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Abstract: Qrganizing centre of an imperfect bifurcation problem
F(u, X, %)=0 1s related to a simple root of an auxiliary operator (= the in-
flated mapping). The construction of an inflated mapping depends on a classi-
fication of the organizing centre.
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1. Introduction. Let U and Y be Banach spaces. We consider an operator
F:U leka—> Y. The variable x of F=F(x) is a triple x=(u, A, ), where
(in a bifurcation context) u and A and oc respectively are the state variab-
le and the control parameter and the parameter of an imperfection.

A point x°=(uo,7\o,oc0)eU;<R1x lR-k is called the singular point of F if

(1.1) F(X°)=U
(1.2) dim Ker Fu(xo)=m21,

where Fu denotes the partial Fréchet derivative of F (at xo) w.r.t. the vari-
able u, and Ker Fu(xo) is the kernel of Fu(xo):U—>Y.
Moreover, we assume
Fu(xo):U —>Y to be Fredholm with index zero
and
Fe C*(X,Y), where X is a neighbourhood of x;.
Let us consider an operator
L:U -—>Rm linear, bounded
satisfying the following implication:
if ve Ker Fu(xo) and Lv=0
then v=0.

Choose a basis {al,...,aml of R,,. Then the condition (1.2) can be reformu-
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lated as follows:

Ly for each i=1,...,m there exists vil)e U:
' Fu(xo)v§1)=0, Lv§1)=ai.

Note that if dim UZm then the property (1.3) is a generic property on
the class of all linear bounded operators L:U =R,

The conditions (1.1), (1.4) do not define X, uniquely. In general, a
point x, satisfying (1.1), (1.4) is not isolated. To make it isolated, we ha-
ve to require more then (1.1), (1.4): If X, is an organizing centre of F (i.e.
"the most singular" point which is locally available) then there is a chance
for X, to be locally unique.

In this paper, we are trying to suggest a way how to formulate necessa-
ry and sufficient conditions on Xg to be an "organizing centre". The import-
ant point is that these conditions are stated in terms of F (and its parti-
als). We hint at numerical appliéations of this procedure in Section 5.

We quote the papers [3],[4),[5), dealing with the same idea. Our appro-
ach is stimulated by the preprint [1].

2. Classific‘ation of singular points. Following [ 21, we review basic i-
deas of Liapunov-Schmidt reduction and classification of germs of smooth map-
pings in the context of an imperfect bifurcation.

Define a projection

T :U —Ker Fu(xo)

fulfilling the following implication: if ueU then TTu=v eKer Fu(xo) and Lv=
=Lu. Let TTC be the complement of TT, i.e.,

TI%I-TT (I is the identity U—> U).

We set W= TTC(U), i.e.,
W= {ve U:Lv=0}.

Obviously, W is closed and
U=Ker Fu(xo) ®N.

Remind that Fu(xo) is assumed to be Fredholm with index zero. Let
:R(Fu(xo)) denote the range of Fu(xo)' There exists a projection

Q:Y — R(F (x ).
Let Q° be its complement, i.e.,

0°=I-Q (I is the identity Y —»Y).
Then
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Y= R(F (x,)) DY)
where both components are closed and
dim Q°(Y)=dim Ker F(x,).
Thus, for each reY, there exists the unique z eU such that
Fu(xg)z=0r, Lz=0.
We set F;(xo)r=z. Then
(2.1) Folxg):Y —>W

is linear, bounded.
The condition (1.1) can be reduced to a so called bifurcation equation,
see the coming (2.3): If (v,A,x)eKer Fu(xo)x Rlx ﬁ( then we define weU:
QF (w+v, A,e¢)=0
(2.2)
Lw=0 (i.e., wewW).
By means of the Implicit Function Theorem,
waw(v, A o), WeC®(V W)

where Yc Ker Fu(xg)= R, x 'Rk is a sufficiently small neighbourhood of the
point (Vo' 9‘0""’0)' vo=T|'uD. To be precise, there exists a neighbourhood W’
of ﬂcuo (in W) such that (2.2) is satisfied for w € % and (v,A,x) eV if
and only if w=w(v,A,et). Thus, we define

U= 4, A, ) :(TTu, A, k) e V', TT% ¢ W3.
It can be easily concluded that
F(u,A,¢)=0, (u,A,x) € U

if and only if

(2.3) g(v,A,6)=0, (v,A,x) e V
where

(2.4) a(v, A, 00)=0F (vw(v, A, 00), A, 00) .

