

Werk

Label: Article **Jahr:** 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0028|log64

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 28,3 (1987)

REMARKS ON INFLATED MAPPINGS Vladimír JANOVSKÝ, Dáša JANOVSKÁ

Abstract: Organizing centre of an imperfect bifurcation problem $F(u, \Lambda, \infty) = \overline{0}$ is related to a simple root of an auxiliary operator (= the inflated mapping). The construction of an inflated mapping depends on a classification of the organizing centre.

 $\underline{\text{Key words:}}$ Imperfect bifurcation problems, organizing centre, numerical approximation.

Classification: 47H15, 65J15, 58C27, 14B05

1. Introduction. Let U and Y be Banach spaces. We consider an operator $F: U \times \mathbb{R}_1 \times \mathbb{R}_k \longrightarrow Y$. The variable x of F=F(x) is a triple $x=(u,\lambda,\infty)$, where (in a bifurcation context) u and λ and ∞ respectively are the state variable and the control parameter and the parameter of an imperfection.

A point $x_0 = (u_0, \lambda_0, \infty_0) \in U \times \mathbb{R}_1 \times \mathbb{R}_k$ is called the <u>singular point</u> of F if

(1.1)
$$F(x_0)=0$$

(1.2)
$$\dim \operatorname{Ker} F_{U}(x_{0}) = m \ge 1,$$

where F_{ij} denotes the partial Fréchet derivative of F (at x_{ij}) w.r.t. the variable u, and Ker $F_{ij}(x_{ij})$ is the kernel of $F_{ij}(x_{ij}):U \longrightarrow Y$.

Moreover, we assume

 $F_{U}(x_{0}):U \longrightarrow Y$ to be Fredholm with index zero

 $F \in C^{\infty}(X,Y)$, where X is a neighbourhood of x_0 .

Let us consider an operator

 $L:U \longrightarrow \mathbb{R}_m$ linear, bounded

satisfying the following implication:

(1.3)
$$\begin{cases} \text{ if } v \in \text{Ker } F_u(x_0) \text{ and } Lv=0 \\ \text{then } v=0. \end{cases}$$

Choose a basis $\{a_1,\dots,a_m\}$ of R_m . Then the condition (1.2) can be reformu-

lated as follows:

(1.4) for each i=1,...,m there exists
$$v_i^{(1)} \in U$$
:
$$F_u(x_0)v_i^{(1)} = 0, \ Lv_i^{(1)} = a_i.$$

Note that if dim U2 m then the property (1.3) is a generic property on the class of all linear bounded operators L:U $\to \mathbb{R}_m$.

The conditions (1.1), (1.4) do not define x_0 uniquely. In general, a point x_0 satisfying (1.1), (1.4) is not isolated. To make it isolated, we have to require more then (1.1), (1.4): If x_0 is an organizing centre of F (i.e. "the most singular" point which is locally available) then there is a chance for x_0 to be locally unique.

In this paper, we are trying to suggest a way how to formulate necessary and sufficient conditions on \mathbf{x}_0 to be an "organizing centre". The important point is that these conditions are stated in terms of F (and its partials). We hint at numerical applications of this procedure in Section 5.

We quote the papers [3],[4],[5], dealing with the same idea. Our approach is stimulated by the preprint [1].

2. <u>Classification of singular points</u>. Following [21, we review basic ideas of Liapunov-Schmidt reduction and classification of germs of smooth mappings in the context of an imperfect bifurcation.

Define a projection

$$TT:U \rightarrow Ker F_{U}(x_{0})$$

fulfilling the following implication: if u ε U then $T\!T\!u=v$ ε Ker $F_u(x_0)$ and Lv==Lu. Let $T\!T^C$ be the complement of $T\!T$, i.e.,

$$\Pi^{C}=I-\Pi$$
 (I is the identity $U \longrightarrow U$).

We set W= TTC(U), i.e.,

W= {v∈U:Lv=0}.

Obviously, W is closed and

U=Ker
$$F_{u}(x_{0}) \oplus W$$
.

Remind that $F_u(x_0)$ is assumed to be Fredholm with index zero. Let $\Re(F_u(x_0))$ denote the range of $F_u(x_0)$. There exists a projection

$$Q:Y \longrightarrow \Re(F_{ij}(x_{ij})).$$

Let Q^C be its complement, i.e.,

$$Q^C = I - Q$$
 (I is the identity $Y \longrightarrow Y$).

