ Ot=2 q R’t=0'
The Kalman filter (1.3) - (1.7) has the form

~ _ At

(3.4) xt+1—¢xt,
t _apt - ’
(3.5) P =dPigrEr
(3.6) Q}Q:‘hxt(yt-m?{'l) .
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t t-1
3.7 Pt'(I'KtM)Pt :

_pt-1, - nt-1,71-1
(3.8) Kt-Pt M (MPt M) .

Then the prediction ?€+k of the process value Yiak constructed at time t
for k steps ahead is given according to the formula (1.13),

3.2. Prediction in multivariate ARMA process with missing observations.
If we use the matrix St from Section 2.3 reflecting the position of the mis-
sing components of the observations at time t for the model (3.1) then the
vector z, which we observe at t fulfils

24=5¢Yt

and we must replace the relationships (3.6) - (3.8) in the filter (3.4) -
(3.8) by the following ones

at_at-1 at-1
(3.9) Xy=xy +Kt(zt—Stht ),

t_ t-1
(3.10) Pt'(I_KtStM)Pt >

_pt-1, - t-1, -0y -1
(3.41) Ki=Py "M SL(SMPTMS )™,
The formula (1.13) can be used not only for prediction (if k>0) but alsc
for the estimation of the missing components of Yi (if k=0).

3.3. Prediction in multivariate ARMA process when components are known
till various time periods. Let the particular components of an n-dimensional
ARMA process {y,% = {(y, ,,...,y_ .) "} are known till time periods t,,...,t

t 1,t n,t 1 n
with the following ordering

t. £t, 2...¢t. .
Y i
Such situation is frequent in various practical applications (see also [2)).
Then, e.g., the value
ti (tl,...,tn)

L
T
In
produced by the Kalman filter at time t; can be used for the construction of
n
the following prediction
Atin(tl,...,tn) g tin(tl,...,tn)
(3.12) C Y, =M R .
t.+k t.
1 1
n n

The upper indices of the values ? and X in (3.12) denote that these values are
- 558 -



constructed at time tin using yl,t for t.é.’cl,...,yn,t for t.‘.tn.
Let us consider the previous situation and let the value Y2 t 41 be newly
b
2
supplied. If it is e.g. tZZtl’ tZZ t3, tZétA""’t2£tn then one can start
with the value
Qtz(tl’tZ’tB’tZ’ SR -
)
and calculate gradually by Kalman filtering the values
At2+1(tl,t2+1,t3,t2+1 sias ,t2+1) At2+2(t1,t2+1,t3,t2+2, e ,t2+2)
X , X ——
t2+1 t2+2
tin(tl’t2+1’t3’t4""’tn)

ey Xy

2)

.
In

According to (3.12) the last value can be used for the construction of

the updated prediction *
ti (tl,t2+1,t},...,tn) ti (tl,t2+l,t3,...,tn)
an _ kQ n
Vi, +k Md t
i, 0

4. Numerical simulations. Let us demonstrate numerically some of the
suggested procedures for the simulated two-dimensional AR (1) process

(4.1) Yt= Ql"t-l* ﬁt

with
0.5 0.1

) S |
(4.2) 4>1= ( ) gy~ iid Ny(0,%), = = ( )
-0.2 0.8 -1 05

Example 1. The adaptive formulas (2.15) - (2.17) from Section 2.1 were
applied with the initial values

A N
to™ Bt a1y Pr "L 0 Z 1 2,20

s o 1 (1) 1 1)y~ -
Table 1 presents the estimates b, of (‘f'§1)"4’12 ,qgl),qu)) for chosen ti-

me periods t in a simulation of (4.1), (4.2).

Example 2. The transformed model (2.18) has in our case the form

Boye= &gt ey

" (1 0> 3 (0.5 0.1> 0.5 (1 n)
= = < ~ iid N D,Z ,Z= .
°© \1 1/ 1P \o3 o09/7¢ 2 0 4
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The adaptive fomulas (2.22) - (2.24) from Section 2 1 were applied pro-
ducing the estinates B,,,) of ({1, g1 0,0,0)" ang Byeaz of (0,0,65%,

8), ‘f(l)) with the initial values

3 o i = o . 2 _A2 _
t,=5, by 51702t +2705,1)0 Pat G172t 42715, 5)0 CER ot17 52t 4271

Table 2 presents the estimates of b2t+1 and b2t +2 for chosen time periods t
in a simulation of (4.1), (4.2).