Both Ker Fu(xo) and Q°(Y) can be identified with Rm. Then g could be un-
derstood as a germ of C*-mapping
g: Rmx Rlx Rk — Rm
centred at (v, A, o&g)-
Let us proceed with ideas of classification. Assume the space of all
germs h of C%-mappings
h: Rm’( Rl—’ Rm
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centred at (Vo' .20). An equivalence (so called contact equivalence) is defi-
ned on this space; the equivalence preserves important topological properti-
es of bifurcation diagrams. The equivalence classes are called orbits. If a
germ h=h(v,A) has a finite codimension then the relevant orbit is a semi-
algebraic variety of a finite codimension in the linear space of Taylor coef-
ficients (i.e. the space of all partials of h at (Vo’ ‘7\0).

Just two examples:

Example 1. Assume m=1, and define
o T,
G=(h,hyhashyyshyg) s Ry > Ry — Rs.
"If G=0 at (vo, ao) and some "nondegeneracy conditions" hold (namely, hvw+0,
ha]#:o) then (v, ao) is called the winged cusp singularity, see [2], p. 198.

Example 2. Assume m=2, and define G=(h,h)": R,x R —> R.. If 6=0 at
(v,, d,) and some nondegeneracy conditions hold (e.g. h,=+0) then (v_, A )
o’ Yo A 0’"'o
is called the hilltop bifurcation point, see [2], p. 403.

Each particular singularity (Vo’ 9\0) has to satisfy a set of £ algebra-
ic conditions

G=0 at (Vo’ Ao)

where G: R x R, —> ‘Rl; A is finite if h has a finite codimension.

The germ g=g(v, A, ) can be viewed as a perturbation of h. Naturally,
we replace h by g in the particular definition of G. Then
(2.5) G:Rmx RllekélRL
and the condition on a singular point reads as
(2.6) G=0 at (VO, ?\o,mo).

The condition (2.6) defines (Vo’ Ao,oco) locally uniquely if and only if

m+l+k= £
w |
Jacobian of G at (vD,J\D,mD) does not vanish.

At this place, we can formulate the following conjecture: The conditi-
on (A) is equivalent to the assumption that g=g(v, A, o) is a universal un-
folding of the germ g(., v o) R R;—> R, In such a case,
k=codim g(., « ,u;o). Note that if the codimension k<3 then there is a fini-

te choice of mappings G. Let us quote 2 , Theorem 2.1, p. 400, where the re-
levant G's are listed.

The aim of this paper is to indicate how to formulate (2.6) in terms of
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F (and its partial derivatives w.r.t. u and A) at the singular point X,

3. Construction of inflated mappings. In order to illustrate the idea,
we assume the following examples:
Case 1: G=(g,gv,ga)T;

Case 2: G=(g,gv,gvv)T;

Case 3: G=(g.gv,g,‘,gw,gva)r';

there is no restriction on dimension m. Conditions G=0 classify singulariti-
es (vo,ﬁ o’“o) in the sense of the previous section.

For each of the above cases, we derive the eguivalent conditions on
(ug, A gy ). It will appear that (uy, Ay, e¢y) is related to a root of an o-
perator ¥ , where ¥ is constructed by means of F and its partials w.r.t. u
and A . Let us say that ¥ is the inflated mapping corresponding to F.

Notation: If it is not stated otherwise then the values of F and its de-
rivatives are understood at the singular point xo=(u0,ao, oco). Similarly,
the operators w and g (and their derivatives) are evaluated at the “"project-
ed" X, i.e. at (vu,,?\o,oco).