Then

$$Y = \mathcal{R}(F_{II}(x_0)) \oplus Q^{C}(Y)$$

where both components are closed and

$$\dim Q^{C}(Y)=\dim \ker F_{u}(x_{0}).$$

Thus, for each $r \in Y$, there exists the unique $z \in U$ such that

$$F_{u}(x_{0})z=Qr$$
, Lz=0.

We set $F_u^+(x_0)$ r=z. Then

$$(2.1) F_{\mathbf{u}}^{+}(\mathbf{x}_{0}): \mathbf{Y} \longrightarrow \mathbf{W}$$

is linear, bounded.

The condition (1.1) can be reduced to a so called bifurcation equation, see the coming (2.3): If $(v, \lambda, \alpha) \in \operatorname{Ker} F_u(x_0) \times \mathbb{R}_1 \times \mathbb{R}_k$ then we define weU:

(2.2)
$$\begin{cases} QF(w+v, \Lambda, \infty)=0 \\ Lw=0 \text{ (i.e., } w \in W). \end{cases}$$

By means of the Implicit Function Theorem.

$$w=w(v, \lambda, \infty), w \in C^{\infty}(\mathcal{V}, W)$$

where \mathcal{V}_{C} Ker $\mathsf{F}_{\mathsf{U}}(\mathsf{x}_0) \times \mathbb{R}_1 \times \mathbb{R}_k$ is a sufficiently small neighbourhood of the point $(\mathsf{v}_0,\,\lambda_0,\,\mathsf{x}_0),\,\mathsf{v}_0$ = $\mathsf{TT}\mathsf{u}_0$. To be precise, there exists a neighbourhood \mathcal{W} of $\mathsf{TT}^\mathsf{C}\mathsf{u}_0$ (in W) such that (2.2) is satisfied for w $\in \mathcal{W}$ and $(\mathsf{v},\,\lambda\,,\,\infty) \in \mathcal{V}$ if and only if w=w(v, $\lambda\,,\,\infty$). Thus, we define

$$\mathcal{U} = \{(u, \lambda, \infty) : (\Pi u, \lambda, \infty) \in \mathcal{V}, \Pi^{c} u \in \mathcal{W} \}.$$

It can be easily concluded that

$$F(u,\lambda,\alpha)=0$$
, $(u,\lambda,\alpha) \in \mathcal{U}$

if and only if

(2.3)
$$g(v, \lambda, \alpha) = 0, (v, \lambda, \alpha) \in V$$

where

(2.4)
$$g(v, \lambda, \infty) = Q^{C}F(v+w(v, \lambda, \infty), \lambda, \infty).$$

Both Ker $F_u(x_0)$ and $Q^C(Y)$ can be identified with $I\!R_m$. Then g could be understood as a germ of C^{co} -mapping

$$g: \mathbb{R}_m \times \mathbb{R}_1 \times \mathbb{R}_k \longrightarrow \mathbb{R}_m$$

centred at $(v_0, \lambda_0, \alpha_0)$.

Let us proceed with ideas of classification. Assume the space of all germs h of ${\tt C}^\varpi\text{-mappings}$

h:
$$\mathbb{R}_{m} \times \mathbb{R}_{1} \longrightarrow \mathbb{R}_{m}$$
- 493 -

centred at (v_0,λ_0) . An equivalence (so called contact equivalence) is defined on this space; the equivalence preserves important topological properties of bifurcation diagrams. The equivalence classes are called orbits. If a germ h=h(v, λ) has a finite codimension then the relevant orbit is a semialgebraic variety of a finite codimension in the linear space of Taylor coefficients (i.e. the space of all partials of h at (v_0,λ_0) .

Just two examples:

Example 1. Assume m=1, and define

$$^{\text{G=}(\text{h},\text{h}_{\text{v}},\text{h}_{\text{A}},\text{h}_{\text{vv}},\text{h}_{\text{vA}})^{\text{T}}} \colon \mathbb{R}_{1} \times \mathbb{R}_{1} \longrightarrow \mathbb{R}_{5}.$$

If G=0 at (v_0, λ_0) and some "nondegeneracy conditions" hold (namely, $h_{vvv} \neq 0$, $h_{\lambda\lambda} \neq 0$) then (v_0, λ_0) is called the winged cusp singularity, see [2], p. 198.

