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LINEAR COMPLEMENTARITY PROBLEM
AND EXTREMAL HYPERPLANES

Rudolf SVARC

Abstract: We prove that certain (n-1)-dimensional hyperplanes in R" have
an extremality property w.r.t. the linear complementarity problem. Some ot-

her results about general hyperplanes in R" are also contained in this artic-
le. The problem is related to the investigation of certain types of nonlinear
differential equations and variational inequalities. 5
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Introduction. This article is motivated by the investigation of the line-
ar complementarity problem (LCP), which can be formulated as follows:

Let A be a given nxn-matrix. Let fe R" be a given vector. We want to find
a vector ueR" such that

u-A = f

where u* and u” are the positive and the negative part of u, respectively. I.e.,

. n s +_o -+ n = n
for ”’(”i)ienER we define u —(ui)ieﬁeR and u '(ui)ieHER by means of the
formulae

u;=max ‘iui,Oi, uj=max {-u;,0%

for all ien (see below for the notation ).

There exists a vast literature about the LCP. From the many articles ab-
out the subject, let us notice, e.g., [1],[2) and [3]. We do not discuss them
here, because we are concerned by the LCP from another point of view, than the
authors of the above mentioned papers.

The pioneering work of Ambrosetti and Prodi in the theory of a class of
abstract nonlinear equations (see [4] and [5]) was generalized in the paper
[6] of Fuifk, Kudera and Netas and in various subsequent papers. It has been
shown that the problem of the solvability of certain differential equations
can be reduced to a finite dimensional problem and that the LCP is a typical
example of such problems. Many references can be found in [7]. From the recent
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related papers let us mention [8].

There is also the paper [9] of Fu&ik and Milota, which shows that the so-
lution of an appropriate LCP can substantially simplify the solution of cert-
ain variational inequalities. For instance, this way we can find the solution
to the problem

y"= ¢ in J0,1[ - {xl,xz,...,xn},
y(0)=y(1)=0,

y is continuous in [0,1],

Y(xi)ZO and y;(xi)—y_'(xi)él] for all ieT,
(y;(xi)—y_'(xi)) y(x;)=0 for all ie T,

where ¢ is a given function and Xi» ien are given points of the interval
J0,1f. This is a mathematical model of a loaded string over some one-point
obstacles. (Cf. [10].) In this context let us mention also the paper [11].

In [12] it has been shown that the LCP is related to some sort of classi-
fication of hyperplanes in R" in the sense that the existence of various types
of hyperplanes in R" implies the existence of various classes of LCP's. Herice,
it is interesting to investigate, which types of hyperplanes @c R" do exist.
Some partial results are contained in [13], another result is formulated in
Theorem 4 of this article.

From this point of view Theorem 4 is our main result, but its proof is
rather simple after having proved Theorem 1, which seems to be our most comp-
licated result.

Section 1. Definitions and auxiliary results
Notation. (i) ®= {1,2,...,n%.

(ii) Let @c R" be any (n-1)-dimensional hyperplane which does not
contain e w1 vimms °
X TXp=X3= 0o X
Then @+ is the open half-space of R" w.r.t. @ which contains the points
(a,a,a,...,a) for all sufficiently big values of a, @~ is the opposite open
half-space of R".

(iii) [al denotes the integer part of a, [a,b] denotes a closed
interval.

Definition 1. For any wc T let us define the point C(a,=(c‘i")iﬁ,|eRn
by means of the formulae

1) ¢ -1, if ie w,

c‘;’=1, if ieT-w.

All the points C,» wc T are the vertices of the n-dimensional cube cc R,
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Definition 2. i-edges are all the (l-dimensional) edges of c" which
are parallel to the xi—coordinate axis in R".

Definition 3. Let ec R" be an (n-1)-dimensional hyperplane which does
not contain any vertex C_,e c". For such a hyperplane and any ien we can de-
fine ki(go) as the number of all the i-edges which are intersected by @ -
Further we define
(2) k(@ )=min-§ki(go)|ie'ﬁ§-

Lemma 1. Let
3) %Z_ a;x;=b

be the equation of a hyperplane ec R™. Let ki(go ), ie T be defined and let
for some j, men

) laj 1< lay .
Then )
(5) kj(@).ékm(p).

Proof. If aj=(], then @ is parallel to the x.-coordinate axis and cannot
intersect any j-edge. Hence k.(¢ )=0 and (5) holds.

