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Abstract: In this paper we study the concept of the topological dimensi-

on by means of the alternative set theory (AST). In the AST various topolo-
gical concepts were studied (see [V]) but the dimension theory was not worked
out till now. In our work we define basic notions, prove some characterizati-
ons of the dimension and describe the connection between the classical concept
and ours. .
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1. Basic notions. Let us recall some notions from (V):

Sd-class is a set-theoretically defined class,

ot-class is a class which is an intersection of countably many Sd-classes,
6 -class is a union of countably many Sd-classes,

symmetry on A is a reflexive symmetrical relation on A,

symmetry R on A is said to be compact if for every infinite set ugA the-

re exist x,ye u such that {x,yYeR,

an indiscernibility equivalence on an Sd-class A is a compact r-equiva-

lence on A.

For a given indiscernibility equivalence R on A we define

Fig(X)=R"X, Mon(x)=R"{x}=Fig(ix}),

Sep(X,Y)=(3Z Sd-class)(Fig(X)e Z&Fig(Y) N Z=0),

XC=fx;not Sep(X,tx})},

X°=x;Mon(x) s X ¥,

X is a figure if X=Fig(X),

X is closed if X=X%,

X is open if A-X is closed.

Observe that X°=A-Fig(A-X) is a dual operation to Fig and hot a topologi-

cal interior in the common sense. Open and closed classes have usual topologi-
cal properties (they form topology of a compact metrizable space) and moreover
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there holds:

Theorem 1. Let X be a figure. Then the following is equivalent:
(i) X is a figure of a set u (i.e. X=Fig(u)),
(ii) X is a f-class,
(iii) X is closed.

Similarly, open classes are exactly such figures that are &-classes.

Definition: (1) Let R be an indiscernibility equivalence on A. A sequ-
ence (Rn;neFN) is called a generating sequence if

(i) R, is an Sd-symmetry on A,

(i1) Rn+1° Rn+1 ERn'

(1i1) R =AZ,

(iv) R= n{Rn;n eFN3.

(2) Let R be an indiscernibility equivalence on a set u. A sequence r=
=&'uﬁ « <7l ¥e(N-FN), is called a prolongation of a generating sequence if

(i) ry is a symmetry on u,

(ii) L;c+1’1;(.+191;4 for x <,

(iii) r°=u2,

(iv) R= Mr ;neFN3.

It is easy to prove the following theorem (see 1V1):

Theorem 2. (1) For any indiscernibility equivalence there exists a ge-
nerating sequence.

(2) For any indiscernibility equivalence on a set there exists‘a pro-
longation of a generating sequence.

An indiscernibility equivalence S is called totally disconnected if there
exists a generating sequencé {Sn,neF Nt such that Sn are equivalences.

Under a prolongation of a generating sequence of a totally disconnected
S we understand a prolongation 1s o’ <t such that s c are equivalences.

2. Dimension. Now we are going to define the dimension of an indiscerni-
bility equivalence and to prove its basic properties. We define one technical
notion.

Definition: Let Sl’ 52 be symmetries. We define
S1 divides 52 on £d =y
(on, — ,xd)((Vi,j)((xigtj)c S,) =» (2 i,j,i*j)(<xi,xj)e 5.
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Now let us suppose that R is an indiscernibility equivalence on an Sd-
class A. The following definition is due to P. Vopé&nka.

Definition: dim(R)&d=ge
(3S totally disconnected indiscernibility equivalence on A).
(SeR&S divides R on £d+1).

We call this dimension the inner dimension (to differ from the covering
dimension). We need also a notion of the local dimension in a point.

Definition: dim(R,x)<£ds=ge
(3B Sd-class)(Mon(x)< B &dim(RN B2 £ d).
This definition can be expressed in the following form:

Theorem 1. Let R=4 Rn; neFN% be a generating sequence of R. Then
dim(R,x) £ d = (3 n)(din(R A (R ixH?) 20). :

Proof: The implication &= is trivial.
=> : If B is the Sd-class from the definition, we have
N4R Y ix¥;neFN% =Mon(x)s B,
and by the axiom of prolongation we have R:," {x3cB for some neFN. O
It is trivial that dim(R)=0 iff R is totally disconnected. For an illus-
tration of the definition we show an elementary example.