Example 2. Assume m=2, and define $G=(h,h_v)^T:\mathbb{R}_2\times\mathbb{R}_1\longrightarrow\mathbb{R}_6$. If G=0 at (v_0,λ_0) and some nondegeneracy conditions hold (e.g. $h_{\lambda}\neq 0$) then (v_0,λ_0) is called the hilltop bifurcation point, see [2], p. 403.

Each particular singularity (v_0, $\boldsymbol{\lambda}_0$) has to satisfy a set of $\boldsymbol{\mathcal{L}}$ algebraic conditions

G=0 at
$$(v_0, \lambda_0)$$

where $G: \mathbb{R}_m \times \mathbb{R}_1 \longrightarrow \mathbb{R}_\ell$; ℓ is finite if h has a finite codimension.

The germ $g=g(v,\lambda,\infty)$ can be viewed as a perturbation of h. Naturally, we replace h by g in the particular definition of G. Then

$$(2.5) G: \mathbb{R}_{\mathsf{m}} \times \mathbb{R}_{1} \times \mathbb{R}_{\mathsf{k}} \longrightarrow \mathbb{R}_{\mathsf{k}}$$

and the condition on a singular point reads as

(2.6) G=0 at
$$(v_0, \lambda_0, \infty_0)$$
.

The condition (2.6) defines $(\mathbf{v_0}, \lambda_0, \mathbf{x_0})$ locally uniquely if and only if

$$\left\{ \begin{array}{c} \text{m+1+k=}\, \boldsymbol{\ell} \\ \text{Jacobian of G at } (\mathbf{v_0}, \boldsymbol{\lambda_0}, \boldsymbol{\alpha_0}) \text{ does not vanish.} \end{array} \right.$$

At this place, we can formulate the following conjecture: The condition (A) is equivalent to the assumption that $g=g(v, \lambda, \infty)$ is a <u>universal unfolding</u> of the germ $g(\cdot, \cdot, \cdot, \infty_0): \mathbb{R}_m \times \mathbb{R}_1 \longrightarrow \mathbb{R}_m$. In such a case, k=codim $g(\cdot, \cdot, \infty_0)$. Note that if the codimension k $\neq 3$ then there is a finite choice of mappings G. Let us quote 2, Theorem 2.1, p. 400, where the relevant G´s are listed.

The aim of this paper is to indicate how to formulate (2.6) in terms of

F (and its partial derivatives w.r.t. u and λ) at the singular point x_0 .

3. Construction of inflated mappings. In order to illustrate the idea, we assume the following examples:

Case 1: $G=(g,g_v,g_{\lambda})^T$;

Case 2: $G=(g,g_v,g_{vv})^T$;

Case 3: $G=(g,g_v,g_{\lambda},g_{vv},g_{v\lambda})^T$;

there is no restriction on dimension m. Conditions G=0 classify singularities (v_0,λ_0,α_0) in the sense of the previous section.

For each of the above cases, we derive the equivalent conditions on $(\mathsf{u}_0,\lambda_0,\mathsf{x}_0)$. It will appear that $(\mathsf{u}_0,\lambda_0,\mathsf{x}_0)$ is related to a root of an operator $\mathscr F$, where $\mathscr F$ is constructed by means of F and its partials w.r.t. $\mathsf u$ and λ . Let us say that $\mathscr F$ is the <code>inflated mapping</code> corresponding to F.

<u>Notation:</u> If it is not stated otherwise then the values of F and its derivatives are understood at the singular point $x_0=(u_0,\lambda_0,\infty_0)$. Similarly, the operators w and g (and their derivatives) are evaluated at the "projected" x_0 , i.e. at (v_0,λ_0,∞_0) .

First, let us remind our assumption on x_0 , see (1.1) and (1.4). It reads as follows:

$$(3.1)$$
 F=0

(3.2)
$$\exists v_i^{(1)} \in U, i=1,...,m: F_{ii} v_i^{(1)} = 0, L v_i^{(1)} = a_i$$

where $\{a_1,\ldots,a_m\}$ span \mathbb{R}_m .

By definition of g, see (2.4), it is clear that (3.1),(3.2) imply

(3.3)
$$g=0, g_{V}=0.$$

We shall discuss consequences of the assumptions g_{χ} =0 and $g_{\nu\nu}$ =0 and $g_{\nu\lambda}$ =0.