Let a.#+0, then am$0 according to (4). Let us look at the 2-dimensional
faces Cg of C" which are contained in the parallel planes g)g . The equations
of §°§ are

x.= -1, if i ¢
(6) . s

x;=1, if ien-§-4j,mi,

€ c n- $3,m¥.
Because ajam+ 0,

g~ ©"Pg

is a straight line in (3 and we can define kj(pg) and km(pg) as the number of
the j-edges and the m-edges of Cé which are intersected by Pg - These numbers
are well-defined, because C ¢ Pg =% C,e¢ , hence in the opposite case ki@)
would not be defined. Further

M k(@)= ¢ Fpo K@D
8 k = k
a O ( Egms 8

hence it is sufficient to prove that for every € c - 43,m}$
9 K.

( ) J(Dg)-é km(p§)9

(5) then follows from (7) and (8).

The equations of p. are (6) and (3), (3) can be rewritten as
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ajxj+amxm=b- ie %Z{“,,,.}aixi .

Using (6) we have

b-“nz_{ém aixi=b+4,ez'§ a;- Az%g-i;’,mlabe 5

thus the equations of pg are (6) and

(10) aj xj+amxm=b§ .

Let intersect a j-edge of Cé . Then Pg must intersect some other ed-
ge of Cg . If it were the other Jj-edge, there would exist two numbers x}j and
x2 such that (see (10))

J
1 2

(11) Ixj|< 1, lxj|<1,
1

12) ajxj+am=bg,
2 . .

13) a;.|xj-am-bg .

Subtracting the equation (13) from (12) we obtain

_ 2.1
Zam—aj(xj xj) y
hence

1
J
according to (11). This is a contradiction, because we suppose (4). Hence pg
cannot intersect two j-edges of Cé and if it intersects a Jj-edge, it must al-
so intersect an m-edge of Cé . This implies (9).

. 2.1, 2) 1.1
2lay =1yl Il £ 1312 by < 2la |

Lemma 2. Let S"(t)c R" be the hyperplane
(18) = xi=t.

Lem
(1) Let peTui0} and t=n-2p. Then ki(@(t)), ien are not defined.
(ii) Let peT and teln-2p,n-2p+2[ . Then

ki (@ (1))= ("‘i\ for all i,

hence p= 1

k(@ (1))= ("i) ;
-

(iii) Let tel-a,-nlul n,+o[. Then

ki(@(t))=0 for all ieT,
hence
k(@ (t))=0.
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(@ n
Proof. For any vertex Cg, =(c{"); n€C" we have

(15) S c®:= = ¥+ = & =(-1) cardw +1 (n-card w)=n-2 card @
iemn 1 em-w 1

vew 1 4

according to (1). card w e iv{0%, hence ki(;b (t)) are not defined iff t=n-2p
and penfiv£03}. This is (i).

(15) implies:

. @ n

(a) If tel-o,-nl, then ,“%'_v c{> 1t forany C e C.

Thus C,, e @ (£)* and C"c @ (£)".
(b) If teln,+l, then ,=_ c;"< t for any C,e c".

Thus C, e @ (t)” and C"c @ (1)".
(iii) follows from (a) and (b) (using the convexity of C").

Let

teln-2p, n-2p+2[ , pen. .

According to (15)
(16) Ce €@ (D', if cardw & p-1,
an Cp e @ (1), if cardwz p

and ki(@ (1)) is defined. Two points C,, , Ce e c" with card w & card € are the
end-points of an i-edge of C—n iff i 4w and §=wu~iﬁ. This i-edge is inter-
sected by p(t), iff thsgb(’c)+ and Cg e @ (t)7. Combining the last facts with
(16) and (17), we see that

k;(@ (t))=card { (w,€)|wcH, EcT, i¢w , £=wvuii}, cardw £ p-1,
n-l\

card § z p§=card-{w | wc 7, card w =p-1, i ¢ wl= (
D-l /-1

which is (ii).
For the convenience let us formulate a simple consequence of Lemma 2.
Lesma 3. Let go(t)c R" be the hyperplane (14). Then ki(§> (t))=k(So (1))
for any ie 7. If |t1|é |t2| and k(@ (t;)), k(@ (t,)) are defined, then
(18) k(@ (£, k(@ (t)).
The maximal value of k(@ (t)), teR is

(&)

n-1

%)

which is attained in the interval ]-1,1[ , if n is odd, and in the set

J-2,0luv)0,20, if n is even.

Proof. The combinatorial identity
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and Lemma 2 imply
(19) k(S" (t))=k(go (-t)).

(19) can be alternatively proved using the central symmetry of c" w.r.t. 0.
Another well-known fact is the inequality

( g )z (; 1) whenever se[r/2].