Example: Let R=(\{Rn;neFN'§ be the usual equivalence of the real numbers,
R.=4<x,y0e RNZ; |x-yl<1/n or (x| 2 n &|y|zn)}.
We are going to demonstrate that dim(R)<1 and thus dim(R)=1 because R is not

totally disconnected. We take
S {(x,y)eRNz;(|x|< 1/n&%|yl< 1/n) or (|x|zn%|ylzn) or

(x.y >0&not(Jec )(Ak£n) (Kl o /k £h] or |ykee/k £ .

Then Sn are equivalences, S= n{Sn;neFN} is totally disconnected and ScR. S
divides only monads of rational numbers and these ones only into two parts,
consequently we can conclude that S divides R on £2 and dim(R)=1.

3. A characterization of the dimension. In this paragraph we are going
to characterize the dimension by means of generating sequences (Theorem 3).
Let us suppose that tk:(Rn;neFN} is a generating sequence of an indiscernibi-
lity equivalence R.

F=4 Sn;ne FN3 is a generating sequence of a totally disconnected in-
discernibility equivalence S (i.e. S,, are equivalences).
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Theorem 1. Let R and < be given such that for a deFN the following
holds:
(V¥ne FN)(Sm_lERn&Sn divides Rn on £ d+l).

Then dim(R) £d.

Proof: Obviously S= n{Sn;neFN jend R sn€FN¥ =R. It remains to prove
that S divides R on £d+1. Suppose that Xgo+++9Xgy are in one monad of R,
but each two in distinct monads of S. Then for i,j#d+1, i4j there exists
ai,jeFN such that (xi,xj)¢ Sai - We can take a&FN such that a is greater

. ’
than all a; ;s. Then Sa does not divide R on £d+1 - a contradiction. Hence
i
dim(R)<d. 0O

Lemma: Suppose that ¢(x) is a set-theoretical formula, Xn (ne FN) are

Sd-classes, X0e1E Xpo X= ﬂixn;neFN"i. Then it holds

(¥xeX) p(x) = (An)(Vx X ) p(x).

Proof: Let us suppose that the assertion does not hold. Consequently
there exists a sequence xnan such that not 97(Xn) for all n. We prolong this
sequence and take ocn¢- FN such that
( V{S<ocn)(xﬁgxn& not ¢ (x)) (such o, txists because X is an Sd-class).

We take a pe (\-iq,n;neFN}, 34 FN. It holds Xg € X, notcy(xﬂ) -a
contradiction. O

Theorem 2. Let R and & be given such that SCR and for a defN S divi-
des R on £ d+1.

Then there exists a selected sequence R from R and a selected sequence
g trom  such that '

(V")(Snuf R.&S divides R, on £d+1).

Proof: We take —R'0=§0=R0=So=(dun(R))2 and then we select step by step §i+1
such that 'S'i +15ﬁ1 and ﬁi 41 Such that '§i 4 Yivides ﬁi 41 On &0+l It suffices
to prove the following two statements:

1) (Vno)(Vm)(BnZno)(SnﬁRm).

We use the lemma for Xn=Sno+n’ X=S and ¢ (x) = (stm).

(2) (Vno)(Vm)(B nzno)(Sm divides Rn on £ d+1).

We use the lemma for Xn=Rn +n?
o
90D = (Vxgyeo Xy O, o oxg 32 = (31,3, $69)((xg,x) 6 5))
(i.e. (Vx&R)@(x)= Sy, divides R on & d+1).
Consequently we have constructed the desired &, % . O

X=R,
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Theorem 3. Let R/, deFN be given. Then dim(R)<d iff

(37 selected sequence from R)(3IY)

(Vne FN)(SmlE R &S, divides Rn on < d+l1).

Proof: It follows immediately from Theorems 1 and 2. O

4. Coverings. Let R be a given indiscernibility equivalence on an Sd-
class A; in the sequel all classes will be considered as parts of A.
The following two propositions are wellknown (see LV1]).

Proposition 1. Let X be an Sd-class then x° is open (w.r.t. R).

Proposition 2. Let XcY, X closed, Y open. Then there exists an Sd-class
Z such that XezZeY.

Definition. -in,...,Xm} is a covering (R-covering) =g4¢ .
(VxeA)(3 i)(Mon(x)EXi).

It is called to be an open (closed, Sd) covering if each class X; is open
(closed, Sd).