Let us differentiate both (2.2) and (2.4) w.r.t. λ . It yields

and

$$g_{\lambda} = Q^{C}[F_{u}w_{\lambda} + F_{\lambda}]$$
.

Obviously, $g_{\lambda} = 0$ if and only if

(3.4)
$$\exists v_{m+1}^{(1)} \in U: F_{u} v_{m+1}^{(1)} + F_{\lambda} = 0, \ L v_{m+1}^{(1)} = 0.$$

Namely,

(3.5)
$$v_{m+1}^{(1)} = w_{\lambda}$$
 - 495

It follows from (2.4) that

$$g_{vv} = Q^{c}[F_{uu} \cdot (I + w_{v})^{2} + F_{u}w_{vv}].$$

Let us calculate both w_v and w_{vv} from (2.2). Differentiating w.r.t. v,

$$Q[F_u \cdot (I+w_v)] = 0$$
, $Lw_v = 0$.

Differentiating (2.2) again,

$$Q[F_{uu} \cdot (I+w_{v})^{2} + F_{u}w_{vv}] = 0, Lw_{vv} = 0.$$

It is simple to conclude that $g_{vv}=0$ if and only if $g_{vv}v_1^{(1)}v_1^{(1)}=0$ for l ≤j ≤i ≤m, which is equivalent to

(3.7)
$$\begin{cases} \exists v_{ij}^{(2)} \in U \ (1 \le j \le i \le m): \\ F_{u}v_{ij}^{(2)} + F_{uu}v_{i}^{(1)}v_{j}^{(1)} = 0, \ Lv_{ij}^{(2)} = 0. \end{cases}$$

Namely,

(3.8)
$$v_{ij}^{(2)} = w_{vv} v_{i}^{(1)} v_{j}^{(1)}.$$

Similar calculations yield the following assertion: $\mathbf{g}_{\pmb{\lambda}}$ =0, $\mathbf{g}_{\mathbf{v}\pmb{\lambda}}$ =0 are equivalent to (3.4) and

(3.9)
$$\begin{cases} \exists v_{m+1,j}^{(2)} \in U \ (j=1,...,m): \\ F_{u}v_{m+1,j}^{(2)} + F_{u\lambda}v_{j}^{(1)} + F_{uu}v_{m+1}^{(1)}v_{j}^{(1)} = 0, \\ Lv_{m+1,j}^{(2)} = 0 \end{cases}$$

with the interpretation

(3.10)
$$v_{m+1,j}^{(2)} = w_{\nu} \chi^{\nu}_{j}^{(1)} \quad (j=1,\ldots,m).$$

We resume the above calculations in

Proposition 1. Assume Cases 1 - 3 of the definition G. Then the condition G=0 at $(\mathbf{v_0},\,\lambda_0,\,\kappa_0)$ is equivalent to the following conditions at $(u_0, \lambda_0, \alpha_0)$:

Case 1: (3.1),(3.2), (3.4);

Case 2; (3.1), (3.2), (3.7);

Case 3: (3.1), (3.2), (3.4), (3.7), (3.9).

The listed conditions define a root of an operator ${\mathcal F}$. In Case 1 ,

$$\mathcal{F}: \mathbb{U} \times \mathbb{R}_1 \times \mathbb{R}_k \times [\mathbb{U}]^{m+1} \longrightarrow [Y]^{m+2}$$

$$- 496 -$$

is defined as follows: if (u, λ , α , $v_1^{(1)}, \dots, v_m^{(1)}, v_{m+1}^{(1)}$) \in U \times $\mathbb{R}_1 \times$ $\mathbb{R}_k \times$ [U] $^{m+1}$ and $\mathsf{Lv}_i^{(1)} \text{=} \mathsf{a}_i$ for i=1,...,m and $\mathsf{Lv}_{\mathsf{m}+1}^{(1)} \text{=} \mathsf{0}$ then

(3.11)
$$\mathcal{F}(u, \lambda, \omega, v_1^{(1)}, \dots, v_{m+1}^{(1)}) = \begin{pmatrix} F(u, \lambda, \omega) \\ F_u(u, \lambda, \omega) v_1^{(1)} \\ \vdots \\ F_u(u, \lambda, \omega) v_m^{(1)} \\ F_u(u, \lambda, \omega) v_{m+1}^{(1)} + F_{\lambda}(u, \lambda, \omega) \end{pmatrix}$$