From this inequality and Lemma 2 (ii) follows (18) for 0<t ‘tz Recalling
(19) we have (18) in general. The last assertion of Lemma 3 follows also from
Lemma 2 using the fact that

max {(:) |5€FU{0§} = ([;/23>'

Lemma 4. Let @ c R" be the hyperplane (3). Let k(e ) be defined. Let
o =min {IaillieﬁE.
Let @ c R" be the hyperplane

(20) @%ﬁ £33 93] +be 8y

Then k(g’S’) is defined and
(i) if |b] >« and Iaj|=cc » then k(g )Z k(@ );
(i1) if |b|>e« and lagl>cc, then k(@ )=k(@);
(111) if [bl=cc , then k(@ )=k(p);
(iv) if |bl< o , then k(@)= k(p).
Proof. We shall prove only (i), the proof of the other assertions of Lem-
ma 4 is very gimilar. c" can be identified with the (n- -dimensional) face

"= { xe lelxml: -1%

of the cube le. Then @ and & will be identified with the ((n-1)-dimensional)
hyperplanes

(21) Xne1= ~1s %‘Eﬁ a;x;=b
and
(22) X a.x.+bx.=a.

ne1™ "1y —.5,{3} b 35 Bl B

respectively. (Cf. (3) and (20)). @ and § are contained in the hyperplane
G‘=-YxeR"+1|x 1= -1t R™L Let @ and be the hyperplanes in R™! which
n+1 e [
zre spanned by 0 and (o and by 0 and So , respectively. Their equations will be
(23) 4%7» alx1+bxn+ =0
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and

(24) ;é‘;-{,‘,laixi*bxj+ajxn+1=0’

respectively. (Cf. (21) and (22).)

0eg' , hence @' is invariant w.r.t. the central symmetry of ¢+l

. Thus
§>' does not contain any vertex of c™L. F1se @ would contain a vertex of Cr_1
and k(;D) would not be defined. For ie n any i-edge of Cn+1 is contained eith-

er in C” or in CT:{ xeCn+1|xn+l=1§ . @' intersects just all the i-edges in

C'_] which are intersected by @ , and all the i-edges in CT which can be obtain-
ed from them by means of the above mentioned symmetry of Cm'l. Hence

(25) ki(ga')=2ki(go) for all ien.
Using the same argument, we can prove that
(26) ki (@ )=2k; (@) for all iem, ;

whenever one side of this formula makes sense.
Now we shall use Lemma 1. From the assumptions |b| >o¢ , |aj]=oc together
with (3), (2) and (23) it follows that

27) k(g)=ky(p),

(28) min{ki(¢')|ieﬁ§ =kj($o')¢ kml(go’).

+ s s s
c" 1 is invariant w.r.t.

Let us interchange the variables x. and Xnel®
this change of coordinates, the eguation (23) is transformed onto the equation
(24) and vice-versa, hence ()o' is mapped onto @' and vice-versa. kj and kn+1

will be also interchanged, the other ki ‘s remain unchanged. Thus
ki(@)=k; (@) for all ieT- {3},
YN _ ’
(29) kj(? )~kn+1( g ¥,
N ’
ka1 (@)=3 (8.

(As well we see that 65 ' and thus also § cannot contain any vertex of C
n+1
.)

n+l
’

else Sa’ would contain some vertex of C
From (29) and (28) it follows that

min iki(§’)|ieﬁ} =min { ki((b')lie - £31}2 kj(go')=min fki(go’)lieﬁfy
hence according to (2), (25) and (26)
k(@ )=2 min {k;(@)|ieT} =min{ki(go’)lieﬁ}.émin{ki(é‘{')lie'ﬁ} =
=2 min{ ki(g)lie?ﬁ =2k(& )
and we have proved (i).
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Section 2. The theorems
Theorem 1. Let psn_-l-. Let S R" be the hyperplane

(0 % %5 4R AN

where
1) 3541~ ap>0,
(32) a.za_ . for all ieTi-p.

i™ “p+l
Let k(gao) be defined. Let N e[-1,1), if p is odd, and Nel-2,2]), if p is even.
Let jeT-p. Let T>0 be the maximal value, for which

(33) a+T€a; for all ieAp-{j},

(34) ap+T£ aj+NT .
Let (t), te[0,T] be the hyperplane

(35) (ap+t) a?zﬁ X+ w_%_ﬁ LR i+(a. +NT)x =b.
Let

M={tel0,T] |k(@(t)) is not defined }-
Then
(i) 0¢M,
(ii) M is finite,
(iii) k(@ (1)) is a nondecreasing function on [0,T]-M.
Proof. @(0)= ®, and we assume that k( o) is defined. Hence 0:¢ M.