A covering P={ Xl’ 501 ,Xm} is inscribed into a covering &= Syl, el ,yk} (we
write P<Q) if (Vi)(33)(x;¢ Yj).

Let P= {Xl,...,Xn} be a covering; we say that the order of the covering
is just d if
(i) Every d+2 classes from P have an empty intersection.
(ii) Some d+1 classes have not an empty intersection.

Proposition 3. Let {Xl, . .,Xm} be an Sd-covering of order £d. Then the-
re exists an open covering of order £d inscribed into this.

Proof: X°,...,X°%is the desired open covering. O
1 'm

Proposition 4. Let {Xl,. as ,xmz, be an open covering of order £ d. Then
there exists an Sd-covering {Zl,. o ,Zm'§ inscribed into this such that
§Fig(Zl), ses ,Fig(Zm)Tx has order &d.

Proof: By Proposition 2 there exists an Sd-class Z1 such that
A-—(X2 V... UXm) SZIE Xl'
{Ztl’,xz,.. 5 ,Xm?x is an open covering inscribed into { Xl,. ..,Xmi. Now we take
this covering and similarly substitute X, by zg, then X5 by z‘; and so on. Then
{zl,...,zmk is the desired covering. [

The following definition is an analogy of the classical covering dimension.
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Definition: We say that Dim(R)<d if an open covering of order € d can
be inscribed into every open covering.

Proposition 5. Dim(R)<d iff an Sd-covering of order <d can be inscri-
bed into every Sd-covering.

Proof: Let Dim(R)< d and -{Xl,. -+»X,¥ be an Sd-covering. From the propo-
sition 3 it follows that an open covering can be inscribed into it and into
it an open covering of order <d by the definition of covering dimension. By
the proposition 4 there exists an Sd-covering inscribed into the open cover-
ing, and consequently inscribed into { Xl" e ,Xm}, the order of which has to be
also £ d.

The converse implication can be proved analogously. O}

Proposition 6. Let {Yl,...,Ym} be a closed covering of order £ d which
is inscribed into an Sd-covering {Xl,.. .,Xix. Then an Sd-covering of order £ d
can be inscribed into Xpseen ,Xz'i.

Proof: Let Yi=M Y'i‘;keFN} where Y'1( are Sd-classes, Y‘i“le Y': and Ygs kj
for each X. such that Yis-. Xj. Obviously for every keFN the system
{Y‘f, — ,Y: ¢ is an Sd-covering inscribed into -le, vee ,Xz}. It suffices to prove

that there exists a k such that the order of {Yk,...,Y';} is «d. If the order

of iY'l(,...,Y;,} was >d for every ke FN then we could choose d+2 indices il"'
ceesdy,, such that Y 0 ...nY< =0 for cofinally many ke FN. Hence Y, 1 ...
d+2 11 id+2 i

--.NY; =0 - a contradiction. D[
d+2
Lemma: Let S be a totally disconnected indiscernibility equivalence on A.

Then an Sd-covering of order 0 can be inscribed into every Sd-covering {Xl,.. "
$id ,Xk'& of S.

Proof: Let iSn;n eFN3 be a generating sequence of S such that each Sn is
an equivalence. Obviously it suffices to prove that there exists an neFN such
that

(VxeA)(3i)(S, -ix}s-xi) .

Let us suppose it does not hold. Then there exist x.€ A with the property
not S;; i xn}sxi (i=1,...,k),

hence also not Sm { xﬁ}EXi (i=1,...,k&m<£n).

Let x=4x, ;¢ <y} be a prolongation of the sequence ixn;neFM such
that

Xx_ eA,

o
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not Sp(x)eX; (i=1,...,k&m £c&meFN).
Now we take an infinite cc <7, then clearly not Mon g (x, )sXi for i=1,...
...,k because Mons(xoo)=9‘5"m{xd} and Xi are Sd-classes. This is a contra-
diction with the presumption {Xl,...,ka being a covering of 5. O

The idea of the proof of the following theorem is due to P. Vopénka.

Theorem: Dim(R) £dim(R).

Proof: Let dim(R)=d and SER be the totally disconnected indiscernibili-
ty equivalence which divides R on £d+1. We want to prove Dim(R)<£d. So let
le,...,xkl be an Sd-covering of R. And let {Zl,...,Zl§ be an Sd-cover of R
inscribed into the open covering 4 Xcl’,.. .,Xﬁ! (it can be constructed in the sa-
me way as in the proof of Proposition 4), it is then also an Sd-covering of R
By the previous lemma there exists an Sd-covering {Yl,.. ; ,Ym} of the equival-
ence S of order 0 inscribed into {Zl,. ..,Zz}. Then clearly P={ Fig(Yl),‘. =
...,Fig(Ym)} is a closed covering of R inscribed into {xl,...,xk}.