First, let us remind our assumption on Xg: See (1.1) and (1.4). It reads
as follows:
(3.1) F=0

1 . 1 1
(3.2) 3v§ le u, 1=1,...,m:Fuv§ )=0, Lv§ )=ai
where ‘fal,...,am} span R .
By definition of g, see (2.4), it is clear that (3.1),(3.2) imply
(3.3) g0, g,=0.
We shall discuss consequences of the assumptions 9y =0 and gw=0 and
8ya =0.
Let us differentiate both (2.2) and (2.4) w.r.t. A . It yields
lJl'.Fuwa "F.’A] =0, Lwy =0
and
_nC
9y =QF Wy +FA] *
Obviously, 9, =0 if and only if

G.4) 3 cur vl <0, L0,
Namely,
(3.5) Do, -
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It follows from (2.4) that

-nC . 2
gw-ﬂ [Fuu (va) "'Fu"vvJ'

Let us calculate both w, and w,, from (2.2). Differentiating w.r.t. v,
QLF - (T+w,)] =0, Lw,=0.
since FvP=0 (i=1,...,m),
(3.6) uvv§1)=0, i=1,...,m.
Differentiating (2.2) again,
2 = -
Q[Fuu-(l-mv) +F w ] =0, Lw,,=0.

uvv
It is simple to conclude that 8,,=0 if and only if ngil)vglho for

1£j%i%4m, which is equivalent to

_— { 3v§§)eu (1&j&igm):
: 2 (1), (1 2
Fuvgj *Fuuvi )vj )=0, ngj)=0.
Namely,
(3.8) vg)wwvgl)vgl)-

Similar calculations yield the following assertion: ga =0, ng\:U are e-
quivalent to (3.4) and

3D jeb Gel,..m:
(3.9) (2) (1) 1) (1)_
Fuvml,j*Fua"j +Fuuvm+lvj =0,
) _
Lvml’j-o
with the interpretation
(3.10) "gi,j“’va"gl) (321,...,m.

We resume the above calculations in

Proposition 1. Assume Cases 1 - 3 of the definition G. Then the conditi-
on G=0 at (vo, Ao, "‘o) is equivalent to the following conditions at
(uo, ao,aco):

Case 1: (3.1),(3.2), (3.4);

Case 2;: (3.1), (3.2), (3.7);

Case 3: (3.1), (3.2), (3.4), (3.7), (3.9).

The listed conditions detine a root of an operator ¥ . In Case 1 ,

F WxR xR ()™ ()™2
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is defined as follows: if (u,.’;\,u:,v{l), (1) (1))eU xR =R, ()™l
(1)

and Lvi =a; for i=1,...,m and Lvﬁiﬂ] then
F(u, a,00)

Folu, & ,e0viD

(3.11) @(u,ﬁ,oc,vgl),.. (‘1))- :
Fu(u, A, 0D

Fulu, A, WEAE, (0, 2, 0)

Thus F is defined on an affine subspace of Ulex lex[U]mﬂ. A simple

shift of variables v§1) makes it possible to define % on the linear space

u ><|R1>< ka[UO'] "'"1, where

(3.12) Uy= fueU:Lu=0%.

A root (u, A, v(l), (1)) has a clear 1nterpretat10n (U, A,00)= %o
(i.e., it yields the singular point) the vectors ‘tv ) ml } span
Ker F (x ) and VIS'I i-wa

The definition of 4 in Cases 2 and 3 is similar.

Remark. We have chosen comparatively simple examples of G. If, say, the
condition G=0 includes the requirement that Hessian O,y degenerates in one
direction then a definition of 4 is not so straightforward. Nevertheless, we
believe that any condition G=0 on an orbit of the germ g(-,-, o, ) centred at
(v Vor Ao ) is equivalent to a condition #=0 at (u Ags g plus auxiliary va-
riables) where ¥ is the "inflated mapping" correspcnding to F.

4. Gradient of the inflated mapping. Since the conditions G=0 at
(vo, Ao af.o) and %'=0 at (uo, Ags &gy - -) are equivalent, one is ready to be-
lieve that the gradient DG at (Vo’ "‘o""o) is invertible if and only if the
gradient DF at (uo, ]\n,do,...) is invertible. The invertibility of DG is
formulated in the assumption (A), Section 2. We wish to discuss the statem-
ent: (A) holds if and only if DF is invertible at (4ys Agr ogyeee).