; . n
toe M iff g:(to) contains some C, e C'. That means

w = -
(36) 3 i'%F cf +“5_‘Z_M}* aic2 +ajcj -b= -t ( Z c§ +NcJ )

(cf. 35)). Because of our assumption Co & @, and (30) implies that the left-
hand side of (36) is not equal to 0. But then (36) has at most one solution
. Thus for every C,, there exists at most one value t € [0,T], for which
< @) and k(p (t,)) is not defined. Hence M is finite
Let tel0,T1-M be fixed. For any v <[0,T] sufficiently close to t the
hyperplanes @(t) and @ ('c‘) 1ntersect exactly the same edges of C thus
k(@ (v))= =k (@ (1)). Hence k(@ (t)) can change its value only in the points of
M. ‘
Let t0 be such a point and let S"(to) contain C, € c".The equation of
So(t) can be written in the form

E‘Tyxf(b “e% -8 1 31% " a5%5- -tNx. )/(a +t)

and for C,, we obtain the equation
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=

G Z TS X R

w_ w _ @ _ w
25 G =(b e} -85 tOch )/(ap+t0).

Let €= @ n (f-p- 43%) and 53 be the (p+1)-dimensional hyperplane

- @W s = s "
(38) xj=ci", 1eT-p £33

Then ¢ C"C8*! is a (p+1)-dimensional face of C" and G, e . gnott)=

= Qg(t) is a p-dimensional hyperplane in Q¢ . Co e ®¢ (to) and Q¢ (t)
does not contain any C,, for t+to sufficiently close to to’ because M is fi-
nite. For such t we can define kl( ®¢ (t)) as the number of l-edges contained
in [:Es'*l and intersected by & (t). Of course, kl( 3 (to)) is not defined.

We want to find conditions which ensure that kl( @g(t))' is nondecreasing, when
t passes through to'

Let cf].‘) =1. From (37) we obtain

(39) :VE‘:-F c;')=(f3§—aj-toN)/(ap+to), "
where

(40) e

e P !

is a value which is constant on Cs*l

according to (38). Clearly,
w
(41) }:’Tv c;=p-2q,
where g is the number of negative coordinates in the ordered p-tuple (c;")ieﬁ,
because |ci‘"|=1 for every ieTi and wc 7. Hence for some qep uil}
(42) (p-2q)(ap+t°)= f!§ -aj-tON
According to (39) and (41), 9§(to) is given by (38) and

=

En xi=( [35‘ -aj-toN)/(ap+to)

and w.r.t. Lemma 3 k, (@ (t)) is increasing in t, if the function |g(t)| is
decreasing in to’ where
g (£)=( ﬂg -aj-tN)/(ap+t).
Thus we only need to find conditions which ensure that
(43) g(t) g'(t))<0.
Using (42) we obtain
' _ 3_
g(t)) g'(t))=( Dg -aj-toN)(-Nap- (3§+aj)/(ap+t0) =
=(p-20) (a+to)(N(at )= (p-20) (a8 )/ (ot )=

= -(p-2q)(p-2q+N)/(ap+tu).
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Because ap+t0>0 according to our assumptions, the condition (43) is fulfil-
led, if
(44) (p-29)(p-2g+N) > 0.

If c¥= -1, we can proceed similarly as in the previous case and we obt-
ain instead of (44) the condition

(45) (p-29)(p-2g-N)> 0.

Let p be odd. Then p-2q is an odd integer, i.e. |p-2g|> 1. Hence p-2q
has the same sign as p-2q+N and p-2g9-N (and (44) and (45) are fulfilled), if

(46) INJ< 1.

If N=1, then (44) is not fulfilled only if p-2g= -1. But then (42) imp-
lies that
(p-2q)ap-to= {SE —aj-to,

(D—2q)ap+aj= {Sg ’

hence according to (40)

47) (p-2q)a_+a.+,

w—
P25 s e Eop 434881 D

But c‘; =1, aj=ajc;‘ and (47) together with (41) implies that
2_ “,, - .60 s c.‘) =
R i e I LT

i.e., Cw & @ which is a contradiction.

Similarly we can show that for N= -1 (48) is always fulfilled and that
for |N|=1 (45) also holds. Hence (44), (45) hold for every Nef-1,11.

Let p be even. Then p-2q is an even integer. If p-2q=0, then according
to Lemma 3 (applied to Cg+1) the value kl( @ (1)) remains unchanged, if t
passes through to. Hence the behaviour of | p(t)l in the neighbourhood of t
is not important in this case. If p-2q#0, then |p-2q|z 2 and we can repeat
the above written argument (for p odd) with the value 2 instead of 1. (0f co-
urse, instead of (46) we obtain the condition IN]<2 etc.)