Example 3. The adaptive estimation formulas (2.34) - (2.38) from Section
2.3 were applied in a simulation (4.1), (4.2) with Y1,t missing for the time
" periods t-15,25,35,... and y2 t missing for the time pemods t=10,20,30,
i.e.
St=(0,1) for t-15,25,3s,...,
=(1,0) for t=10,20,30,... .
The initial values were taken as
A A
t9™r by 0ga,1)s Pt;l(a,a)’zt 12,2 .
Table 3 presents the estimates Bt of (cyﬂ), 98),?8), q%_)) for chosen ti-
me periods t.

Example 4. The prediction procedure from Section 3.2 was applied in a
simulation of (4.1), (4.2) with Y1,t missing for the even time periods t and
y2 t missing for the odd time permds t, i.e.

St=(0’1) for even t,
=(1,0) for odd t.

The initial values were taken as

1 -1
20 o
X =y P=Z=( )
0’ ’'o -1 5

In Table 4 the actual values 175 (y1 t,y2 t) are conpared with the estimates

y,c (yl t,')}z t) for chosen time periods t. The missing componerits of the vec-
tors Y4 for the Kalmar filter are in parentheses.
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Table 1. Simulation results for Example 1 (estimation in two-dimensional
AR (1) process)

(1)_ (1)_ 1)_ (1)_
¢il)-0.5 git)=0. g5)= 0.2 955)=0.8

A (1) ~(1) A1) ~i(1)
Y9t 12,4 @1t 92,1
10 1.353 0.249 -1.588 -1.989
20 0.918 0.188 -0.871 0.588
30 0.850 0.183 -0.768 0.634
200 0.573 0.083 -0.353 0.784
210 0.590 0.086 -0.339 0.780
220 0.566 0.086 -0.316 0.780
230 0.577 0.087 -0.331 0.779

Table 2. Simulation results for Example 2 (estimation in two-dimensional
AR (1) process with state space representation for particular
components)

(0)_ (1)_ (1)_ (1) (1) ..
g507=1 ¥1;=0.5 §:27=0.1 9,17=0.3 @'>2 =0.9

12 22 %
A (0) A (1) A (1) A (1) A (1)

to9at 911,t 912,t Pa1,t $22,t
10 0.804 0.910 0.141 0.142 1.002
25 1.029 0.750 0.108 0.551 0.962
50 0.892 0.506 0.047 0.358 0.927
100 0.860 0.477 0.045 0.307 0.871
150 0.950 0.342 0.068 0.474 0.905
200 0.994 0.416 0.087 0.466 0.868

Table 3. Simulation results for Example 3 (estimation in two-dimensional
AR (1) process with missing observations)

(1)_ 1)_ @n1 den o
91505 @i=0.1 99 02 @08
t A (1) & (1) a(1) A (1)
91t P12t Y2t ¥ 22,t
10 0.291 0.233 -0.195 0.647
25 0.462 0.302 -0.252 0.771
50 0.417 0.294 -0.154 0.765
100 0.383 0.290 -0.193 0.720
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150 0.438 0.319 -0.182 0.701
200 0.399 0.307 -0.127 0.705

Table 4. Simulation results for Example 4 (prediction in two-dimensional

AR (1) process with missing observations).

(1
[2]
(3]

{4)

(5]
(6]
(7
(8]

(9]

N

t Y1t Y2, 9.t Y2t
10 (2.097) -3.485 0.710 -3.485
19 -0.729 (3.818) -0.729 2.723
50 (-2.923) 3.324 -0.086 3.324
79 1.456 (-3.608) 1.456 -2.825
90 (1.207) -5.225 1.091 -5.225
99 -1.245 (-3.254) -1.285 -2.744
120 (-0.347) 5.472 -0.730 5.472
149 -0.769 (-4.793) -0.769 -6.388
180 (0.503) 4.256 0.700 4.256
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