We illustrate this statement on an example. Let us assume Case 1 of Sec-
tion 3. The relevant ¥ is defined by (3.11). Fréchet derivative DF at

(Ugs A gy ,vi}? (1)) with respect to a direction

(du, &, dx , d'v(l) ” d’v(l))eUxmlx R, < [U ] can be simply calculat-
ed:
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(4.1 0F (o, 2, b, 1., Ao, e{D). DT
where

(4.2) r=F, JU+f, TA 4 doo

@3 efDe(y, sk, 400 o, Sev{Dar, (D)
for i=1,...,m, and

(1)_ (1)
rm+1‘(Fuu d'u+Fuad'A +Fu“ d'.,c)vm+1+
(4.8) W
1
"Fuadz"FM dA +,  dx . Jvm+1;
remind the convention that F (and its partials) are evaluated at x°=(uo, Ags

o). We skip the argument (ug, Ao,ao,vil),...,vﬁi) of ¥ and DF , too.

Our aim is to prove that the linear mapping
D7 :Ux Ry > Rk*[UDJMI—>[Y]m+2
is regular (i.e. it is invertible, with a bounded inverse).

Proposition 2. Assume Case 1 of Definition G. Let (Ugs Ag atg,v D

.,vrfhl\i) be a root of the relevant 9 | see (3.11). Then the assumption (A)

is equivalent to the statement that D , being evaluated at

(uy, 2 o oco,vig?. ’ ,v,ﬁl), is regular.

Proof. By making use of formulas (4.1)-(4.4), we try to calculate the
inverse of DF . We use the notation

dv= TTdu, dw=TT% du;
i.e. du= dv+ dw.

Projecting both sides of (4.2) by the operator Q onto the range of Fus
and making use of F: (see (2.1)), we calculate d'w as an affine operator of
dA and doo . Namely,

_ rt
(4.5) d'u-wid'}\ W“Jd. +R, R=Fr
where
3 +, - +,
(4.6) - W d Fify s W= IR

Projecting both sides of (4.2) by the projector Oc, one can check that
(4.7) g, d'v+gad'a+gwd'ac =Q°r.
Similarly, (4.3) and (4.5) imply
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Jv§1)=("vv V4w 2 A Wye J“)v§1)+

“8 D, W (1) _+ (1)
1 1) _+
+Ri W Vi R, Ri -Furi
where
= F'F = -F'F
" TTufuue Wya W Fufua o
(4.9)
W, F*F

v v e

Projecting (4.3) by Q°, it yields

(4.10) (gvv (;J'w-gvA g +Oyoc dx )v§1)=00[r§1)-FuuRv§1)J .
Finally, as a consequence of (4.4), we obtain

{ Foghion fvoizg 62 g I

(4.11) .
(1) (1)_+ (1)

Ry Ry R 1=F i Tned

where
.
: " Mvec Ay Yo Wyt My - Fifa g
(4.12) .
WM =2 "va Wy W, Wy Wy - FuFA& .

Moreover, (4.4) implies

(4.13) QVJJV*QM dA +0, 5 dox =0°[rﬁi—(Fuuwa +Fm)RJ .

Let us resume the above calculations. According to (4.5), (4.8) and
(4.11), the vectors dw, d'vgl) (i=1,...,m), Jvﬁl are affine operators of
(dv, dA, dx). Continuity of these operators follows from the boundedness of
B

Denote DG(J'v, dA,dx) the Fréchet derivative of G at (Vo’ ?\o,oco) with
respect to the direction (d'v, dA,dx). Then the conditions (4.7), (4.10)
and (4.13) read as follows:

o°r

re{Vr meis
(4.18) DG(dv, dA,dx)= . 2
QC[rtfll)_Fuuvasll )J

cr.(1)
Q (rml'(Fuu" "’FuA)R]
where R=F'r. Thus, DY. is regular if and only if (dV,dA, 5x) depends conti-
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nuously on (r,rgl),...,r,f'l)) via (4.18).

We claim that the latter is equivalent to the assumption (A). For, note
that G=0 counts £=m(m+2) algebraic conditions. Identifying both Ker F, and
Q%Y with Rm, the assumption (A) states that the linear operator

DG:Ker F,x R, > R, —> [q°YI™2

is invertible.

5. Conclusions. The aim is to find a mapping ¥ such that an organizing
centre of F would be related to a simple root of % . Our point is to link
the construction of the mapping 3 with a classification of the organizing
centre.

We have demonstrated this idea on three particular examples, see Propo-
sition 1. The classification is not known a priori but it can be guessed us-
ing an auxiliary information (e.g. by means of codimension).

If the root of 4 is simple (for an example, see Proposition 2) then
the Newton method can be applied to approximate the root.
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