Now we only need to notice that
48 k t))= k t
(48) 10 =g = k(o
because every 1-edge belongs to Just one Cgﬂ, €c T-p- £3%, and that a sum of
nondecreasing functions is a nondecreasing function. Hence kl(p(t)) is nonde-

o}

creasing on [0,T]-M.
The assumptions (31), (32), (33) and (34) imply that for every te[0,T]
and all ie A-p-{3}
ap+t‘aj+Nt and ap+té_ai.
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Thus (2) and Lemma 1 imply that
(49) k(@ (t)=k1(97(t))
for all tel0,T)-M. (iii) follows from (48) and (49).

Remark 1. Let us drop the assumption

(50) k( goo) is defined

of Theorem 1. Then (i) and (ii) is not necessarily true, because then the equ-
ation (36) can have infinitely many solutions. But this can happen only if

w w »
a c. 4+ a.c, +a.c. -b=0
:EF, i i€m-p 11 7J7)

hel

and
w @
. +Nc<=0.
O TNy

Then every toe £0,T) solves (36), C, € @(to) for every tDeED.T} and Mz [0,T].
So if we assume only that
k(@ (t)) is defined for some tel0,T]

instead of (50), we cannot prove (i), but (ii) and (iii) remain to be true.

Theorem 2. Let pe n-1. Let o= R" be the hyperplane (30), let (31) and
(32) hold and let k( goo) be defined. Let N e[-1,1], if p is odd, and N e [-2,2]
if p is even. Let jen-p. Let T>0 be the maximal value, for which (33) and
(34) hold. Let & >0.

Then there exists a number '5, a continuous path S"(t)’ t €00,11 in the
space of (n-1)-dimensional hyperplanes of R" and a set Mcl0,1] such that

(i) |bdbl<e,

(1) =g,

(iii) ga(l) is the hyperplane

(51) (a +T) ZE X+ “m - “alxliv(a +NT)x b,
(iv) 0¢M,
(v) 14&M,

(vi) M is finite,
(vii) k(so(t)) is not defined iff teM,
(viii) k(@(t)) is a nondecreasing function on [0,1] -M.

Proof. Let us define the continuous path §°(t) of the hyperplanes by
means of the formulae

(52) a, 3:,& xi+‘“£m_ﬁaixi=b+2t(b—b) for te[0,1/2],
(ap+(2t—l)T) ';'%’F’ X3t . "ZW_TV 5 a;x; +(a +N(2t- l)T)x b
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for t e[1/2,1].
Then (ii) and (iii) hold. Let
M={te[0,1]|k(§0(t)) is not defined3.

Then (vii) holds and because we assume that k( S°o) is defined, (ii) implies
(iv).

For wc T let us define
N 0 _ w w
Po 8 For 1 i Fmp 0
Then for t €00,1/2] (52) implies that
(58) €. € @ () &= be2t(b-b)=b2, .

Because (iv) holds, bf,# b for every « c T, hence

min |62 -b|| w € Fg = d'>0.
Let
(54) [B-b| < &

Then b+2t(B-b)+ bg_, for every wc i and every te[0,1/2] . That means accord-
ing to (53) that C,, 4 ©(t) for any te[0,1/2], hence k(@ (t)) is defined for
every te[0,1/2) and k(@ (1)) is constant (thus nondecreasing) on [0,1/2].
Especially

(55) k(@ (1/2)) is defined and Mc (1/2,1).

Now we can use Theorem 1 with ©(1/2) instead of ©gy and (2t-)T(t e
«[1/2,11) instead of t(te[0,T1). Taking into account also (55), we obtain
(vi) and (viii).

Let

1 _ w w @
b,, —(ap+T) ’-'%6 c +?~e§.ﬁ-(§§aici +(aj+NT)cj 5

W.r.t. (51) k(@(1)) is defined and 14 M, if
(56) B+bl, for all we .

Hence (v) follows from (56).
Thus in order to prove Theorem 2 we only have to choose b so that (54),
(56) and (i) hold. But this is always possible.

Remark 2. In the generic case b+b(10 for all o <7, hence we can choose
B=b.

Remark 3. The choice of B can be subjected to some other requirements,

e.g., we can require that -
[b] > [b].
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Thearem 3. Let « c R" be the hyperplane (3). Let k() be defined. Let
& c R" be the hyperplane

. x;=1/2.
Let us assume that
(57) a;Z0 for-all ief,
(58) aj&ay, whenever i£j, ief, jen.

Then there exists a continuous path @(t), te(0,T] in the space of (n-1)-di-
mensional hyperplanes of R" and a set Mc[0,T] such that

1) @)=,

(ii) @e(M=¥¢,

(iii) k(SO(t)) is defined iff te[0,T1-M,

(iv) 04M, T&M,

(v) M is finite,

(vi) k(@ (t)) is a nondecreasing function on [0,TI-M.