Thus $\mathcal F$ is defined on an affine subspace of $U \times \mathbb R_1 \times \mathbb R_k \times [U]^{m+1}$. A simple shift of variables $v_i^{(1)}$ makes it possible to define $\mathcal F$ on the linear space $U \times \mathbb{R}_1 \times \mathbb{R}_{\nu} \times [U_n]^{m+1}$, where

(3.12)
$$U_0 = \{ u \in U : Lu = 0 \}.$$

A root $(u,\lambda,\infty,v_1^{(1)},\dots,v_{m+1}^{(1)})$ has a clear interpretation: $(u,\lambda,\infty)=x_0$ (i.e., it yields the singular point), the vectors $\{v_1^{(1)},\dots,v_m^{(1)}\}$ span $\{v_1^{(1)},\dots,v_m^{$

The definition of ${\mathfrak F}$ in Cases 2 and 3 is similar.

Remark. We have chosen comparatively simple examples of G. If, say, the condition G=0 includes the requirement that Hessian $\mathbf{g}_{\mathbf{v}\mathbf{v}}$ degenerates in one direction then a definition of ${\mathcal F}$ is not so straightforward. Nevertheless, we believe that any condition G=O on an orbit of the germ $g(\cdot\,,\cdot\,,\omega_0')$ centred at $(\mathbf{v_0}, \boldsymbol{\lambda_0}) \text{ is equivalent to a condition } \mathbf{F} = \mathbf{0} \text{ at } (\mathbf{u_0}, \boldsymbol{\lambda_0}, \boldsymbol{\omega_0}, \text{ plus auxiliary value})$ riables) where ${\mathcal F}$ is the "inflated mapping" corresponding to F.

4. Gradient of the inflated mapping. Since the conditions G=O at (v_0,λ_0,α_0) and $\mathscr{T}=0$ at $(u_0,\lambda_0,\alpha_0,\ldots)$ are equivalent, one is ready to believe that the gradient DG at (v_0,λ_0,α_0) is invertible if and only if the gradient D \mathscr{T} at $(u_0,\lambda_0,\alpha_0,\ldots)$ is invertible. The invertibility of DG is formulated in the assumption (A), Section 2. We wish to discuss the statement: (A) holds if and only if DF $\,$ is invertible at (u_0, $\lambda_0, \, \alpha_0, \ldots$).

We illustrate this statement on an example. Let us assume Case 1 of Section 3. The relevant ${\mathcal G}$ is defined by (3.11). Fréchet derivative D ${\mathcal F}$ at $(u_0, \lambda_0, \kappa_0, v_1^{(1)}, \dots, v_{m+1}^{(1)})$ with respect to a direction $(\mathscr{S}_{\mathsf{U}}, \mathscr{S}_{\mathsf{A}}, \mathscr{S}_{\mathsf{G}}, \mathscr{S}_{\mathsf{V}_{1}}^{(1)}, ..., \mathscr{S}_{\mathsf{V}_{\mathsf{m}+1}}^{(1)}) \in \mathsf{U} \times \mathsf{R}_{1} \times \mathsf{R}_{\mathsf{k}} \times [\mathsf{U}_{\mathsf{O}}]^{\mathsf{m}+1}$ can be simply calculat-

(4.1) Df (
$$\sigma_u$$
, σ_λ , σ_α , $\sigma_v_1^{(1)}$,..., $\sigma_v_{m+1}^{(1)}$)=(r , $r_1^{(1)}$,..., $r_{m+1}^{(1)}$)^T

where

(4.2)
$$r=F_U \sigma_U + F_{\Lambda} \sigma_{\Lambda} + F_{\kappa} \sigma_{\infty}$$