Let us prove that P has its order < d. If the intersection of some d+2

classes Fig (Y, )N...NFig(Y ) contained a point x then Mon(x)NY,
4 Lae2 b

would be nonempty for all k=1,...,d+2. But it would imply that Mon(x) contains
more than d+1 different monads of S because in,. ..,Ym} is a disjoint covering
of the equivalence S - a contradiction with the presumption that S divides R
on < d+1. Hence the order of P is < d. Now from Proposition 6 and 5 it follows
that Dim(R)<d. O

5. Relation between the covering dimension and the inner dimension. In
the previous paragraph it was proved that Dim(R) £dim(R) in case R is an in-
discernibility equivalence on an Sd-class A. The converse inequality we can
prove till now only on condition A is a set. But this is not any essential
restriction because for any indiscernibility equivalence there exists a set u
such that A=Fig(u), and we can investigate properties of the equivalence only
on the set u. So let R be an indiscernibility equivalence on a set a.

We say that a system v which covers a (in the sense a=U{ x;xe w}) is a
partition of a system u if

(i) v is a disjoint system (x,ye v&kx+y => xNy=0),

(ii) U4 x;xevi=Udix;xeul=a,

(iii) u, v can be written as

u=&u1,...,ud},
v=4{ vl,...,v“'f

so that Vop & u,r for =1,...,0¢
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For a later use we abbreviate
Fig(v)=1% FigR(vl), i ,FigR(v,,c )P if v=o VirereaVyd

The following lemma will be a key to prove the converse inequality.

Lemma: Let us have a sequence Vn of systems which all cover a such that
Vne1< Yy Ciee (szvml)(a yev )(xey)).
Then there exist partitions tn of vh such that tn+1< tn.

Proof: Letdiv, ;o <3} be a prolongation of the sequence v, such that

U {x;xs.v‘l:a and <v, for <@ . Let us have all these systems ordeid

Ve +1
oc
&, ).

p
Put bs =ag -(a{’U ...Uaf_l) for e=1,...,d3 and
B A
tﬂ =(b ,...,bJ;a ).

vm=(a;‘,...,

Obviously tr; is a partition of Va - Let 'ca‘+1 be a partition of Vo1 W indu-
ctively define a partition ty of the system v . Put

[-4
t, =4b%®,...,b% 3 .
o 3

b =U4ibet +1;nsag' % (Ve < e)not(bsa::))f,

Considering that t L1 < V1< Voo 0D that t‘x+1 covers a we see that t_
also covers a. Because it is a set-theoretically defined construction, the 152
is constructed for each o € 3 and consequently also for oce FN. ‘ftn;n €FN ¢
fulfil our requirements. O

Theorem: If Dim(R)<d then dim(R)<d.

Proof: We will prove that there exist relations T, and equivalences S,
so that

R= Mrn;n eFN%,

Sn+1g Sns

S T,
and S does not divide any R-monad into more than d+1 parts.

If we have this we will put S= ﬂsn. Evidently S&R is a totally discon-
nected indiscernibility equivalence. In the same way as in the proof of the
theorem 3.1 we can prove that S divides R on £d+1, consequently dim(R)< d.

Let { rl11;n=FN} be a generating sequence of R. Because the relation R is
compact, a finite R-subcovering u, can be chosen from the R-covering
{rrll"-( x¥;xe al. Let us define r,, in the following way:

r=44x,yy5(3ceu dEx,yt o).
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We prove that Rzg .. Plainly R san because each U, is an R-covering.
On the other hand let <y,z>ern, then there exists xea such that fy,z}sr:f

= 4 x%, hence <y,z\er[11_1. It proves r. rrlx-l

which implies ans R.

From the presumption Dim(R)<d it follows that a finite set R-covering g
can be inscribed into any finite set R-covering p so that Fig(q) has order 4d.
More precisely: by the proposition 4.5 a set-covering p~ of order £d can be
inscribed into p, into it by the proposition 4.3 an open covering p" of order
£ d and inte it by the proposition 4.4 a set covering q such that Fig(g) has
order £ d. The R-covering q is obviously also inscribed into p.