Proof. We can apply Theorem 2 with ¥ instead of Pqr N=0 and p=1. Deno-
ting the value D as IJ1 and M as Ml’ Theorem 2 ensures the existence of [ 1),
tel0,1] s.t. (i) holds, k(@ (1)) is defined iff t €[0,1] My, M, is finite,
k(@ (1)) is nondecreasing on [0,1] -M and @©(1) is the hyperplane

az(x1+x2)+‘,“_Zﬁw_2 aixi=b1 ;
Because 1¢M, k(@(1)) is defined.
Now we can apply Theorem 2 with go(l) instead of Co t-1 (tel1,2)) ins-
tead of t(tel0,1]), b1 instead of b, M, instead of M, b2 instead of T)', N=0
and p=2. We obtain gD(t) for tell,2], @(2) will be the hyperplane

83(X1+X2+X3)+:‘ 53 aixi=b2
and k(@ (2)) will be defined, because we obtain 2¢M2.

This way, by means of the repeated use of Theorem 2 (for all pen-1 in
~
general) we can construct e @), tel0,n-1] and the set M=& 2’,’1;:1"1‘ o,n-13

so that all the assertions of Theorem 3 hold with n-1 instead of T, M instead
of M and the hyperplane ga(n-l) with the equation

(59) a, =%,

instead of € .

@ is a hyperplane, hence at least one of the coefficients a ien is
positive, (57), (58) then implies that a >0 and (59) can be rewritten in the
form
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a%m xizbn—l/an‘
Let us define go(t) for teln-1,n) by means of the equation
> xi=(n-t)bn_1/an+(t—n+1)/2.

Lemma 3 then implies that k(@ (1)) is nondecreasmg on [n-1,n]- M Mn is fini-
te etc. So we obtain Theorem 3 with T= n, M= MUM

Theorem 4. Let v c R be a hyperplane, let k(t ) be defined. Then

n-1
k() ﬁ( }
[(n-1)/2]

Proof. Let (3) be the equation of « . We can assume (57). If it were not
the case, we could use the reflections of R"” w.r.t. some coordinate hyperpla-
nes in order to obtain the equation

QCMIa Ig -b

in the new coordinates § . W. r.t. the symmetries of C" such a transtormation
does not change the numbers ki('t: ).

We can also assume (58). In the opposite case a suitable permutation of
the coordinates transforms (3) (satisfying (57)) so that (58) is fulfilled
w.r.t. the new coordinates. On the other hand, a permutation of the coordina-
tes can change only the order of the ki ‘s, the value k(z) remains unchanged.

Now we can apply Theorem 3 and we see that

k(v )ek(e).

s ({(n:;/u) '

which completes the proof.

According to Lemma 3

Theorem 5. Let = c R be the hyperplane (3), let us assume (57) and
(58). Let me n-1 be odd and

(60) B (‘em ;- ‘H(me 8y, ,1)/(n-m+1).
Let
amcpméamz-

(We define am]_:ar", if n is even.)

(i) 1f lb/ﬁmle [n-2p,n-2p+2[ for some pe T, then k(z ) £ (g:i)
(ii) If |b/@ |z n, then k(x)=0.
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Proof. The proof of Theorem 3 was based on Theorem 2 with N=0. But we
can apply Theorem 2 or Theorem 1 with N= -1 for p odd, and N= -2 for p even.
Let men-T be odd. Let Bela ,a .1 be such that
(61)  (ay-a))+2(as-a))+(a,-a5)+2(ag-a,)+.. +2ap-ay )+(p-ap=. = _(a;-f3),
i.e.,
(62) = ﬂm.
Let us apply Theorem 1 with p=1, N= -1, j=n and Po= T - Then ;o(t) are
the hyperplanes

(63) (a+t)x+ Z_._.Ialx1+(a -t)x =b.

Now either al+t attains the value a, before an-t attains the value ﬁ or
not. If not, we stop the path (63) in the value T, for which a -t B and then
we apply Theorem 1 with p=1, N= -1 and j=n-1. (With t- T instead of t.) a +t
grows further and a,+t either attains the value a2 before a,_ 1-(1: -D attalns
the value f3 or not. If not, we stop in the value t for which a1-

-3-0)- # and then we apply Theorem 1 with p=1, N= -1 and j=n-2 etc.

During these continuous changes of coefficients in (3) the first coeffi-
cient grows by (az-al)- N= -1, hence the coefficients a, i e fi-m decrease al-
together by the same value (az-al). In fact, (58) and (61) imply that

1.:0\. ﬁ»(al Bz (32‘31)’
thus after some steps we obtain for some Tl’ some r, € n-1 and some °‘1 as
P(Tl) the hyperplane

b

(64) a, (x,+x )# a.X.+ & = X, =l
8tx)+%) -z i%i 1r1+1pu”_m1m

and @(t) is defined for telo,7,1. (Cf. (63).)