(4.3)
$$r_{i}^{(1)} = (F_{uu} \sigma_{u+F_{u}\lambda} \sigma_{\lambda} + F_{u\omega} \sigma_{\omega}) v_{i}^{(1)} + F_{u} \sigma_{v_{i}}^{(1)}$$

for i=1,...,m, and

for i=1,...,m, and
$$\begin{cases} r_{m+1}^{(1)} = (F_{uu} \circ u + F_{u\lambda} \circ \lambda + F_{u\omega} \circ \omega) v_{m+1}^{(1)} + \\ + F_{u\lambda} \circ u + F_{\lambda\lambda} \circ \lambda + F_{\lambda\omega} \circ \omega + F_{u} \circ v_{m+1}^{(1)}; \end{cases}$$
 Terminal the convertion that $F_{u\lambda} \circ u + F_{u\lambda} \circ \omega + F_{u\lambda} \circ v_{m+1}^{(1)}; \end{cases}$

remind the convention that F (and its partials) are evaluated at $\mathbf{x}_0 = (\mathbf{u}_0, \lambda_0, \mathbf{x}_0)$. We skip the argument $(\mathbf{u}_0, \lambda_0, \mathbf{x}_0, \mathbf{v}_1^{(1)}, \dots, \mathbf{v}_{\mathsf{m}+1}^{(1)})$ of $\boldsymbol{\mathcal{F}}$ and D $\boldsymbol{\mathcal{F}}$, too. Our aim is to prove that the linear mapping

D3 :
$$U \times \mathbb{R}_1 \times \mathbb{R}_k \times [U_0]^{m+1} \longrightarrow [Y]^{m+2}$$

is $\underline{\text{regular}}$ (i.e. it is invertible, with a bounded inverse).

<u>Proposition 2.</u> Assume Case 1 of Definition G. Let $(u_0, \lambda_0, \infty_0, v_1^{(1)}, \dots)$..., $v_{m+1}^{(1)}$) be a root of the relevant \mathcal{F} , see (3.11). Then the assumption (A) is equivalent to the statement that D \mathcal{F} , being evaluated at $(u_0,\lambda_0,\alpha_0,v_1^{(1)},\dots,v_{m+1}^{(1)})$, is regular.

Proof. By making use of formulas (4.1)-(4.4), we try to calculate the inverse of $D\mathcal{F}$. We use the notation

i.e.

Projecting both sides of (4.2) by the operator Q onto the range of $\mathbf{F}_{\mathbf{U}}$, and making use of $F_{\mathsf{U}}^{\mathsf{+}}$ (see (2.1)), we calculate σ w as an affine operator of δλ and δω . Namely,

where

(4.6)
$$w_{\lambda} = -F_{u}^{+}F_{\lambda}$$
, $w_{\infty} = -F_{u}^{+}F_{\infty}$.

Projecting both sides of (4.2) by the projector $\mathbf{Q}^{\mathbf{C}}$, one can check that

(4.7)
$$g_{v} dv + g_{\lambda} d\lambda + g_{\infty} d\infty = Q^{c}r.$$

Similarly, (4.3) and (4.5) imply

$$\begin{cases} & \textit{dv}_{i}^{(1)} = (\mathsf{w}_{\mathsf{VV}} \, \textit{dv} + \mathsf{w}_{\mathsf{VA}} \, \textit{dA} + \mathsf{w}_{\mathsf{Voc}} \, \textit{doc}) v_{i}^{(1)} + \\ & & + \mathsf{R}_{i}^{(1)} + \mathsf{w}_{\mathsf{VV}} v_{i}^{(1)} \mathsf{R}, \, \, \mathsf{R}_{i}^{(1)} = \mathsf{F}_{\mathsf{U}}^{+} r_{i}^{(1)} \end{cases}$$
 where

where

where
$$\begin{cases} w_{vv} = -F_{u}^{\dagger}F_{uu}, w_{v\lambda} = w_{vv}w_{\lambda} - F_{u}^{\dagger}F_{u\lambda}, \\ w_{v\alpha} = w_{vv}w_{\alpha} - F_{u}^{\dagger}F_{u\alpha}. \end{cases}$$

Projecting (4.3) by Q^C, it yields

$$(4.10) \qquad \qquad (g_{vv} \, \textit{dv} + g_{v\lambda} \, \textit{d\lambda} \, + g_{v\alpha} \, \textit{d\alpha}) v_i^{(1)} = Q^c [r_i^{(1)} - F_{uu} R v_i^{(1)}] \, .$$