So let vi be an R-covering such that Vi< and the order of Fig(vl) is
< d. Inductively take v
and

nel @0 R-covering such that Fig(vml) has order <d

Vhe1< $x0Oysxe u&ye vnl,

h s f
ence v, < U and Vne1< Yn

n+1l

We constructed a sequence of R-coverings v_ such that v n+1< Y and, in

n
addition, the order of Fig(vn) is £ d. Let tn be partitions of Vi guaranteed
by the lemma. Obviously no monad is intersected by more than d+1 sets from tn.

Finally set
Sn= 1<{x,y>»;(3c etn)( {x,y}=ec)s.-

These are exactly the desired equivalences. [

6. A local characterization of the dimension. When we study the dimensi-
on of indiscernibility equivalences, there naturally arises a question whether
it is possible to determine the dimension in a point x of an equivalence from
the structure of the monad of x, or if it is necessary to know the structure
of some class containing x (as in the definition of the local dimension). It
turns out that it depends on the kind of information about the monad.

Suppose that there is a given R on a set a with a prolongation of a ge-
nerating sequence r= -ir‘ ;<% . An information about the structure of the
monad of x can be

(a) the class Mon(x),

(b) the sequence ) ix}, <7, xé FN,

(c) the sequence r, N (Mon(x))z, << Y-

We show that the information under (a) and (b) is not sufficient even to
decide whether the dimension is 0 or 1, but that it is possible to determine
the dimension from the information under (c) (Theorem 1).

For the first gquestion it is sufficient to use the example from the para-
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graph 2 (the indiscernibility equivalence of real numbers). It is obvious that
dim(R,0)=1 and dim(S,0)=0, but R;“{OFSI‘,;{U}:(—l/n,l/n), hence also R;{0}=SOZ'{0}
(for a suitable prolongation) and the information under (a) and (b) is the sa-
me in both cases.

Now we are going to find a local characterization of the dimension by me-
ans of generating sequences using results from the part 3.

Lemma: Let @(ec, ) be a set-theoretical formula monotonous in (3 (i.e.
?(cx_.[& )=> (e ,p+1)). Then (Ve & FN)(VB&FN) @ (o, B) =
=(3 noeFN)(Vac¢ FN)cy(oc,no).

Proof: The implication 4= is obvious, => will be proved by contradic-
tion.

Suppose we have a sequence er,n¢FN such that not g( ecn,n). We prolong the
sequence and take B¢ FN such that o ¢ FN&not ¢(xpy, B) (similarly as in
the lemma in the part 1) - a contradiction. IO

Now we again restrict ourselves to equivalences on a set. We denote

M=Mon(x)=R" £ x 1,

r=ir ;x <yl
a prolongation of a generating sequence of an indiscernibility equivalence R,

S=isg ;o< ¥}

a prolongation of a generating sequence of a totally disconnected indiscerni-
bility equivalence S.

Theorem 1. Let defN and r be given. Then dim(R,x)£d iff
(3s)(AT selected from r)( Yec <o)

(s, " MeT, nNWas NM divides T, N M on £ael),
Proof: Let us denote

2 2

gy, X) = (s, N¥*e T, N xP&s 0 X2 divides T, N X% on £d+l),

@lec, ) = r.yl(oc,r{; ix¥Y orezy or Bzy-
The formula @ (oc,3) is obviously set-theoretical and monotonous in B . By
the theorem 2.1 and 3.1 we have (for suitably short prolongations s and T)
dim(R,x)£d =(3s)(3T selected from r)(3 Ny & FN)(Vee ) p (et LION

Because @ is set-theoretical and finitely many members of s and T are irre-
levant, we have.
dim(R,x,) £ d = (3 s)(3AT selected from r)(3An & FN)( Vo & FN) g (o ng)-

From the lemma it follows
dim(R,x)4d = (3s)(3T selected from r)( Yo &FN)( VP & FN) ¢, B)
and because M=R" { x}=U -(r;; ix}; P e(y-FN)} we have
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dim(R,x) £d = (3 s)(AT selected from r)( Vec ¢ FN, ot <) g’l(cc ,M)

which is the required statement. O

We thank P. Vop&nka, A. Sochor and K. Cuda for many valuable remarks
and discussions to the studied matter.
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