Now we can apply Theorem 1 with p=2, N= -2, jerp+l, @g= p(Tl) and t-T,
instead of t. We proceed in the construction of go(t) as above, i.e., we be-
gin with j=r1+l, if ov decreases to 3 before a2+t—T1 attains the value ag,
we continue with j=r1 etc. This way a, grows by a}—az. Because N= -2, the sum

(65) - _ﬁ(ai- {3)+(cc1- B),

161!1

simultaneously decreases by 2(a}°32)- In fact, (65) is equal to

2 w83~ B)-(ay-a;)

Alm.m i
and (58) and (Ql) imply that
= (as-p )-(ay-a)) 2 2(a5-a,).
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Thus after some steps we obtain for some Tz, some T,¢ Fl and some <, 35
SD(TZ) the hyperplane
(66) ag(x) +Xp+x3)+ “;5‘5 aixi+¢2xr2+1+ [ ug__ T x;=b
and @(t) is defined for te[O,TZJ.

Now, we can apply Theorem 1 with p=3, N= -1, j=r2+1 etc. to the hyperpla-
ne (66).

We can easily see that after some such steps we obtain for some T as So(T)

the hyperplane
(67) BE_x

Yem 1

b.

In fact at first the coefficient a, grows by a,-a,. Then a, in (64) grows by
a;-a, etc., in the end 3, grows by [&-am. This implies that simultaneously the
sum

(68) > _(ai— 3

e A-m
decreases at first by (az-al), then by 2(33-32) etc., in the end by ({S-am).
But the sum of all these values is just (68) according to (61). Hence, if all
the coefficients 3, iem attain the value 8 , the other coefficients a;,
ieTi-m must attain the same value.

Let us remark that in some instants of this construction it can be neces-
sary to change at 'first by a small value the value of b. Hence in general we
obtain as Q(T) instead of (67) the hyperplane & , defined by means of the e-
quation
(69) B.X, %D

with some suitable B arbitrarily close to b. (Cf. Theorem 2.) '

This way we have constructed a continuous path @(t), te[(0,T1, which be-
gins in ¥ and ends in 6 . This path consists of finitely many straight line
segments. According to Theorem 1 (or Theorem 2) the function k(@ (1)) is defi-
ned for all points of these segments except of some finite set and it is a
nondecreasing function on any of these segments. In the end-points of these
segments k(sa(t)) is defined and continuous. Hence, k(g (1)) is defined and
nondecreasing on [0,T]}-M, where M is a finite set, which contains neither 0,
nor T. Thus
(70) k(z)£k(6).

Inserting (62) into the equation (69) of & , we see immediately that we
have proved the following assertion.
A: Let men-1 be odd. Let

a, & {Sm(s el
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Let & be the hyperplane (69). Then (70) holds.
Similarly we can prove:
B: Let men-1 be even. Let

(71) [ 32w 3;2 ie (,ST':.—-DH aZi+1)/("'""2)’

let
8, £ [sm ‘amd'

Let € be the hyperplane (69). Then (70) holds.

If m is vdd, then m+l is even and we can insert the value m+l instead of
m into the assertion B. Comparing then (60) and (71), we see that /3m+1 calcu-
lated according to (71) coincides with f  of (60). Hence, the assertions A
and B can be unified as follows:
Let men-1 be odd. Let us define (3 as in (68). Let a, £ £3  o.
Let 6 be the hyperplane

= xi=b/ J£) o

(with D arbitrarily close to b and such that [b| > |b] - <f. Remark 3). Then
(70) holds.

Now we can apply Lemma 2 in order to calculate k(6 ) and we obtain the
assertion of Theorem 5 (we also use the inequalities |b|< |bl< |b|+e ).

Remark 4. Let ¥ be the hyperplane (3), satisfying (57) and (58). Then
the assumptions of Theorem 5 are always satisfied for some odd integer me n-1.

Remark 5. To any hyperplane «© with the equation (3) there always exists
a symmetry of c” which transforms (3) so, that the transformed equation satis-
fies (57) and (58). (See the proof of Theorem 4.)

Section 3. The examples. The continuous path @ (t) which was constructed
in the proof of Theorem 3, is rather complicated and one can seek for some mo-
re simple path with analogous properties. The most simple path joining x with
€ of Theorem 3 is the path g (1), tel0,1] defined by means of the equation

(72) En(aft(l'ai))xi=b+t(1/2'b)’
We can formulate

Conjecture 1. Let «x c R" be the hyperplane (3). Let us assume (57); (58)
and b>0. Let @(t) be the hyperplane (72). Let M= {t 610,11 k(@ (1)) is not
defined}. Then k(@ (t)) is a nondecreasing function on [0,11-M.