Finally, as a consequence of (4.4), we obtain

(4.11)
$$\begin{cases} \int_{m+1}^{\sigma(v_{m+1}^{(1)}=w_{v,\lambda}\sigma(v+w_{\lambda\lambda}\sigma(\lambda+w_{\lambda\infty}\sigma(x+v_{m+1}^{(1)}))} + R_{m+1}^{(1)}+w_{v,\lambda}R, R_{m+1}^{(1)}=F_{u}^{+}F_{m+1}^{(1)} \end{cases}$$

where

$$\begin{cases} w_{\lambda\alpha} = w_{v\alpha} w_{\lambda} + w_{v\lambda} w_{\alpha} - w_{vv} w_{\alpha} w_{\lambda} - F_{u}^{\dagger} F_{\lambda\alpha} \\ w_{\lambda\lambda} = 2 w_{v\lambda} w_{\lambda} - w_{vv} w_{\lambda} w_{\lambda} - F_{u}^{\dagger} F_{\lambda\lambda} \end{cases}$$

Moreover, (4.4) implies

$$(4.13) g_{v\lambda} dv + g_{\lambda\lambda} d\lambda + g_{\alpha\lambda} d\alpha = Q^{c} [r_{m+1}^{(1)} - (F_{uu} w_{\lambda} + F_{u\lambda})R].$$

Let us resume the above calculations. According to (4.5), (4.8) and (4.11), the vectors dw, dv $_i^{(1)}$ (i=1,...,m), dv $_{m+1}^{(1)}$ are affine operators of (dv, d λ , d α). Continuity of these operators follows from the boundedness of

Denote DG(σ v, $\sigma\lambda$, $\sigma\omega$) the Fréchet derivative of G at (v₀, λ ₀, ∞ ₀) with respect to the direction (δv , $\delta \lambda$, $\delta \omega$). Then the conditions (4.7), (4.10) and (4.13) read as follows:

$$(4.14) \quad DG(\sigma v, \sigma \lambda, \sigma \alpha) = \begin{pmatrix} Q^{C} r \\ Q^{C} [r_{1}^{(1)} - F_{uu} R v_{1}^{(1)}] \\ \vdots \\ Q^{C} [r_{m}^{(1)} - F_{uu} R v_{m}^{(1)}] \\ Q^{C} [r_{m+1}^{(1)} - F_{uu} R v_{m}^{(1)}] \end{pmatrix},$$

where R=F $_{
m H}^+$ r. Thus, Df is regular if and only if (σ V, σ A, δ σ) depends conti-

nuously on $(\mathbf{r},\mathbf{r}_1^{(1)},\ldots,\mathbf{r}_{\mathbf{m}}^{(1)})$ via (4.14).

We claim that the latter is equivalent to the assumption (A). For, note that G=O counts ℓ =m(m+2) algebraic conditions. Identifying both Ker F $_u$ and Q^CY with R_m , the assumption (A) states that the linear operator

DG: Ker
$$F_u \times \mathbb{R}_1 \times \mathbb{R}_k \longrightarrow [\mathbb{Q}^{c_Y}]^{m+2}$$

is invertible.

5. <u>Conclusions.</u> The aim is to find a mapping ${\mathcal F}$ such that an organizing centre of F would be related to a <u>simple</u> root of ${\mathcal F}$. Our point is to link the construction of the mapping ${\mathcal F}$ with a classification of the organizing centre.

We have demonstrated this idea on three particular examples, see Proposition 1. The classification is not known a priori but it can be guessed using an auxiliary information (e.g. by means of codimension).

If the root of ${\mathfrak F}$ is simple (for an example, see Proposition 2) then the Newton method can be applied to approximate the root.

References

- 1 ALLGOWER E., BÖHMER K.: Highly singular equations and bifurcation, preprint.
- 2 GOLUBITSKY M., SCHAEFFER D.G.: Singularities and Groups in Bifurcation Theory (Volume 1), Springer Verlag, 1985.
- 3 JEPSON A.D., SPENCE A.: Singular points and their computation, in: Numerical Methods for Bifurcation Problems, ISNM 70, pp. 195-209, Birkhäuser, 1984.
- 4 BEYN W.J.: Defining equations for singular solutions and numerical applications, in: Numerical Methods for Bifurcation Problems, ISNM 70, pp. 42-56, Birkhäuser, 1984.
- 5 SPENCE A., JEPSON A.D.: The numerical calculation of cusps, bifurcation points and isola formation points in two parameter problems, in: Numerical Methods for Bifurcation Problems, ISNM 70, pp. 502-514, Birkhäuser, 1984.

Department of Numerical Analysis, Faculty of Math and Physics, Charles University, Malostranské nám. 2/25, 11800 Praha 1, Czechoslovakia

(Oblatum 30.4. 1987)