This conjecture can be proved for n=1 and n=2, but for n23 it is false

as the following example shows. 533



Example 1. Let vc R3 be the plane

(73) X +2X+3%5=5.
Let «€]0,1[ (e.g., « =1/2). Then (72) implies that @(t) is the plane
(78) x1+(2-t)x2+(3—2t)x3=5+t(cc -5).

Theorem 5 implies that k(«w )<1, because 1£(1+2+3)/3<3 and 1£5/2<3.
On the other hand, the vector (0,1,1) solves the equation (73), hence k(z)=1.

Let t=(1+7)/(2-), where 7 >0 is sufficiently small. Then tel0,1]
and (74) can be rewritten in the form

(75) (2-a&)x +(3-2ec -7 My+(4-3e -2 Ix3=5-40¢ +(e -5)7 .

If x5=1, x3=1, then (75) implies X = -1-7.

If x5=1, x3= -1, then (75) implies X =(6-5a¢+(% -6) 7 )/(2- ).

If Xp= -1, x3=1, then (75) implies x1=(A-3«+(ac-4)n)/(2-oc).

If xp= -1, x3= -1, then (75) implies x;=(12-9ec+(ec-8) 1 )/(2- ).

In the first case 7 >0 implies that x1<-1. Because « &(0,1), we have
12-9«> 6-50¢ > 4-30¢ > 2-c¢ > 0,

hence in the other 3 cases x> 1, it m > 0 is sufficiently small. Thus for
t=(1+7)/(2-) with such an 7 we have proved that

k(@ (1))=0
and k(@ (t)) is not a nondecreasing function.
In the proof of Theorem 3 we have constructed a continuous path su(t)
which passes through the hyperplanes Pp defined by the equations

(76) max {ailic Pl ‘§1‘ x1+&.§_;aixi=bp'

where all the b'; s are close to b. The path @(t) is "almost linear" between
@, and Ppep» for all peh-1.
Let e’p be the hyperplanes
p 1‘."2,Fb 8 55x1+ 4,_%_1-,81"1:%’
where 'E‘; s are close to b. We can ask, whether it is possible to define a con-
tinuous path & (t) which passes through all the hyperplanes s‘p and such that
k(6(t)) is a nondecreasing function of t on its domain.

Using Theorem 1 with p=1, j=2 and N= -1 we can construct the first part
of € (t) namely the part between 6‘1 and 6’2. Using Theorem 1 with p=2, j=3
and N= -2, we can then construct the second part of 6€(t) between 62 and 63.
For the construction of the third part between 6'3 and 6" we would need
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Theorem 1 with j=4 and N= -3. But such a theorem is false and in fact the
construction of the third part of 6&(t) is impossible, if we require the mo-
notonicity of k(6 (t)). Namely, it can happen that k( 5'4)4 k( 6'3) as the fol-
lowing example shows, thus we cannot substitute the arithmetic mean for the
maximum in (76).

Example 2. Let 635 R“ be the hyperplane

an x1+x2+x3+5x4=5.

Then 64 is the hyperplane
(78) 2(x1+x2+x3+x‘)=5.

The vectors (0,1,-1,1) and (0,-1,1,1) satisfy the equation (77), hence
k1(6’3)22 and k( 6’})22. (In fact k( 6})=k1( 6’})=2.) From (78) we obtain ac-
cording to Theorem 5 or Lemma 2 that k( GA)ﬁl. (In fact k( 6'4)=1.) Thus_we
see that k( d‘)ck( 6'3).
The last example illustrates the use of Lemma 4 and Theorem 5.
Example 3. Let wvc R‘ be the hyperplane
x1+3x2+4x}+12x4=2.

Theorem 4 implies only the estimate
k(z)£3.

Using Lemma 4, we obtain
79
(79) k(z)4k( @),
where ® is the hyperplane
(80) X +2x3#3X 344X, =12,
Proceeding as in the proof of Theorem 3 we can show that

(81) k(@ £K(P,),
where ©2 is the hyperplane

A(x1+x2+x3+x4)=12.
According to Lemma 2

k(P2)=1.

Hence (79) and (81) imply that
k(e )£1.

But we can also apply Theorem 5 to (80). In this case
% ai/4=2.5, a;=1, as=3,
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a "4%7,- ai/aé as.
Further 12/2.5Z 4, hence k( pl)=0 and (79) implies that k(x )=0.
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